Дробно-рациональные уравнения. Рациональное уравнение

До сих пор мы решали только уравнения целые относительно неизвестного, то есть уравнения, в которых знаменатели (если таковые имелись) не содержали неизвестное.

Часто приходится решать уравнения, содержащие неизвестное в знаменателях: такие уравнения называются дробными.

Чтобы решить это уравнение, умножим обе его части на то есть на многочлен, содержащий неизвестное. Будет ли новое уравнение равносильно данному? Чтобы ответить на вопрос, решим это уравнение.

Умножив обе части его на , получим:

Решив это уравнение первой степени, найдём:

Итак, уравнение (2) имеет единственный корень

Подставив его в уравнение (1), получим:

Значит, является корнем и уравнения (1).

Других корней уравнение (1) не имеет. В нашем примере это видно, например, из того, что в уравнении (1)

Как неизвестный делитель должен быть равен делимому 1, разделённому на частное 2, то есть

Итак, уравнения (1) и (2) имеют единственный корень Значит, они равносильны.

2. Решим теперь такое уравнение:

Простейший общий знаменатель: ; умножим на него все члены уравнения:

После сокращения получим:

Раскроем скобки:

Приведя подобные члены, будем иметь:

Решив это уравнение, найдём:

Подставив в уравнение (1), получим:

В левой части получили выражения, не имеющие смысла.

Значит, корнем уравнения (1) не является. Отсюда следует, что уравнения (1) и неравносильны.

Говорят в этом случае, что уравнение (1) приобрело посторонний корень.

Сравним решение уравнения (1) с решением уравнений, рассмотренных нами раньше (см. § 51). При решении этого уравнения нам пришлось выполнить две такие операции, которые раньше не встречались: во-первых, мы умножили обе части уравнения на выражение, содержащее неизвестное (общий знаменатель), и, во-вторых, мы сокращали алгебраические дроби на множители, содержащие неизвестное.

Сравнивая уравнение (1) с уравнением (2), мы видим, что не все значения х, допустимые для уравнения (2), являются допустимыми для уравнения (1).

Именно числа 1 и 3 не являются допустимыми значениями неизвестного для уравнения (1), а в результате преобразования они стали допустимыми для уравнения (2). Одно из этих чисел оказалось решением уравнения (2), но, разумеется, решением уравнения (1) .оно быть не может. Уравнение (1) решений не имеет.

Этот пример показывает, что при умножении обеих частей уравнения на множитель, содержащий неизвестное, и при сокращении алгебраических дробей может получиться уравнение, неравносильное данному, а именно: могут появиться посторонние корни.

Отсюда делаем такой вывод. При решении уравнения, содержащего неизвестное в знаменателе, полученные корни надо проверять подстановкой в первоначальное уравнение. Посторонние корни надо отбросить.

В этой статье я покажу вам алгоритмы решения семи типов рациональных уравнений , которые с помощью замены переменных сводятся к квадратным. В большинстве случаев преобразования, которые приводят к замене, весьма нетривиальны, и самостоятельно о них догадаться достаточно трудно.

Для каждого типа уравнений я объясню, как в нем делать замену переменной, а затем в соответствующем видеоуроке покажу подробное решение.

У вас есть возможность продолжить решение уравнений самостоятельно, а затем сверить свое решение с видеоуроком.

Итак, начнем.

1 . (x-1)(x-7)(x-4)(x+2)=40

Заметим, что в левой части уравнения стоит произведение четырех скобок, а в правой - число.

1. Сгруппируем скобки по две так, чтобы сумма свободных членов была одинаковой.

2. Перемножим их.

3. Введем замену переменной.

В нашем уравнении сгруппируем первую скобку с третьей, а вторую с четвертой,так как (-1)+(-4)=(-7)+2:

В этом месте замена переменной становится очевидной:

Получаем уравнение

Ответ:

2 .

Уравнение этого типа похоже на предыдущее с одним отличием: в правой части уравнения стоит произведение числа на . И решается оно совсем по-другому:

1. Группируем скобки по две так, чтобы произведение свободных членов было одинаковым.

2. Перемножаем каждую пару скобок.

3. Из каждого множителя выносим за скобку х.

4. Делим обе части уравнения на .

5. Вводим замену переменной.

В этом уравнении сгруппируем первую скобку с четвертой, а вторую с третьей, так как :

Заметим, что в каждой скобке коэффициент при и свободный член одинаковые. Вынесем из каждой скобки множитель :

Так как х=0 не является корнем исходного уравнения, разделим обе части уравнения на . Получим:

Получим уравнение:

Ответ:

3 .

Заметим, что в знаменателях обоих дробей стоят квадратные трехчлены, у которых старший коэффициент и свободный член одинаковые. Вынесем, как и в уравнении второго типа х за скобку. Получим:

Разделим числитель и знаменатель каждой дроби на х:

Теперь можем ввести замену переменной:

Получим уравнение относительно переменной t:

4 .

Заметим, что коэффициенты уравнения симметричны относительно центрального. Такое уравнение называется возвратным .

Чтобы его решить,

1. Разделим обе части уравнения на (Мы можем это сделать, так как х=0 не является корнем уравнения.) Получим:

2. Сгруппируем слагаемые таким образом:

3. В каждой группе вынесем за скобку общий множитель:

4. Введем замену:

5. Выразим через t выражение :

Отсюда

Получим уравнение относительно t:

Ответ:

5. Однородные уравнения.

Уравнения, имеющие структуру однородного, могут встретиться при решении показательных, логарифмических и тригонометрических уравнений, поэтому ее нужно уметь распознавать.

Однородные уравнения имеют такую структуру:

В этом равенстве А, В и С - числа, а квадратиком и кружочком обозначены одинаковые выражения. То есть в левой части однородного уравнения стоит сумма одночленов, имеющих одинаковую степень (в данном случае степень одночленов равна 2), и свободный член отсутствует.

Чтобы решить однородное уравнение, разделим обе части на

Внимание! При делении правой и левой части уравнения на выражение, содержащее неизвестное, можно потерять корни. Поэтому необходимо проверить, не являются ли корни того выражения, на которое мы делим обе части уравнения, корнями исходного уравнения.

Пойдем первым путем. Получим уравнение:

Теперь мы вводим замену переменной:

Упростим выражение и получим биквадратное уравнение относительно t:

Ответ: или

7 .

Это уравнение имеет такую структуру:

Чтобы его решить, нужно в левой части уравнения выделить полный квадрат.

Чтобы выделить полный квдарат, нужно прибавить или вычесть удовоенное произведение. Тогда мы получим квадрат суммы ли разности. Для удачной замены переменной это имеет определяющее значение.

Начнем с нахождения удвоенного произведения. Именно оно будет ключиком для замены переменной. В нашем уравнении удвоенное произведение равно

Теперь прикинем, что нам удобнее иметь - квадрат суммы или разности. Рассмотрим, для начала сумму выражений:

Отлично! это выражении в точности равно удвоенному произведению. Тогда, чтобы в скобках получить квадрат суммы, нужно прибавить и вычесть удвоенное произведение:

Мы уже научились решать квадратные уравнения. Теперь распространим изученные методы на рациональные уравнения.

Что такое рациональное выражение? Мы уже сталкивались с этим понятием. Рациональными выражениями называются выражения, составленные из чисел, переменных, их степеней и знаков математических действий.

Соответственно, рациональными уравнениями называются уравнения вида: , где - рациональные выражения.

Раньше мы рассматривали только те рациональные уравнения, которые сводятся к линейным. Теперь рассмотрим и те рациональные уравнения, которые сводятся и к квадратным.

Пример 1

Решить уравнение: .

Решение:

Дробь равна 0 тогда и только тогда, когда ее числитель равен 0, а знаменатель не равен 0.

Получаем следующую систему:

Первое уравнение системы - это квадратное уравнение. Прежде чем его решать, поделим все его коэффициенты на 3. Получим:

Получаем два корня: ; .

Поскольку 2 никогда не равно 0, то необходимо, чтобы выполнялись два условия: . Поскольку ни один из полученных выше корней уравнения не совпадает с недопустимыми значениями переменной, которые получились при решении второго неравенства, они оба являются решениями данного уравнения.

Ответ: .

Итак, давайте сформулируем алгоритм решения рациональных уравнений:

1. Перенести все слагаемые в левую часть, чтобы в правой части получился 0.

2. Преобразовать и упростить левую часть, привести все дроби к общему знаменателю.

3. Полученную дробь приравнять к 0, по следующему алгоритму: .

4. Записать те корни, которые получились в первом уравнении и удовлетворяют второму неравенству, в ответ.

Давайте рассмотрим еще один пример.

Пример 2

Решить уравнение: .

Решение

В самом начале перенесем все слагаемые в левую сторону, чтобы справа остался 0. Получаем:

Теперь приведем левую часть уравнения к общему знаменателю:

Данное уравнение эквивалентно системе:

Первое уравнение системы - это квадратное уравнение.

Коэффициенты данного уравнения: . Вычисляем дискриминант:

Получаем два корня: ; .

Теперь решим второе неравенство: произведение множителей не равно 0 тогда и только тогда, когда ни один из множителей не равен 0.

Необходимо, чтобы выполнялись два условия: . Получаем, что из двух корней первого уравнения подходит только один - 3.

Ответ: .

На этом уроке мы вспомнили, что такое рациональное выражение, а также научились решать рациональные уравнения, которые сводятся к квадратным уравнениям.

На следующем уроке мы рассмотрим рациональные уравнения как модели реальных ситуаций, а также рассмотрим задачи на движение.

Список литературы

  1. Башмаков М.И. Алгебра, 8 класс. - М.: Просвещение, 2004.
  2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра, 8. 5-е изд. - М.: Просвещение, 2010.
  3. Никольский С.М., Потапов М.А., Решетников Н.Н., Шевкин А.В. Алгебра, 8 класс. Учебник для общеобразовательных учреждений. - М.: Просвещение, 2006.
  1. Фестиваль педагогических идей "Открытый урок" ().
  2. School.xvatit.com ().
  3. Rudocs.exdat.com ().

Домашнее задание

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Уравнения с дробями сами по себе не трудны и очень интересны. Рассмотрим виды дробных уравнений и способы их решения.

Как решать уравнения с дробями – икс в числителе

В случае, если дано дробное уравнение, где неизвестное находится в числителе, решение не требует дополнительных условий и решается без лишних хлопот. Общий вид такого уравнения – x/a + b = c, где x – неизвестное, a,b и с – обычные числа.

Найти x: x/5 + 10 = 70.

Для того чтобы решить уравнение, нужно избавиться от дробей. Умножаем каждый член уравнения на 5: 5x/5 + 5×10 = 70×5. 5x и 5 сокращается, 10 и 70 умножаются на 5 и мы получаем: x + 50 = 350 => x = 350 – 50 = 300.

Найти x: x/5 + x/10 = 90.

Данный пример – немного усложненная версия первого. Тут есть два варианта решения.

  • Вариант 1: Избавляемся от дробей, умножая все члены уравнения на больший знаменатель, то есть на 10: 10x/5 + 10x/10 = 90×10 => 2x + x = 900 => 3x = 900 => x=300.
  • Вариант 2: Складываем левую часть уравнения. x/5 + x/10 = 90. Общий знаменатель – 10. 10 делим на 5, умножаем на x, получаем 2x. 10 делим на 10, умножаем на x, получаем x: 2x+x/10 = 90. Отсюда 2x+x = 90×10 = 900 => 3x = 900 => x = 300.


Нередко встречаются дробные уравнения, в которых иксы находятся по разные стороны знака равно. В таких ситуация необходимо перенести все дроби с иксами в одну сторону, а числа в другую.

  • Найти x: 3x/5 = 130 – 2x/5.
  • Переносим 2x/5 направо с противоположным знаком: 3x/5 + 2x/5 = 130 => 5x/5 = 130.
  • Сокращаем 5x/5 и получаем: x = 130.


Как решить уравнение с дробями – икс в знаменателе

Данный вид дробных уравнений требует записи дополнительных условий. Указание этих условий является обязательной и неотъемлемой частью правильного решения. Не приписав их, вы рискуете, так как ответ (даже если он правильный) могут просто не засчитать.

Общий вид дробных уравнений, где x находится в знаменателе, имеет вид: a/x + b = c, где x – неизвестное, a, b, c – обычные числа. Обратите внимание, что x-ом может быть не любое число. Например x не может равняться нулю, так как делить на 0 нельзя. Именно это и является дополнительным условием, которое мы должны указать. Это называется областью допустимых значений, сокращенно – ОДЗ.

Найти x: 15/x + 18 = 21.

Сразу же пишем ОДЗ для x: x ≠ 0. Теперь, когда ОДЗ указана, решаем уравнение по стандартной схеме, избавляясь от дробей. Умножаем все члены уравнения на x. 15x/x+18x = 21x => 15+18x = 21x => 15 = 3x => x = 15/3 = 5.


Часто встречаются уравнения, где в знаменателе стоит не только x, но и еще какое-нибудь действие с ним, например сложение или вычитание.

Найти x: 15/(x-3) + 18 = 21.

Мы уже знаем, что знаменатель не может равняться нулю, а значит x-3 ≠ 0. Переносим -3 в правую часть, меняя при этом знак “-” на ”+” и получаем, что x ≠ 3. ОДЗ указана.

Решаем уравнение, умножаем все на x-3: 15 + 18×(x – 3) = 21×(x – 3) => 15 + 18x – 54 = 21x – 63.

Переносим иксы направо, числа налево: 24 = 3x => x = 8.