Что такое гамма-лучи? Гамма-излучение: понятие, источники, применение и способы защиты.

В ядрах одного и того же элемента число нейтронов может быть различным, а число протонов всегда одно и то же. Такие ядра называются изотопами . Например, в ядрах водорода всегда 1 протон, а число нейтронов может быть 0, 1, 2, 3, 4, 6.

Радиоактивность

Радиоактивность - явление самопроизвольного превращения неустойчивого изотопа одного химического элемента в изотоп другого элемента. При этом испускаются частицы, обладающие большой проникающей способностью.

Например, радиоактивный элемент радий превращается в другой химический элемент - радон с выделением гелия.

В 1899 г. Э. Резерфорд провел опыт, в результате которого было обнаружено, что радиоактивное излучение неоднородно. Существуют три различные частицы с разными зарядами. Альфа-частица - положительно заряженная (лишенный электронов атом гелия), бета-частица - отрицательно заряженная (электрон), и нейтральная гамма-частица (фотон).

Три вида излучения обладают разной проникающей способностью. Самые поникающие - гамма-лучи. Они легко проходят через вещество. Чтобы их остановить нужна свинцовая пластина толщиной 5 см, либо 30 см бетона, либо 60 см грунта.

Ядерные реакции

Альфа-распад

Пример:
где - альфа-излучение - ядра гелия.

Этот распад наблюдается для тяжелых ядер с А>200. При альфа-распаде одного химического элемента образуется другой химический элемент, который в таблице Менделеева расположен на 2 клетки ближе к ее началу, чем исходный.

Бета-распад

Пример:
где - бета-излучение - электроны.

При бета-распаде одного химического элемента образуется другой химический элемент, который расположен в таблице Менделеева в следующей клетке за исходным.

Гамма-излучение

Испускание гамма-излучения не приводит к превращениям элементов.

В ходе ядерной реакции суммарный электрический заряд и число нуклонов сохраняются. Ядерные реакции бывают двух типов: эндотермические (с поглощением энергии) и экзотермические (с выделением энергии). Если сумма масс исходного ядра и частиц, больше суммы масс конечного ядра и испускаемых частиц, то энергия выделяется, и наоборот.

Открытие протона:

Не нужно пугаться этого слова: оно обозначает попросту радиоактивные изотопы. Иногда в речи можно услышать слова «радионуклеид», или еще менее литературный вариант - «радионуклеотид». Правильный термин - именно радионуклид. Но что такое радиоактивный распад? Каковы свойства разных видов излучения и чем они отличаются? Обо всем - по порядку.

Определения в радиологии

С тех времен, когда произошел взрыв первой атомной бомбы, многие понятия из радиологии претерпели изменения. Вместо фразы «атомный котел» принято говорить «атомный реактор». Вместо словосочетания «радиоактивные лучи» пользуются выражением «ионизирующие излучения». Словосочетание «радиоактивный изотоп» заменено на «радионуклид».

Долгоживущие и короткоживущие радионуклиды

Альфа-, бета- и гамма-излучения сопровождают процесс распада атомного ядра. Что такое Ядра радионуклидов не являются стабильными - этим они и отличаются от других устойчивых изотопов. В определенный момент запускается процесс радиоактивного распада. Радионуклиды при этом превращаются в другие изотопы, в процессе чего испускаются альфа-, бета- и гамма-лучи. Радионуклиды имеют разный уровень нестабильности - некоторые из них распадаются в течение сотен, миллионов и даже миллиардов лет. К примеру, все изотопы урана, которые встречаются в природе, являются долгоживущими. Есть и такие радионуклиды, которые распадаются в течение секунд, дней, месяцев. Они зовутся короткоживущими.

Выброс альфа-, бета- и гамма-частиц сопровождает не любой распад. Но на самом деле радиоактивный распад сопровождается только выбросом альфа- или бета-частиц. В некоторых случаях этот процесс происходит в сопровождении гамма-лучей. Чистое гамма-излучение в природе не встречается. Чем больше скорость распада радионуклида, тем выше его уровень радиоактивности. Некоторые считают, что в природе существует альфа-, бета-, гамма- и дельта-распад. Это неверно. Дельта-распада не существует.

Единицы измерения радиоактивности

Однако в чем измеряется эта величина? Измерение радиоактивности позволяет выразить интенсивность распада в цифрах. Единица измерения активности радионуклида - беккерель. 1 беккерель (Бк) означает, что 1 распад происходит в 1 сек. Когда-то для этих измерений использовалась гораздо более крупная единица измерения - кюри (Ки): 1 кюри = 37 млрд беккерелей.

Естественно, сопоставлять необходимо одинаковые массы вещества, например 1 мг урана и 1 мг тория. Активность взятой единицы массы радионуклида называется удельной активностью. Чем больше период полураспада, тем меньше удельная радиоактивность.

Какие радионуклиды представляют собой большую опасность?

Свойства гамма-лучей

Этот вид излучения имеет ту же природу, что и ультрафиолетовое излучение, инфракрасные лучи или радиоволны. Гамма-лучи представляют собой фотонное излучение. Однако с чрезвычайно высокой скоростью фотонов. Этот тип излучения очень быстро проникает сквозь материалы. Чтобы задержать его, обычно используют свинец и бетон. Гамма-лучи способны преодолевать тысячи километров.

Миф об опасности

Сравнивая альфа-, гамма- и бета-излучение, люди обычно считают гамма-лучи наиболее опасными. Ведь они образуются при ядерных взрывах, преодолевают сотни километров и вызывают лучевую болезнь. Все это верно, однако не имеет непосредственного отношения к опасности лучей. Так как в этом случае говорят именно об их проникающей способности. Конечно, альфа-, бета- и гамма-лучи различаются в этом отношении. Однако опасность оценивается не проникающей способностью, а поглощенной дозой. Этот показатель высчитывается в джоулях на килограмм (Дж/кг).

Таким образом, измеряется дробью. В ее числителе находится не количество альфа-, гамма- и бета-частиц, а именно энергия. К примеру, гамма-излучение может быть жестким и мягким. Последнее обладает меньшей энергией. Продолжая аналогию с оружием, можно сказать: значение имеет не только калибр пули, важно и то, из чего производится выстрел - из рогатки или из дробовика.

Ионизирующее излучение (далее - ИИ) - это излучение, взаимодействие которого с веществом приводит к ионизации атомов и молекул, т.е. это взаимодействие приводит к возбуждению атома и отрыву отдельных электронов (отрицательно заряженных частиц) из атомных оболочек. В результате, лишенный одного или нескольких электронов, атом превращается в положительно заряженный ион - происходит первичная ионизация. К ИИ относят электромагнитное излучение (гамма-излучение) и потоки заряженных и нейтральных частиц - корпускулярное излучение (альфа-излучение, бета-излучение, а также нейтронное излучение).

Альфа-излучение относится к корпускулярным излучениям. Это поток тяжелых положительно заряженных а-частиц (ядер атомов гелия), возникающее в результате распада атомов тяжелых элементов, таких как уран, радий и торий. Поскольку частицы тяжелые, то пробег альфа-частиц в веществе (то есть путь, на котором они производят ионизацию) оказывается очень коротким: сотые доли миллиметра в биологических средах, 2,5—8 см в воздухе. Таким образом, задержать эти частицы способен обычный лист бумаги или внешний омертвевший слой кожи.

Однако вещества, испускающие альфа-частицы, являются долгоживущими. В результате попадания таких веществ внутрь организма с пищей, воздухом или через ранения, они разносятся по телу током крови, депонируются в органах, отвечающих за обмен веществ и защиту организма (например, селезенка или лимфатические узлы), вызывая, таким образом, внутреннее облучение организма. Опасность такого внутреннего облучения организма высока, т.к. эти альфа-частицы создают очень большое число ионов (до нескольких тысяч пар ионов на 1 микрон пути в тканях). Ионизация, в свою очередь, обуславливает ряд особенностей тех химических реакций, которые протекают в веществе, в частности, в живой ткани (образование сильных окислителей, свободного водорода и кислорода и др.).

Бета-излучение (бета-лучи, или поток бета-частиц) также относится к корпускулярному типу излучения. Это поток электронов (β--излучение, или, чаще всего, просто β -излучение) или позитронов (β+-излучение), испускаемых при радиоактивном бета-распаде ядер некоторых атомов. Электроны или позитроны образуются в ядре при превращении нейтрона в протон или протона в нейтрон соответственно.

Электроны значительно меньше альфа-частиц и могут проникать вглубь вещества (тела) на 10-15 сантиметров (ср. с сотыми долями миллиметра у а-частиц). При прохождении через вещество бета-излучение взаимодействует с электронами и ядрами его атомов, расходуя на это свою энергию и замедляя движение вплоть до полной остановки. Благодаря таким свойствам для защиты от бета-излучения достаточно иметь соответствующей толщины экран из органического стекла. На этих же свойствах основано применение бета-излучения в медицине для поверхностной, внутритканевой и внутриполостной лучевой терапии.

Нейтронное излучение - еще один вид корпускулярного типа излучений. Нейтронное излучение представляет собой поток нейтронов (элементарных частиц, не имеющих электрического заряда). Нейтроны не оказывают ионизирующего действия, однако весьма значительный ионизирующий эффект происходит за счет упругого и неупругого рассеяния на ядрах вещества.

Облучаемые нейтронами вещества могут приобретать радиоактивные свойства, то есть получать так называемую наведенную радиоактивность. Нейтронное излучение образуется при работе ускорителей элементарных частиц, в ядерных реакторах, промышленных и лабораторных установках, при ядерных взрывах и т. д. Нейтронное излучение обладает наибольшей проникающей способностью. Лучшими для защиты от нейтронного излучения являются водородсодержащие материалы.

Гамма излучение и рентгеновское излучение относятся к электромагнитным излучениям.

Принципиальная разница между двумя этими видами излучения заключается в механизме их возникновения. Рентгеновское излучение - внеядерного происхождения, гамма излучение - продукт распада ядер.

Рентгеновское излучение, открыто в 1895 году физиком Рентгеном. Это невидимое излучение, способное проникать, хотя и в разной степени, во все вещества. Представляет собой электромагнитное излучение с длиной волны порядка от - от 10 -12 до 10 -7 . Источник рентгеновских лучей - рентгеновская трубка, некоторые радионуклиды (например, бета-излучатели), ускорители и накопители электронов (синхротронное излучение).

В рентгеновской трубке есть два электрода - катод и анод (отрицательный и положительный электроды соответственно). При нагреве катода происходит электронная эмиссия (явление испускания электронов поверхностью твёрдого тела или жидкости). Электроны, вылетающие из катода, ускоряются электрическим полем и ударяются о поверхность анода, где происходит их резкое торможение, вследствие чего возникает рентгеновское излучение. Как и видимый свет, рентгеновское излучение вызывает почернение фотопленки. Это одно его из свойств, основное для медицины - то, что оно является проникающим излучением и соответственно пациента можно просвечивать с его помощью, а т.к. разные по плотности ткани по-разному поглощают рентгеновское излучение - то мы можем диагностировать на самой ранней стадии многие виды заболеваний внутренних органов.

Гамма излучение имеет внутриядерное происхождение. Оно возникает при распаде радиоактивных ядер, переходе ядер из возбужденного состояния в основное, при взаимодействии быстрых заряженных частиц с веществом, аннигиляции электронно-позитронных пар и т.д.

Высокая проникающая способность гамма-излучения объясняется малой длиной волны. Для ослабления потока гамма-излучения используются вещества, отличающиеся значительным массовым числом (свинец, вольфрам, уран и др.) и всевозможные составы высокой плотности (различные бетоны с наполнителями из металла).

Гамма излучение представляет собой довольно серьезную опасность для человеческого организма, да и для всего живого в общем.

Это электромагнитные волны с очень маленькой длиной и высокой скоростью распространения.

Чем же они так опасны, и каким образом можно защититься от их воздействия?

О гамме излучение

Все знают, что атомы всех веществ содержат в себе ядро и электроны, которые вращаются вокруг него. Как правило, ядро – это довольно стойкое образование, которому трудно нанести повреждения.

При этом существуют вещества, ядра которых неустойчивы, и при некотором воздействии на них происходит излучение их составляющих. Такой процесс называется радиоактивным, он имеет определенные составляющие, названные по первым буквам греческого алфавита:

  • гамма излучения.

Стоит отметить, что радиационный процесс подразделяется на два вида в зависимости от того, что именно в результате выделяется.

Виды:

  1. Поток лучей с выделением частиц – альфа, бета и нейтронное;
  2. Излучение энергии – рентгеновское и гамма.

Гамма излучение – это поток энергии в виде фотонов. Процесс разделения атомов под воздействием радиации сопровождается образованием новых веществ. При этом атомы вновь образовавшегося продукта имеют довольно нестабильное состояние. Постепенно при взаимодействии элементарных частиц возникает восстановление равновесия. В результате происходит выброс лишней энергии в виде гаммы.

Проникающая способность такого потока лучей очень высока. Оно способно проникать через кожные покровы, ткани, одежду. Более тяжелым будет проникновение через металл. Чтобы задержать такие лучи необходима довольно толстая стена из стали или бетона. Однако длина волныγ-излучения очень мала и составляет меньше 2·10 −10 м, а ее частота находится в диапазоне 3*1019 – 3*1021 Гц.

Гамма частицами являются фотоны с довольно высокой энергией. Исследователи утверждают, что энергия гаммы излучения может превышать показатель 10 5 эВ. При этом граница между рентгеновскими и γ-лучами далеко не резкая.

Источники:

  • Различные процессы в космическом пространстве,
  • Распад частиц в процессе опытов и исследований,
  • Переход ядра элемента из состояния с большой энергией в состояние покоя или с меньшей энергией,
  • Процесс торможения заряженных частиц в среде либо движение их в магнитном поле.

Открыл гамма излучение французский физик Поль Виллар в 1900 году, проводя исследование излучения радия.

Чем опасно гамма-излучение

Гамма излучение является наиболее опасным, нежели альфа и бета.

Механизм действия:

  • Гамма лучи способны проникать через кожные покровы внутрь живых клеток, в результате происходит их повреждение и дальнейшее разрушение.
  • Поврежденные молекулы провоцируют ионизацию новых таких же частиц.
  • В результате возникает изменение в структуре вещества. Пострадавшие частицы при этом начинают разлагаться и превращаться в токсические вещества.
  • В итоге происходит образование новых клеток, но они уже с определенным дефектом и поэтому не могут полноценно работать.

Гамма излучения опасно тем, что такое взаимодействие человека с лучами не ощущается им ни в коей мере. Дело в том, что каждый орган и система человеческого организма реагирует по-разному на γ-лучи. Прежде всего, страдают клетки, способные быстро делиться.

Системы:

  • Лимфатическая,
  • Сердечная,
  • Пищеварительная,
  • Кроветворная,
  • Половая.

Оказывается негативное влияние и на генетическом уровне. Кроме того, такое излучение имеет свойство накапливаться в человеческом организме. При этом в первое время оно практически не проявляется.

Где применяется гамма-излучение

Несмотря на негативное влияние, ученые нашли и положительные стороны. В настоящее время такие лучи применяются в различных сферах жизни.

Гамма излучение — применение:

  • В геологических исследованиях с их помощью определяют длину скважин.
  • Стерилизация различных медицинских инструментов.
  • Используется для контроля внутреннего состояния различных вещей.
  • Точное моделирование пути космических аппаратов.
  • В растениеводстве применяется для вывода новых сортов растений из тех, что мутируют под воздействием лучей.

Излучение гамма частиц нашло свое применение в медицине. Используется оно в терапии онкологических больных. Такой метод имеет название «лучевая терапия» и основывается на воздействии лучей на быстро делящиеся клетки. В результате при правильном использовании появляется возможность уменьшить развитие патологических клеток опухоли. Однако такой метод, как правило, применяется в том случае, когда другие уже бессильны.

Отдельно стоит сказать о влияние его на мозг человека

Современные исследования позволили установить, что мозг постоянно испускает электрические импульсы. Ученые считают, что гамма излучения возникает в те моменты, когда человеку приходится работать с разной информацией одновременно. При этом небольшое количество таких волн ведет к уменьшению запоминающей способности.

Как защититься от гамма-излучения

Какая же защита существует, и что сделать, чтобы уберечься от этих вредных лучей?

В современном мире человек окружен различными излучениями со всех сторон. Однако гамма частицы из космоса оказывают минимальное воздействие. А вот то, что находится вокруг представляет гораздо большую опасность. Особенно это относится к людям, работающим на различных атомных станциях. В таком случае защита от гамма излучения состоит в применении некоторых мер.

Меры:

  • Не находится длительное время в местах с таким излучением. Чем дольше времени человек находится под воздействием этих лучей, тем больше разрушений возникнет в организме.
  • Не стоит находиться там, где расположены источники излучения.
  • Необходимо использовать защитную одежду. В ее состав входит резина, пластик с наполнителями из свинца и его соединений.

Стоит отметить, что коэффициент ослабления гамма излучения зависит от того, из какого материала сделан защитный барьер. Так, например, лучшим металлом считается свинец в виду его свойства поглощать излучение в большом количестве. Однако он плавится при довольно низких температурах, поэтому в некоторых условиях используется более дорогой металл, например, вольфрам или тантал.

Еще один способ обезопасить себя – это измерить мощность гамма излучения в Вт. Кроме того, мощность измеряется также в зивертах и рентгенах.

Норма гамма излучения не должна превышать 0,5 микрозиверта в час. Однако лучше если этот показатель не будет выше 0,2 микрозиверта в час.

Чтобы измерить гамма излучение, применяется специальное устройство – дозиметр. Таких приборов существует довольно много. Часто используется такой аппарат, как «дозиметр гамма излучения дкг 07д дрозд». Он предназначен для оперативного и качественного измерения гамма и рентгеновского излучения.

У такого устройства есть два независимых канала, которые могут измерять МЭД и Эквивалент дозировки. МЭД гамма излучения это мощность эквивалентной дозировки, то есть количество энергии, которую поглощает вещество в единицу времени с учетом того, какое воздействие лучи оказывают на человеческий организм. Для этого показателя также существуют определенные нормы, которые обязательно должны быть учтены.

Излучение способно негативно влиять на организм человека, однако даже для него нашлось применение в некоторых сферах жизни.

Видео: Гамма-излучение

ГАММА-ИЗЛУЧЕНИЕ (γ-излучение), коротковолновое электромагнитное излучение (длина волны λ≤10 -10 м, короче, чем у рентгеновского излучения). При столь малых λ волновые свойства гамма-излучения проявляются слабо, первостепенное значение имеют корпускулярные свойства. Гамма-излучение представляет собой поток частиц - гамма-квантов, которые, как и другие фотоны, характеризуются энергией Е = hv (h - постоянная Планка, v - частота электромагнитных колебаний). Гамма-излучение открыто в начале 20 века как компонента излучения радиоактивных ядер, которая не отклонялась при прохождении через магнитное поле, в отличие от α- и ß-излучений. В 1914 году Э. Резерфорд совместно с английским физиком Э. Андраде в опытах по дифракции гамма-лучей на кристалле доказал электромагнитную природу гамма-излучения.

Гамма-излучение может испускаться атомными ядрами и элементарными частицами, а также в результате ядерных реакций и реакций между частицами, в частности аннигиляции пар частица - античастица. Гамма-излучение может поглощаться атомными ядрами и способно вызывать превращения частиц. Изучение спектров гамма-излучения, возникающего в процессах взаимодействия частиц, и гамма-излучения ядер даёт информацию о структуре этих микрообъектов.

Гамма-излучение ядер испускается при переходах ядра из состояния с большей энергией в состояние с меньшей энергией, и энергия испускаемого гамма-кванта с точностью до незначительной энергии отдачи ядра равна разности энергий этих состояний (уровней) ядра. Энергия ядерного гамма-излучения лежит в интервале от нескольких кэВ до нескольких МэВ; спектр этого излучения линейчатый, т. е. состоит из ряда дискретных линий. Изучение спектров ядерного гамма-излучения позволяет определить энергии состояний (уровней) ядра.

При распаде частиц и реакциях с их участием обычно испускаются гамма-кванты с энергиями в десятки - сотни МэВ.

Гамма-излучение может также возникать при торможении быстрых заряженных частиц в среде (тормозное излучение) или при их движении в сильных магнитных полях (синхротронное излучение). Тормозное гамма-излучение имеет сплошной спадающий с ростом энергии спектр, верхняя граница которого совпадает с кинетической энергией заряженной частицы. На ускорителях заряженных частиц энергия тормозного гамма-излучения достигает десятков ГэВ.

Гамма-излучение можно получить при соударении электронов большой энергии от ускорителей с интенсивными лазерными пучками. При этом электрон передаёт свою энергию оптическому фотону, который превращается в гамма-квант. Аналогичное явление может иметь место и в космическом пространстве. Космические гамма-лучи приходят от пульсаров, радиогалактик, квазаров, сверхновых звёзд (смотри Гамма-астрономия).

Гамма-излучение обладает большой проникающей способностью, т. е. может проходить сквозь большие толщи вещества. Интенсивность узкого пучка моноэнергетических гамма-квантов падает экспоненциально с ростом проходимого им в веществе расстояния. Основные процессы взаимодействия гамма-излучения с веществом - фотоэлектрическое поглощение (фотоэффект), комптоновское рассеяние (Комптона эффект) и образование пар электрон - позитрон.

Гамма-излучение используется в технике (например, в дефектоскопии), радиационной химии для инициирования химических превращений (например, при полимеризации), сельском хозяйстве, пищевой промышленности, медицине и др.

Лит.: Де Бенедетти С. Ядерные взаимодействия. М., 1968; Фрауэнфельдер Г., Хенли Э. Субатомная физика. М., 1979; Валантэн Л. Субатомная физика: ядра и частицы. М., 1986. Т. 2; Мухин К. Н. Экспериментальная ядерная физика. М., 1993. Кн. 1. Ч. 1.

И. М. Капитонов.

Действие на организм. Гамма-излучение действует на живые клетки подобно другим видам ионизирующих излучений. Хотя биосфера подвергается постоянному воздействию гамма-излучения в составе космических лучей и излучений радиоактивных элементов, находящихся в рассеянном виде в почвах, атмосфере и воде (радиационный фон Земли), их интенсивность невелика, и они не представляют опасности для живых организмов. Действие гамма-излучения проявляется по мере накопления вторичных электронов в объекте облучения и их переноса в близлежащие структуры. Тотальное гамма-нейтронное облучение организмов, сопровождающее ядерные взрывы, в зависимости от дозы может приводить к гибели организмов (для человека смертельная доза - 100 Гр), развитию лучевой болезни (при дозах 5-10 Гр). Воздействие более низких доз опасно отдалёнными последствиями: злокачественным перерождением клеток, развитием лейкозов, рождением генетически неполноценного потомства и др. Гамма-излучение применяют в медицине при лечении онкологических заболеваний (гамма-терапия; смотри Лучевая терапия). Оно используется также в генетических исследованиях для получения мутаций в молекулах ДНК и селекции организмов с последующим отбором хозяйственно полезных форм. Таким образом, например, были получены высокопродуктивные штаммы микроорганизмов, продуцирующих антибиотики. В качестве источников гамма-излучения применяют естественные и искусственные радиоактивные изотопы (обычно 60 Со, реже 137 Cs).