Геологическая история земли в хронологическом порядке. Геологическая история Земли — Гипермаркет знаний

Геологическая хронология, или геохронология , основана на выяснении геологической истории наиболее хорошо изученных регионов, например, в Центральной и Восточной Европе. На основе широких обобщений, сопоставления геологической истории различных регионов Земли, закономерностей эволюции органического мира в конце прошлого века на первых Международных геологических конгрессах была выработана и принята Международная геохронологическая шкала, отражающая последовательность подразделений времени, в течение которых формировались определенные комплексы отложений, и эволюцию органического мира. Таким образом, международная геохронологическая шкала - это естественная периодизация истории Земли.

Среди геохронологических подразделений выделяются: эон, эра, период, эпоха, век, время. Каждому геохронологическому подразделению отвечает комплекс отложений, выделенный в соответствии с изменением органического мира и называемый стратиграфическим: эонотема, группа, система, отдел, ярус, зона. Следовательно, группа является стратиграфическим подразделением, а соответствующее ей временное геохронологическое подразделение представляет эра. Поэтому существуют две шкалы: геохронологическая и стратиграфическая. Первую используют, когда говорят об относительном времени в истории Земли, а вторую, когда имеют дело с отложениями, так как в каждом месте земного шара в любой промежуток времени происходили какие-то геологические события. Другое дело, что накопление осадков было неповсеместным.

  • Архейская и протерозойская эонотемы, охватывающие почти 80% времени существования Земли, выделяются в криптозой, так как в докембрийских образованиях полностью отсутствует скелетная фауна и палеонтологический метод к их расчленению неприменим. Поэтому разделение докембрийских образований базируется в первую очередь на общегеологических и радиометрических данных.
  • Фанерозойский эон охватывает всего 570 млн. лет и расчленение соответствующей эонотемы отложений базируется на большом разнообразии многочисленной скелетной фауны. Фанерозойская эонотема подразделяется на три группы: палеозойскую, мезозойскую и кайнозойскую, отвечающие крупным этапам естественной геологической истории Земли, рубежи которых отмечены достаточно резкими изменениями органического мира.

Названия эонотем и групп происходят от греческих слов:

  • "археос" - самый древний, древнейший;
  • "протерос" - первичный;
  • "палеос" - древний;
  • "мезос" - средний;
  • "кайнос" - новый.

Слово "криптос" означает скрытый, а "фанерозой" - явный, прозрачный, так как появилась скелетная фауна.
Слово "зой" происходит от "зоикос" - жизненный. Следовательно, "кайнозойская эра" означает эру новой жизни и т.д.

Группы подразделяются на системы, отложения которых сформировались в течение одного периода и характеризуются только им свойственными семействами или родами организмов, а если это растения, то родами и видами. Системы были выделены в различных регионах и в разное время, начиная с 1822 г. В настоящее время выделяются 12 систем, названия большей части которых происходят от тех мест, где они впервые были описаны. Например, юрская система - от Юрских гор в Швейцарии, пермская - от Пермской губернии в России, меловая - по наиболее характерным породам - белому писчему мелу и т.д. Четвертичную систему нередко именуют антропогеновой, так как именно в этом возрастном интервале появляется человек.

Системы подразделяются на два или три отдела, которым соответствуют ранняя, средняя, поздняя эпохи. Отделы, в свою очередь, разделяются на ярусы, которые характеризуются присутствием определенных родов и видов ископаемой фауны. И, наконец, ярусы подразделяются на зоны, являющиеся наиболее дробной частью международной стратиграфической шкалы, которой в геохронологической шкале соответствует время. Названия ярусов даются обычно по географическим названиям районов, где этот ярус был выделен; например, алданский, башкирский, маастрихтский ярусы и т.д. В то же время зона обозначается по наиболее характерному виду ископаемой фауны. Зона охватывает, как правило, только определенную часть региона и развита на меньшей площади, нежели отложения яруса.

Всем подразделениям стратиграфической шкалы соответствуют геологические разрезы, в которых эти подразделения были впервые выделены. Поэтому такие разрезы являются эталонными, типичными и называются стратотипами, в которых содержится только им свойственный комплекс органических остатков, определяющий стратиграфический объем данного стратотипа. Определение относительного возраста каких-либо слоев и заключается в сравнении обнаруженного комплекса органических остатков в изучаемых слоях с комплексом ископаемых в стратотипе соответствующего подразделения международной геохронологической шкалы, т.е. возраст отложений определяют относительно стратотипа. Именно поэтому палеонтологический метод, несмотря на присущие ему недостатки остается наиболее важным методом определения геологического возраста горных пород. Определение относительного возраста, например, девонских отложений, свидетельствует лишь о том, что эти отложения моложе силурийских, но древнее каменноугольных. Однако установить длительность формирования девонских отложений и дать заключение о том, когда (в абсолютном летоисчислении) произошло накопление этих отложений - невозможно. Только методы абсолютной геохронологии способны ответить на этот вопрос.

Таб. 1. Геохронологическая таблица

Эра Период Эпоха Продол- житель- ность, млн. лет Время от начала периода до наших дней, млн. лет Геологические условия Растительный мир Животный мир
Кайнозой (время млекопитающих) Четвертичный Современная 0,011 0,011 Конец последнего ледникового периода. Климат теплый Упадок древесных форм, расцвет травянистых Эпоха человека
Плейстоцен 1 1 Повторные оледенения. Четыре ледниковых периода Вымирание многих видов растений Вымирание крупных млекопитающих. Зарождение человеческого общества
Третичный Плиоцен 12 13 Продолжается поднятие гор на западе Северной Америки. Вулканическая активность Упадок лесов. Распространение лугов. Цветковые растения; развитие однодольных Возникновение человека от человекообразных обезьян. Виды слонов, лошадей, верблюдов, сходные с современными
Миоцен 13 25 Образовались Сиерры и Каскадные горы. Вулканическая активность на северо-западе США. Климат прохладный Кульминационный период в эволюции млекопитающих. Первые человекообразные обезьяны
Олигоцен 11 30 Материки низменные. Климат теплый Максимальное распространение лесов. Усиление развития однодольных цветковых растений Архаические млекопитающие вымирают. Начало развития антропоидов; предшественники большинства ныне живущих родов млекопитающих
Эоцен 22 58 Горы размыты. Внутриконтинентальные моря отсутствуют. Климат теплый Разнообразные и специализированные плацентарные млекопитающие. Копытные и хищники достигают расцвета
Палеоцен 5 63 Распространение архаических млекопитающих
Альпийское горообразование (незначительное уничтожение ископаемых)
Мезозой (время пресмыкающихся) Мел 72 135 В конце периода образуются Анды, Альпы, Гималаи, Скалистые горы. До этого внутриконтинентальные моря и болота. Отложение писчего мела, глинистых сланцев Первые однодольные. Первые дубовые и кленовые леса. Упадок голосеменных Динозавры достигают наивысшего развития и вымирают. Зубатые птицы вымирают. Появление первых современных птиц. Архаические млекопитающие обычны
Юра 46 181 Материки довольно возвышенные. Мелководные моря покрывают некоторую часть Европы и запад США Увеличивается значение двудольных. Цикадофиты и хвойные обычны Первые зубатые птицы. Динозавры крупные и специализированные. Насекомоядные сумчатые
Триас 49 230 Материки приподняты над уровнем моря. Интенсивное развитие условий аридного климата. Широкое распространение континентальных отложений Господство голосеменных, уже начинающих клониться к упадку. Вымирание семенных папоротников Первые динозавры, птерозавры и яйцекладущие млекопитающие. Вымирание примитивных земноводных
Герцинское горообразование (некоторое уничтожение ископаемых)
Палеозой (эра древней жизни) Пермь 50 280 Материки приподняты. Образовались Аппалачские горы. Усиливается засушливость. Оледенение в южном полушарии Упадок плаунов и папоротникообразных растений Многие древние животные вымирают. Развиваются звероподобные пресмыкающиеся и насекомые
Верхний и средний карбон 40 320 Материки сначала низменные. Обширные болота, в которых образовался уголь Большие леса семенных папоротников и голосеменных Первые пресмыкающиеся. Насекомые обычны. Распространение древних земноводных
Нижний карбон 25 345 Климат вначале теплый и влажный, позднее в связи с поднятием суши - более прохладный Господствуют плауны и папоротникообразные растения. Все шире распространяются голосеменные Морские лилии достигают наивысшего развития. Распространение древних акул
Девон 60 405 Внутриконтинентальные моря небольшого размера. Поднятие суши; развитие аридного климата. Оледенение Первые леса. Наземные растения хорошо развиты. Первые голосеменные Первые земноводные. Обилие двоякодышащих и акул
Силур 20 425 Обширные внутриконтинентальные моря. Низменные местности становятся все более засушливыми по мере поднятия суши Первые достоверные следы наземных растений. Господствуют водоросли Господствуют морские паукообразные. Первые (бескрылые) насекомые. Усиливается развитие рыб
Ордовик 75 500 Значительное погружение суши. Климат теплый, даже в Арктике Вероятно, появляются первые наземные растения. Обилие морских водорослей Первые рыбы, вероятно пресноводные. Обилие кораллов и трилобитов. Разнообразные молюски
Кембрий 100 600 Материки низменные, климат умеренный. Самые древние породы с обильными ископаемыми Морские водоросли Господствуют трилобиты и нлеченогие. Зарождение большинства современных типов животных
Второе великое горообразование (значительное уничтожение ископаемых)
Протерозой 1000 1600 Интенсивный процесс осадкообразования. Позднее - вулканическая активность. Эрозия на обширных площадях. Многократные оледенения Примитивные водные растения - водоросли, грибы Различные морские простейшие. К концу эры - моллюски, черви и другие морские беспозвоночные
Первое великое горообразование (значительное уничтожение ископаемых)
Архей 2000 3600 Значительная вулканическая активность. Слабый процесс осадкообразования. Эрозия на больших зглощадях Ископаемые отсутствуют. Косвенные указания на существование живых организмов в виде отложений органического вещества в породах

Проблема определения абсолютного возраста горных пород, продолжительности существования Земли издавна занимала умы геологов, и попытки ее решения предпринимались много раз, для чего использовались различные явления и процессы. Ранние представления об абсолютном возрасте Земли были курьезными. Современник М. В. Ломоносова французский естествоиспытатель Бюффон определял возраст нашей планеты всего лишь в 74 800 лет. Другие ученые давали различные цифры, не превышающие 400-500 млн. лет. Здесь следует отметить, что все эти попытки заранее были обречены на неудачу, так как они исходили из постоянства скоростей процессов, которые, как известно, менялись в геологической истории Земли. И только в первой половине XX в. появилась реальная возможность измерять действительно абсолютный возраст горных пород, геологических процессов и Земли как планеты.

Таб.2. Изотопы, используемые для определения абсолютного возраста
Материнский изотоп Конечный продукт Период полураспада, млрд.лет
147 Sm 143 Nd+He 106
238 U 206 Pb+ 8 He 4,46
235 U 208 РЬ+ 7 He 0,70
232 Th 208 РЬ+ 6 Не 14,00
87 Rb 87 Sr+β 48,80
40 K 40 Аr+ 40 Са 1,30
14 C 14 N 5730 лет

Возникновение Земли и ранние этапы ее становления

Одной из важных задач современного естествознания в области наук о Земле является восстановление истории ее развития . По современным космогоническим представлениям, Земля образовалась из рассеянного в протосолнечной системе газопылевого вещества. Один из наиболее вероятных вариантов возникновения Земли выглядит следующим образом. Вначале образовались Солнце и уплощенная вращающаяся околосолнечная туманность из межзвездного газопылевого облака под влиянием, например, взрыва близкой сверхновой звезды. Далее происходила эволюция Солнца и околосолнечной туманности с передачей электромагнитным или турбулентно-конвективным способом момента количества движения от Солнца планетам. В последующем «пыльная плазма» конденсировалась в кольца вокруг Солнца, а материал колец образовал так называемые планетезимали, которые конденсировались до планет. После этого подобный процесс повторился вокруг планет, что привело к образованию спутников. Считается, что этот процесс занял около 100 млн лет.

Предполагается, что далее в результате дифференциации вещества Земли под действием ее гравитационного поля и радиоактивного нагрева возникли и развились различные по химическому составу, агрегатному состоянию и физическим свойствам оболочки - геосферы Земли. Более тяжелый материал сформировал ядро, состоящее, вероятно, из железа с примесью никеля и серы. В мантии остались несколько более легкие элементы. Согласно одной из гипотез, мантия сложена простыми оксидами алюминия, железа, титана кремния и др. О составе земной коры уже говорилось достаточно подробно в § 8.2. Она сложена более легкими силикатами. Еще более легкие газы и влага сформировали первичную атмосферу.

Как уже говорилось, предполагается, что Земля родилась из скопления холодных твердых частиц, выпадавших из газопылевой туманности и слипавшихся под влиянием взаимного притяжения. По мере роста планеты она разогревалась вследствие соударения этих частиц, достигавших нескольких сот километров, подобно современным астероидам, и выделения теплоты не только известными нам теперь в коре естественно -радиоактивными элементами, но и более чем 10 вымершими с тех пор радиоактивными изотопами AI, Be, Cl и др. В результате могло происходить полное (в ядре) или частичное (в мантии) плавление вещества. В начальный период своего существования, примерно до 3,8 млрд лет, Земля и другие планеты земной группы, а также Луна подвергались усиленной бомбардировке мелкими и крупными метеоритами. Следствием этой бомбардировки и более раннего соударения планетезималей могло стать выделение летучих и начало образования вторичной атмосферы, так как первичная, состоявшая из газов, захваченных при образовании Земли, скорее всего быстро рассеялась в космическом пространстве. Несколько позже стала формироваться гидросфера. Сформировавшиеся таким образом атмосфера и гидросфера пополнялись в процессе дегазации мантии при вулканической деятельности.

Падение крупных метеоритов создавало обширные и глубокие кратеры, подобные наблюдаемым в настоящее время на Луне, Марсе, Меркурии, где следы их не стерты последующими изменениями. Кратерообразование могло провоцировать излияния магмы с образованием базальтовых полей, подобных покрывающим лунные «моря». Так, вероятно, образовалась первичная кора Земли, которая, однако, не сохранилась на современной ее поверхности, за исключением относительно небольших фрагментов в «более молодой» коре континентального типа.

Эта кора, содержащая в своем составе уже граниты и гнейсы, правда, с меньшим содержанием кремнезема и калия, чем в «нормальных» гранитах, появилась на рубеже около 3,8 млрд лет и известна нам по обнажениям в пределах кристаллических щитов практически всех континентов. Способ образования древнейшей континентальной коры пока во многом неясен. В составе этой коры, повсеместно метаморфизованной в условиях высоких температур и давлений, находят породы, текстурные особенности которых свидетельствуют о накоплении в водной среде, т.е. в эту отдаленную эпоху уже существовала гидросфера. Возникновение первой коры, подобной современной, требовало поступления из мантии больших количеств кремнезема, алюминия, щелочей, в то время как сейчас мантийный магматизм создает очень ограниченный объем обогащенных этими элементами пород. Считается, что 3,5 млрд лет назад на площади современных континентов была широко распространена серогнейсовая кора, названная так по преобладающему типу слагающих ее пород. В нашей стране она, например, известна на Кольском полуострове и в Сибири, в частности в бассейне р. Алдан.

Принципы периодизации геологической истории Земли

Дальнейшие события в геологическое время часто определяются, согласно относительной геохронологии, категориями «древнее», «моложе». Например, какая-то эра древнее некоторой другой. Отдельные отрезки геологической истории называются (в порядке уменьшения их продолжительности) зонами, эрами, периодами, эпохами, веками. Их выявление основано на том факте, что геологические события запечатлеваются в горных породах, а осадочные и вулканогенные породы располагаются в земной коре слоями. В 1669 г. Н. Стеной установил закон последовательности напластования, согласно которому нижележащие пласты осадочных пород древнее вышележащих, т.е. образовались ранее их. Благодаря этому появилась возможность определения относительной последовательности образования слоев, а значит, связанных с ними геологических событий.

Основным в относительной геохронологии является биостратиграфический, или палеонтологический, метод установления относительного возраста и последовательности залегания пород. Этот метод был предложен У. Смитом в начале XIX в., а затем развит Ж. Кювье и А. Броньяром. Дело в том, что в большинстве осадочных пород можно встретить остатки животных или растительных организмов. Ж.Б. Ламарк и Ч. Дарвин установили, что животные и растительные организмы в течение геологической истории постепенно совершенствовались в борьбе за существование, приспосабливаясь к изменяющимся условиям жизни. Некоторые животные и растительные организмы на определенных стадиях развития Земли вымирали, на смену им приходили другие, более совершенные. Таким образом, по остаткам ранее живших более примитивных предков, найденным в каком-нибудь пласте, можно судить об относительно более древнем возрасте данного пласта.

Еще один метод геохронологического расчленения пород, особенно важный для расчленения магматических образований океанического дна, основан на свойстве магнитной восприимчивости горных пород и минералов, образующихся в магнитном поле Земли. С изменением ориентировки породы относительно магнитного поля или самого поля часть «врожденной» намагниченности сохраняется, а смена полярности запечатлевается в изменении ориентировки остаточной намагниченности пород. В настоящее время установлена шкала смены таких эпох.

Абсолютная геохронология - учение об измерении геологического времени, выраженного в обычных абсолютных астрономических единицах (годах), - определяет время возникновения, завершения и длительность всех геологических событий, в первую очередь время образования или преобразования (метаморфизма) горных пород и минералов, так как по их возрасту определяется возраст геологических событий. Основным методом здесь является анализ соотношения радиоактивных веществ и продуктов их распада в горных породах, образовывавшихся в разные эпохи.

Древнейшие породы в настоящее время установлены в Западной Гренландии (3,8 млрд лет). Самый большой возраст (4,1 - 4,2 млрд лет) получен по цирконам из Западной Австралии, но циркон здесь залегает в переотложенном состоянии в мезозойских песчаниках. С учетом представлений об одновременности образования всех планет Солнечной системы и Луны и возраста самых древних метеоритов (4,5-4,6 млрд лет) и древних лунных пород (4,0-4,5 млрд лет) возраст Земли принимается равным 4,6 млрд лет.

В 1881 г. на II Международном геологическом конгрессе в Болонье (Италия) были утверждены основные подразделения совмещенных стратиграфической (для разделения слоистых осадочных пород) и геохронологической шкал. По этой шкале история Земли делилась на четыре эры в соответствии с этапами развития органического мира: 1) архейская, или археозойская - эра древнейшей жизни; 2) палеозойская - эра древней жизни; 3) мезозойская - эра средней жизни; 4) кайнозойская - эра новой жизни. В 1887 г. из состава архейской эры выделили протерозойскую - эру первичной жизни. Позднее шкала совершенствовалась. Один из вариантов современной геохронологической шкалы представлен в табл. 8.1. Архейская эра разделяется на две части: ранний (древнее 3500 млн лет) и поздний архей; протерозойская - также на две: ранний и поздний протерозой; в последнем выделяют рифейский (название произошло от древнего названия Уральских гор) и вендский периоды. Фанерозойский зон подразделяется на палеозойскую, мезозойскую и кайнозойскую эры и состоит из 12 периодов.

Таблица 8.1. Геохронологическая шкала

Возраст (начало),

Фанерозой

Кайнозойская

Четвертичный

Неогеновый

Палеогеновый

Мезозойская

Триасовый

Палеозойская

Пермский

Каменноугольный

Девонский

Силурийский

Ордовикский

Кембрийский

Криптозой

Протерозойская

Вендский

Рифейский

Карельский

Архейская

Катархейская

Основные этапы эволюции земной коры

Кратко рассмотрим основные этапы эволюции земной коры как косного субстрата, на котором развилось многообразие окружающей природы .

В apxee еще довольно тонкая и пластичная кора под влиянием растяжения испытала многочисленные разрывы сплошности, через которые к поверхности вновь устремилась базальтовая магма, заполнившая прогибы длиной сотни километров и шириной многие десятки километров, известные как зелено-каменные пояса (этим названием они обязаны преобладающему зеленосланцевому низкотемпературному метаморфизму базальтовых пород). Наряду с базальтами среди лав нижней, основной по мощности части разреза этих поясов встречаются высокомагнезиальные лавы, свидетельствующие об очень большой степени частичного плавления мантийного вещества, что говорит о высоком тепловом потоке, намного превышавшем современный. Развитие зеленокаменных поясов заключалось в смене типа вулканизма в направлении увеличения содержания в нем диоксида кремния (SiO 2), в деформациях сжатия и метаморфизме осадочно-вулканогенного выполнения и, наконец, в накоплении обломочных осадков, свидетельствующих об образовании гористого рельефа.

После смены нескольких поколений зеленокаменных поясов архейский этап эволюции земной коры завершился 3,0 -2,5 млрд лет назад массовым образованием нормальных гранитов с преобладанием К 2 О над Na 2 O. Гранитизация, а также региональный метаморфизм, местами достигший высшей ступени, привели к формированию зрелой континентальной коры на большей части площади современных материков. Однако и эта кора оказалась недостаточно устойчивой: в начале протерозойской эры она испытала дробление. В это время возникла планетарная сеть разломов и трещин, заполнявшихся дайками (пластинообразными геологическими телами). Одна из них - Великая дайка в Зимбабве - имеет длину более 500 км и ширину до 10 км. Кроме того, впервые проявилось рифтообразование, давшее начало зонам прогибания, мощного осадконакопления и вулканизма. Их эволюция привела к созданию в конце раннего протерозоя (2,0-1,7 млрд лет назад) складчатых систем, вновь спаявших обломки архейской континентальной коры, чему способствовала новая эпоха мощного гранитообразования.

В итоге к концу раннего протерозоя (к рубежу 1,7 млрд лет назад) зрелая континентальная кора существовала уже на 60- 80% площади ее современного распространения. Более того, некоторые ученые полагают, что на этом рубеже вся континентальная кора составляла единый массив - суперконтинент Мегагею (большая земля), которому на другой стороне земного шара противостоял океан - предшественник современного Тихого океана - Мегаталасса (большое море). Этот океан был менее глубоким, чем современные океаны, ибо рост объема гидросферы за счет дегазации мантии в процессе вулканической деятельности продолжается всю последующую историю Земли, хотя и более медленно. Не исключено, что прообраз Мегаталассы появился еще раньше, в конце архея.

В катархее и начале архея появились первые следы жизни - бактерии и водоросли, а в позднем архее распространились водорослевые известковые постройки - строматолиты. В позднем архее началось, а в раннем протерозое завершилось коренное изменение состава атмосферы: под влиянием жизнедеятельности растений в ней появился свободный кислород, тогда как катархейская и раннеархейская атмосфера состояла из водяного пара, СО 2 , СО, СН 4 , N, NH 3 и H 2 S с примесью НС1, HF и инертных газов.

В позднем протерозое (1,7-0,6 млрд лет назад) Мегагея стала постепенно раскалываться, и этот процесс резко усилился в конце протерозоя. Следами его являются протяженные континентальные рифтовые системы, погребенные в основании осадочного чехла древних платформ. Важнейшим его результатом было образование обширных межконтинентальных подвижных поясов - Северо-Атлантического, Средиземноморского, Урало-Охотского, разделивших континенты Северной Америки, Восточной Европы, Восточной Азии и наиболее крупный обломок Мегагеи - южный суперконтинент Гондвану. Центральные части этих поясов развивались на новообразованной в процессе рифтогенеза океанской коре, т.е. пояса представляли собой океанские бассейны. Их глубина постепенно увеличивалась по мере роста гидросферы. Одновременно подвижные пояса развивались по периферии Тихого океана, глубина которого также возрастала. Климатические условия становились более контрастными, о чем свидетельствует появление, особенно в конце протерозоя, ледниковых отложений (тиллитов, древних морен и водно-ледниковых осадков).

Палеозойский этап эволюции земной коры характеризовался интенсивным развитием подвижных поясов - межконтинентальных и окраинно-континентальных (последние на периферии Тихого океана). Эти пояса расчленялись на окраинные моря и островные дуги, их осадочно-вулканогенные толщи испытывали сложные складчато-надвиговые, а затем сбрососдвиговые деформации, в них внедрялись граниты и на этой основе формировались складчатые горные системы. Этот процесс протекал неравномерно. В нем различают ряд интенсивных тектонических эпох и гранитного магматизма: байкальскую - в самом конце протерозоя, салаирскую (от хребта Са-лаир в Средней Сибири) - в конце кембрия, таковскую (от Таковских гор на востоке США) - в конце ордовика, каледонскую (от древнеримского названия Шотландии) - в конце силура, акадскую (Акадия - старинное название северо-восточных штатов США) - в середине девона, судетскую - в конце раннего карбона, заальскую (от р. Заале в Германии) - в середине ранней перми. Первые три тектонические эпохи палеозоя нередко объединяют в каледонскую эру тектогенеза, последние три - в герцинскую, или варисскую. В каждую из перечисленных тектонических эпох определенные части подвижных поясов превращались в складчатые горные сооружения, а после разрушения (денудации) входили в состав фундамента молодых платформ. Но некоторые из них частично испытывали активизацию в последующие эпохи горообразования.

К концу палеозоя межконтинентальные подвижные пояса полностью замкнулись и заполнились складчатыми системами. В результате отмирания Северо-Атлантического пояса Североамериканский континент сомкнулся с Восточно-Европейским, а последний (после завершения развития Урало-Охотского пояса) - с Сибирским, Сибирский - с Китайско-Корейским. В итоге образовался суперконтинент Лавразия, а отмирание западной части Средиземноморского пояса привело к его объединению с южным суперконтинентом - Гондваной - в одну континентальную глыбу - Пангею. Восточная часть Средиземноморского пояса в конце палеозоя - начале мезозоя превратилась в огромный залив Тихого океана, по периферии которого также поднялись складчатые горные сооружения.

На фоне этих изменений структуры и рельефа Земли продолжалось развитие жизни. Первые животные появились еще в позднем протерозое, а на самой заре фанерозоя существовали почти все типы беспозвоночных, но они еще были лишены раковин или панцирей, которые известны с кембрия. В силуре (или уже в ордовике) начался выход растительности на сушу, а в конце девона существовали леса, получившие наибольшее распространение в каменноугольном периоде. Рыбы появились в силуре, земноводные - в карбоне.

Мезозойская и кайнозойская эры - последний крупный этап развития структуры земной коры, который отмечен становлением современных океанов и обособлением современных континентов. В начале этапа, в триасе, еще существовала Пангея, но уже в раннем юрском периоде она снова раскололась на Лавразию и Гондвану вследствие возникновения широтного океана Тетис, протянувшегося от Центральной Америки до Индокитая и Индонезии, а на западе и на востоке он смыкался с Тихим океаном (рис. 8.6); этот океан включал и Центральную Атлантику. Отсюда в конце юры процесс раздвига континентов распространился к северу, создав в течение мелового периода и раннего палеогена Северную Атлантику, а начиная с палеогена - Евразийский бассейн Северного Ледовитого океана (Амеразийский бассейн возник раньше как часть Тихого океана). В итоге Северная Америка отделилась от Евразии. В поздней юре началось формирование Индийского океана, и с начала мела стала раскрываться с юга Южная Атлантика. Это означало начало распада Гондваны, существовавшей как единое целое в течение всего палеозоя. В конце мела Северная Атлантика соединилась с Южной, отделив Африку от Южной Америки. Тогда же Австралия отделилась от Антарктиды, а в конце палеогена произошло отделение последней от Южной Америки.

Таким образом, к концу палеогена оформились все современные океаны, обособились все современные континенты и облик Земли приобрел вид, в основном близкий к нынешнему. Однако еще не было современных горных систем.

С позднего палеогена (40 млн лет назад) началось интенсивное горообразование, достигшее кульминации в последние 5 млн лет. Этот этап становления молодых складчато-покровных горных сооружений, образования возрожденных сводово-глыбовых гор выделяют как неотектонический. Фактически неотектонический этап является подэтапом мезозойско-кайнозойского этапа развития Земли, так как именно на этом этапе оформились основные черты современного рельефа Земли, начиная с распределения океанов и континентов.

На этом этапе завершилось формирование основных черт современной фауны и флоры. Мезозойская эра была эрой пресмыкающихся, млекопитающие стали преобладать в кайнозое, а в позднем плиоцене появился человек. В конце раннего мела появились покрытосемянные растения и суша приобрела травяной покров. В конце неогена и антропогене высокие широты обоих полушарий были охвачены мощным материковым оледенением, реликтами которого являются ледниковые шапки Антарктиды и Гренландии. Это было третье крупное оледенение в фанерозое: первое имело место в позднем ордовике, второе - в конце карбона - начале перми; оба они были распространены в пределах Гондваны.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

    Что такое сфероид, эллипсоид и геоид? Каковы параметры принятого в нашей стране эллипсоида? Зачем он нужен?

    Каково внутреннее строение Земли? На основании чего делается заключение о ее строении?

    Каковы основные физические параметры Земли и как они изменяются с глубиной?

    Каков химический и минералогический состав Земли? На основании чего делается заключение о химическом составе всей Земли и земной коры?

    Какие основные типы земной коры выделяют в настоящее время?

    Что такое гидросфера? Что такое круговорот воды в природе? Какие основные процессы происходят в гидросфере и ее элементах?

    Что такое атмосфера? Каково ее строение? Какие процессы происходят в ее пределах? Что такое погода и климат?

    Дайте определение эндогенных процессов. Какие эндогенные процессы вы знаете? Кратко их охарактеризуйте.

    В чем заключается сущность тектоники литосферных плит? Каковы ее основные положения?

10. Дайте определение экзогенных процессов. В чем основная сущность этих процессов? Какие эндогенные процессы вы знаете? Кратко их охарактеризуйте.

11. Как взаимодействуют эндогенные и экзогенные процессы? Каковы результаты взаимодействия этих процессов? В чем сущность теорий В. Дэвиса и В. Пенка?

    Каковы современные представления о возникновении Земли? Как происходило ее раннее становление как планеты?

    На основании чего производится периодизация геологической истории Земли?

14. Как развивалась земная кора в геологическом прошлом Земли? Каковы основные этапы развития земной коры?

ЛИТЕРАТУРА

    Аллисон А., Палмер Д. Геология. Наука о вечно меняющейся Земле. М., 1984.

    Будыко М.И. Климат в прошлом и будущем. Л., 1980.

    Вернадский В.И. Научная мысль как планетарное явление. М., 1991.

    Гаврилов В.П. Путешествие в прошлое Земли. М., 1987.

    Геологический словарь. Т. 1, 2. М., 1978.

    Городницкий A . M ., Зоненшайн Л.П., Мирлин Е.Г. Реконструкции положения материков в фанерозое. М., 1978.

7. Давыдов Л.К., Дмитриева A.A., Конкина Н.Г. Общая гидрология. Л., 1973.

    Динамическая геоморфология /Под ред. Г.С. Ананьева, Ю.Г. Симонова, А.И. Спиридонова. М., 1992.

    Дэвис В.М. Геоморфологические очерки. М., 1962.

10. Земля. Введение в общую геологию. М., 1974.

11. Климатология / Под ред. O.A. Дроздова, Н.В. Кобышевой. Л., 1989.

    Короновский Н.В., Якушева А.Ф. Основы геологии. М., 1991.

    Леонтьев O.K., Рычагов Г.И. Общая геоморфология. М., 1988.

    Львович М.И. Вода и жизнь. М., 1986.

    Маккавеев Н.И., Чалов P.C. Русловые процессы. М., 1986.

    Михайлов В.Н., Добровольский А.Д. Общая гидрология. М., 1991.

    Монин A.C. Введение в теорию климата. Л., 1982.

    Монин A.C. История Земли. М., 1977.

    Неклюкова Н.П., Душина И.В., Раковская Э.М. и др. География. М., 2001.

    Немков Г.И. и др. Историческая геология. М., 1974.

    Неспокойный ландшафт. М., 1981.

    Общая и полевая геология / Под ред. А.Н. Павлова. Л., 1991.

    Пенк В. Морфологический анализ. М., 1961.

    Перелъман А.И. Геохимия. М., 1989.

    Полтараус Б.В., Кислое A.B. Климатология. М., 1986.

26. Проблемы теоретической геоморфологии /Под ред. Л.Г. Никифорова, Ю.Г. Симонова. М., 1999.

    Сауков A.A. Геохимия. M., 1977.

    Сорохтин О.Г., Ушаков С.А. Глобальная эволюция Земли. М., 1991.

    Ушаков С.А., Ясаманов H.A. Дрейф материков и климат Земли. М., 1984.

    Хаин В.Е., Ломте М.Г. Геотектоника с основами геодинамики. М., 1995.

    Хаин В.Е., Рябухин А.Г. История и методология геологических наук. М., 1997.

    Хромов С.П., Петросянц М.А. Метеорология и климатология. М., 1994.

    Щукин И.С. Общая геоморфология. T.I. M., 1960.

    Экологические функции литосферы / Под ред. В.Т. Трофимова. М., 2000.

    Якушева А.Ф., Хаин В.Е., Славин В.И. Общая геология. М., 1988.

Зарождение жизни на Земле произошло около 3,8 млрд. лет назад, когда закончилось образование земной коры. Ученые выяснили, что первые живые организмы появились в водной среде, и только через миллиард лет произошел выход на поверхность суши первых существ.

Формированию наземной флоры способствовало образование у растений органов и тканей, возможность размножаться спорами. Животные также значительно эволюционировали и приспособились к жизни на суше: появилось внутреннее оплодотворение, способность откладывать яйца, легочное дыхание. Важным этапом развития стало формирование головного мозга, условных и безусловных рефлексов, инстинктов выживания. Дальнейшая эволюция животных дала основу для формирования человечества.

Деление истории Земли на эры и периоды, дает представление об особенностях развития жизни на планете в разные временные промежутки. Ученые выделяют особо значимые события в формировании жизни на Земле в отдельные отрезки времени – эры, которые делятся на периоды.

Существует пять эр:

  • Архейская;
  • протерозойская;
  • палеозойская;
  • мезозойская;
  • кайнозойская.


Архейская эра началась около 4,6 млрд. лет назад, когда планета Земля только стала формироваться и признаков живого на ней не было. Воздух содержал хлор, аммиак, водород, температура доходила до 80°, уровень радиации превышал допустимые границы, при таких условиях зарождение жизни было невозможным.

Считают, что около 4 млрд. лет назад наша планета столкнулась с небесным телом, и следствием было формирование спутника Земли – Луны. Это событие стало значимым в развитии жизни, стабилизировало ось вращения планеты, поспособствовало очищению водных структур. Как следствие, на глубине океанов и морей зародилась первая жизнь: простейшие, бактерии и цианобактерии.


Протерозойская эра длилась примерно с 2,5 млрд. лет до 540 млн. лет назад. Обнаружены остатки одноклеточных водорослей, моллюсков, кольчатых червей. Начинает формироваться почва.

Воздух в начале эры еще не был насыщен кислородом, но в процессе жизнедеятельности бактерии, населяющие моря, стали все больше выделять O 2 в атмосферу. Когда количество кислорода находилось на стабильном уровне, многие существа сделали шаг в эволюции и перешли на аэробное дыхание.


Палеозойская эра включает шесть периодов.

Кембрийский период (530 – 490 млн. лет назад) характеризуется возникновением представителей всех видов растений и животных. Океаны населяли водоросли, членистоногие, моллюски, появились первые хордовые (хайкоуихтис). Суша оставалась незаселенной. Температура сохранялась высокой.

Ордовикский период (490 – 442 млн. лет назад). На суше появились первые поселения лишайников, а мегалограпт (представитель членистоногих) стал выходить на берег для откладывания икры. В толще океана продолжают развиваться позвоночные, коралловые, губки.

Силурийский период (442 – 418 млн. лет назад). На сушу выходят растения, у членистоногих формируются зачатки легочной ткани. Завершается образование костного скелета у позвоночных, появляются сенсорные органы. Идет горообразование, формируются разные климатические зоны.

Девонский период (418 – 353 млн. лет назад). Характерно образование первых лесов, преимущественно папоротниковых. В водоемах появляются костные и хрящевые, амфибии стали выходить на сушу, формируются новые организмы – насекомые.

Каменноугольный период (353 – 290 млн. лет назад). Появление земноводных, происходит опускание материков, в конце периода было значительное похолодание, что привело к вымиранию многих видов.

Пермский период (290 – 248 млн. лет назад). Землю населяют пресмыкающиеся, появились терапсиды – предки млекопитающих. Жаркий климат привел к образованию пустынь, где смогли выжить только стойкие папоротники и некоторые хвойные.


Мезозойская эра делится на 3 периода:

Триасовый период (248 – 200 млн. лет назад). Развитие голосеменных растений, появление первых млекопитающих. Раскол суши на континенты.

Юрский период (200 – 140 млн. лет назад). Возникновение покрытосеменных растений. Появление предков птиц.

Меловой период (140 – 65 млн. лет назад). Покрытосеменные (цветковые) стали господствующей группой растений. Развитие высших млекопитающих, настоящих птиц.


Кайнозойская эра состоит из трех периодов:

Нижнетретичный период или палеоген (65 – 24 млн. лет назад). Исчезновение большинства головоногих моллюсков, появляются лемуры и приматы, позднее парапитеки и дриопитеки. Развитие предков современных видов млекопитающих – носорогов, свиней, кроликов и др.

Верхнетретичный период или неоген (24 – 2,6 млн. лет назад). Млекопитающие населяют сушу, водные просторы, воздух. Появление австралопитеков – первых предков людей. В этот период сформировались Альпы, Гималаи, Анды.

Четвертичный период или антропоген (2,6 млн. лет назад – наши дни). Знаменательное событие периода – появление человека, сначала неандертальцев, а вскоре Homo sapiens. Растительный и животный мир обрел современные черты.

Геологическое время и методы его определения

В изучении Земли как уникального космического объекта идея её эволюции занимает центральное место, поэтому важным количественно-эволюционным параметром является геологическое время . Изучением этого времени занимается специальная наука, получившая название Геохронология – геологическое летоисчисление. Геохронология может быть абсолютной и относительной .

Замечание 1

Абсолютная геохронология занимается определением абсолютного возраста горных пород, который выражается в единицах времени и, как правило, в миллионах лет.

В основе определения этого возраста лежит скорость распада изотопов радиоактивных элементов. Эта скорость является величиной постоянной и от интенсивности физических и химических процессов не зависит. Определение возраста основано на методах ядерной физики. Минералы, содержащие радиоактивные элементы, при формировании кристаллических решеток, образуют закрытую систему. В этой системе происходит накопление продуктов радиоактивного распада. В результате можно определить возраст минерала, если знать скорость этого процесса. Период полураспада радия, например, составляет $1590$ лет, а полный распад элемента произойдет за время в $10$ раз превосходящее период полураспада. Ядерная геохронология имеет свои ведущие методы – свинцовый, калий-аргоновый, рубидиево-стронциевый и радиоуглеродный.

Методы ядерной геохронологии позволили определить возраст планеты, а также продолжительность эр и периодов. Радиологическое измерение времени предложили П. Кюри и Э. Резерфорд в начале $XX$ века.

Относительная геохронология оперирует такими понятиями как «ранний возраст, средний, поздний». Существует несколько разработанных методов определения относительного возраста горных пород. Они объединяются в две группы – палеонтологические и непалеонтологические .

Первые играют основную роль в силу своей универсальности и повсеместного применения. Исключение составляет отсутствие в породах органических остатков. С помощью палеонтологических методов изучаются остатки древних вымерших организмов. Для каждого слоя горных пород характерен свой комплекс органических остатков. В каждом молодом слое остатков высокоорганизованных растений и животных будет больше. Чем выше лежит слой, тем он моложе. Подобная закономерность была установлена англичанином У. Смитом . Ему принадлежит первая геологическая карта Англии, на которой горные породы были разделены по возрасту.

Непалеонтологические методы определения относительного возраста горных пород используются в случаях отсутствия в них органических остатков. Более эффективными тогда будут являться стратиграфический, литологический, тектонический, геофизический методы . С помощью стратиграфического метода можно определить последовательность напластования слоёв при нормальном их залегании, т.е. нижележащие пласты будут более древними.

Замечание 3

Последовательность образования горных пород определяет относительная геохронология, а возраст их в единицах времени определяет уже абсолютная геохронология. Задача геологического времени заключается в определении хронологической последовательности геологических событий.

Геохронологическая таблица

Для определения возраста горных пород и их исследования ученые пользуются различными методами, и с этой целью была составлена специальная шкала. Геологическое время на этой шкале делят на временные отрезки каждому из которых соответствует определенный этап формирования земной коры и развития живых организмов. Шкала получила название геохронологической таблицы, в которой выделяются следующие подразделения: эон, эра, период, эпоха, век, время . Для каждого геохронологического подразделения характерен свой комплекс отложений, который называется стратиграфическим : эонотема, группа, система, отдел, ярус, зона . Группа, например, является стратиграфическим подразделением, а временное геохронологическое подразделение ей соответствующее представляет эра. Исходя из этого, существует две шкалы – стратиграфическая и геохронологическая . Первая шкала используется тогда, когда речь идет об отложениях , потому что в любой промежуток времени на Земле происходили какие-то геологические события. Вторая шкала нужна для определения относительного времени . С момента принятия содержание шкалы менялось и уточнялось.

Наиболее крупными стратиграфическими подразделениями в настоящее время являются эонотемы – архейская, протерозойская, фанерозойская . В геохронологической шкале им отвечают зоны различной длительности. По времени существования на Земле выделяются архейская и протерозойская эонотемы , охватившие почти $80$ % времени. Фанерозойский эон по времени значительно меньше предыдущих эон и охватывает всего $ 570$ млн. лет. Эта ионотема делится на три основные группы – палеозой, мезозой, кайнозой .

Название эонотем и групп имеют греческое происхождение:

  • Археос означает древнейший;
  • Протерос – первичный;
  • Палеос – древний;
  • Мезос – средний;
  • Кайнос – новый.

От слова «зоико с», что значит жизненный, произошло слово «зой ». Исходя из этого, выделяют эры жизни на планете, например, мезозойская эра означает эру средней жизни.

Эры и периоды

Историю Земли по геохронологической таблице делят на пять геологических эр: архейскую, протерозойскую, палеозойскую, мезозойскую, кайнозойскую . В свою очередь эры подразделяются на периоды . Их значительно больше – $12$. Продолжительность периодов различна от $20$-$100$ млн. лет. На свою незавершенность указывает последний четвертичный период кайнозойской эры , его продолжительность всего $1,8$ млн. лет.

Архейская эра. Это время началось уже после формирования земной коры на планете. На Земле к этому времени были горы и в действие вступили процессы эрозии и осадконакопления. Архей длился приблизительно $2$ млрд. лет. Эта эра самая длинная по продолжительности, в течение которой на Земле была широко распространена вулканическая деятельность, шли глубинные поднятия, результатом которых стало образование гор. Большая часть ископаемых под действием высокой температуры, давления, перемещения масс, была уничтожена, но небольшие данные о том времени сохранились. В породах архейской эры в рассеянном виде встречается чистый углерод. Ученые считают, что это измененные останки животных и растений. Если количество графита отражает количество живой материи, то в архее её существовало очень много.

Протерозойская эра . По длительности это вторая эра, охватившая $1$ млрд. лет. На протяжении эры происходило отложение большого количества осадков и одно значительное оледенение. Ледниковые покровы распространялись от экватора до $20$ градуса широты. Ископаемые, найденные в породах этого времени, являются свидетельством существования жизни и её эволюционного развития. В отложениях протерозоя найдены спикулы губок, останки медуз, грибов, водорослей, членистоногих и др.

Палеозойская эра . В этой эре выделяется шесть периодов:

  • Кембрий;
  • Ордовик,
  • Силур;
  • Девон;
  • Карбон или каменноугольный;
  • Пермский или пермь.

Продолжительность палеозоя составляет $370$ млн. лет. За это время появились представители всех типов и классов животных. Не было только птиц и млекопитающих.

Мезозойская эра . Эра делится на три периода:

  • Триас;

Началась эра примерно $230$ млн. лет назад и продолжалась $167$ млн. лет. В течение первых двух периодов – триасового и юрского – большая часть материковых областей поднялась выше уровня моря. Климат триаса сухой и теплый, а в юре он стал еще теплее, но был уже влажный. В штате Аризона есть знаменитый каменный лес, существующий с триасового периода. Правда, от некогда могучих деревьев остались только стволы, бревна и пни. В конце мезозойской эры, а точнее в меловом периоде, на материки происходит постепенное наступление моря. Североамериканский континент в конце мелового периода испытал погружение и в результате воды Мексиканского залива соединились с водами арктического бассейна. Материк был разделен на две части. Завершение мелового периода характеризуется большим поднятием, получившим название альпийского горообразования . В это время появились Скалистые горы, Альпы, Гималаи, Анды. На западе Северной Америки началась интенсивная вулканическая деятельность.

Кайнозойская эра . Это новая эра, которая еще не закончилась и продолжается в настоящее время.

Эру разделили на три периода:

  • Палеоген;
  • Неоген;
  • Четвертичный.

Четвертичный период имеет целый ряд уникальных черт. Это время окончательного формирования современного лика Земли и ледниковых периодов. Стали самостоятельными Новая Гвинея и Австралия, сместившись поближе к Азии. Антарктида осталась на своем месте. Соединились две Америки. Из трех периодов эры наиболее интересным является четвертичный период или антропогеновый . Он продолжается ныне, а был выделен в $1829$ г. бельгийским геологом Ж. Денуайэ . Похолодания меняются потеплениями, но наиболее важной его особенностью является появление человека .

Современный человек проживает в четвертичном периоде кайнозойской эры.

Жизнь на Земле зародилась свыше 3,5 млрд лет назад, сразу после завершения формирования земной коры. На протяжении всего времени возникновение и развитие живых организмов влияло на формирование рельефа, климат. Также и тектонические, и климатические изменения, происходившие на протяжении многих лет, влияли на развитие жизни на Земле.

Таблица развития жизни на Земле может быть составлена, исходя из хронологии событий. Всю историю Земли можно разделить на определенные этапы. Наиболее крупные из них - это эры жизни. Они делятся на эры, эры - на -на эпохи, эпохи - на века.

Эры жизни на Земле

Весь период существования жизни на Земле можно разделить на 2 периода: докембрий, или криптозой (первичный период, 3,6 до 0,6 млрд лет), и фанерозой.

Криптозой включает в себя архейскую (древняя жизнь) и протерозойскую (первичная жизнь) эры.

Фанерозой включает в себя палеозойскую (древняя жизнь), мезозойскую (средняя жизнь) и кайнозойскую (новая жизнь) эры.

Эти 2 периода развития жизни принято делить на более мелкие - эры. Границы между эрами - это глобальные эволюционные события, вымирания. В свою очередь эры делятся на периоды, периоды - на эпохи. История развития жизни на Земле связана непосредственно с изменениями земной коры и климата планеты.

Эры развития, отсчет времени

Наиболее значительные события принято выделять в специальные интервалы времени - эры. Отсчет времени ведется в обратном порядке, от древнейшей жизни до новой. Существует 5 эр:

  1. Архейская.
  2. Протерозойская.
  3. Палеозойская.
  4. Мезозойская.
  5. Кайнозойская.

Периоды развития жизни на Земле

Палеозойская, мезозойская и кайнозойская эры включают в себя периоды развития. Это более мелкие отрезки времени, по сравнению с эрами.

Палеозойская эра:

  • Кембрийский (кембрий).
  • Ордовикский.
  • Силурийский (силур).
  • Девонский (девон).
  • Каменноугольный (карбон).
  • Пермский (пермь).

Мезозойская эра:

  • Триасовый (триас).
  • Юрский (юра).
  • Меловой (мел).

Кайнозойская эра:

  • Нижнетретичный (палеоген).
  • Верхнетретичный (неоген).
  • Четвертичный, или антропоген (развитие человека).

Первые 2 периода входят в третичный период продолжительностью 59 млн. лет.

Таблица развития жизни на Земле
Эра, период Продолжительность Живая природа Неживая природа, климат
Архейская эра (древняя жизнь) 3,5 млрд лет Появление сине-зеленых водорослей, фотосинтез. Гетеротрофы Преобладание суши над океаном, минимальное количество кислорода в атмосфере.

Протерозойская эра (ранняя жизнь)

2,7 млрд лет Появление червей, моллюсков, первых хордовых, почвообразование. Суша - каменная пустыня. Накапливание кислорода в атмосфере.
Палеозойская эра включает в себя 6 периодов:
1. Кембрийский (кембрий) 535-490 млн лет Развитие живых организмов. Жаркий климат. Суша пустынна.
2. Ордовикский 490-443 млн лет Появление позвоночных. Затопление водой почти всех платформ.
3. Силурийский (силур) 443-418 млн лет Выход растений на сушу. Развитие кораллов, трилобитов. с образование гор. Моря преобладают над сушей. Климат разнообразен.
4. Девонский (девон) 418-360 млн лет Появление грибов, кистеперых рыб. Образование межгорных впадин. Преобладание сухого климата.
5. Каменноугольный (карбон) 360-295 млн лет Появление первых земноводных. Опускание материков с затоплением территорий и возникновением болот. В атмосфере много кислорода и углекислого газа.

6. Пермский (пермь)

295-251 млн лет Вымирание трилобитов и большинства земноводных. Начало развития пресмыкающихся и насекомых. Вулканическая активность. Жаркий климат.
Мезозойская эра включает в себя 3 периода:
1. Триасовый (триас) 251-200 млн лет Развитие голосеменных. Первые млекопитающие и костные рыбы. Вулканическая активность. Теплый и резко континентальный климат.
2. Юрский (юра) 200-145 млн лет Появление покрытосеменных. Распространение пресмыкающихся, появление первоптицы. Мягкий и теплый климат.
3. Меловой (мел) 145-60 млн лет Появление птиц, высших млекопитающих. Теплый климат с последующим похолоданием.
Кайнозойская эра включает в себя 3 периода:
1. Нижнетретичный (палеоген) 65-23 млн лет Расцвет покрытосеменных. Развитие насекомых, появление лемуров и приматов. Мягкий климат с выделением климатических зон.

2. Верхнетретичный (неоген)

23-1,8 млн лет Появление древних людей. Сухой климат.

3. Четвертичный или антропоген (развитие человека)

1,8-0 млн лет Появление человека. Похолодание.

Развитие живых организмов

Таблица развития жизни на Земле предполагает разделение не только на временные промежутки, но и на определенные этапы формирования живых организмов, возможные климатические изменения (ледниковый период, глобальное потепление).

  • Архейская эра. Самые значительные изменения в эволюции живых организмов - это появление сине-зеленых водорослей - прокариотов, способных к размножению и фотосинтезу, возникновение многоклеточных организмов. Появление живых белковых веществ (гетеротрофов), способных к поглощению растворенных в воде органических веществ. В дальнейшем появление этих живых организмов позволило разделить мир на растительный и животный.

  • Мезозойская эра.
  • Триасовый период. Распространение растений (голосеменных). Увеличение количества пресмыкающихся. Первые млекопитающие, костные рыбы.
  • Юрский период. Преобладание голосеменных, возникновение покрытосеменных. Появление первоптицы, расцвет головоногих моллюсков.
  • Меловой период. Распространение покрытосеменных, сокращение других видов растений. Развитие костных рыб, млекопитающих и птиц.

  • Кайнозойская эра.
    • Нижнетретичный период (палеоген). Расцвет покрытосеменных. Развитие насекомых и млекопитающих, появление лемуров, позже приматов.
    • Верхнетретичный период (неоген). Становление современных растений. Появление предков людей.
    • Четвертичный период (антропоген). Формирование современных растений, животных. Появление человека.

Развитие условий неживой природы, изменения климата

Таблица развития жизни на Земле не может быть представлена без данных об изменениях неживой природы. Возникновение и развитие жизни на Земле, новые виды растений и животных, все это сопровождается изменениями и в неживой природе, климате.

Климатические изменения: архейская эра

История развития жизни на Земле началась через этап преобладания суши над водными ресурсами. Рельеф был слабо расчерчен. В атмосфере преобладает углекислый газ, количество кислорода минимально. На мелководье пониженная соленость.

Для архейской эры характерны извержения вулканов, молнии, черные облака. Горные породы богаты графитом.

Климатические изменения в протерозойскую эру

Суша - это каменная пустыня, все живые организмы обитают в воде. В атмосфере накапливается кислород.

Климатические изменения: палеозойская эра

В различные периоды палеозойской эры происходили следующие :

  • Кембрийский период. Суша по-прежнему пустынна. Климат жаркий.
  • Ордовикский период. Наиболее значительные изменения - это затопление практически всех северных платформ.
  • Силурийский период. Тектонические изменения, условия неживой природы разнообразны. Происходит горообразование, моря преобладают над сушей. Определены области разных климатов, в том числе и районы похолодания.
  • Девонский период. Преобладает сухой климат, континентальный. Образование межгорных впадин.
  • Каменноугольный период. Опускание материков, заболоченные территории. Теплый и влажный климат, в атмосфере много кислорода и углекислого газа.
  • Пермский период. Жаркий климат, вулканическая деятельность, горообразование, высыхание болот.

В эру палеозоя сформировались горы Такие изменения в рельефе повлияли на мировой океан - морские бассейны сократились, образовалась значительная площадь суши.

Палеозойская эра положила начало практически всем основным месторождениям нефти и каменного угля.

Климатические изменения в мезозое

Для климата различных периодов мезозоя характерны следующие черты:

  • Триасовый период. Вулканическая деятельность, климат резко континентальный, теплый.
  • Юрский период. Мягкий и теплый климат. Моря преобладают над сушей.
  • Меловой период. Отступление морей от суши. Климат теплый, но в конце периода глобальное потепление сменяется похолоданием.

В мезозойскую эру сформированные ранее горные системы разрушаются, равнины уходят под воду (Западная Сибирь). Во второй половине эры сформировались Кордильеры, горы Восточной Сибири, Индокитая, частично Тибета, сформировались горы мезозойской складчатости. Преобладает жаркий и влажный климат, способствующий образованию болот и торфяников.

Климатические изменения - кайнозойская эра

В кайнозойскую эру произошло общее поднятие поверхности Земли. Изменился климат. Многочисленные оледенения земных покровов наступающих с севера изменили облик материков Северного полушария. Благодаря таким изменениям были сформированы холмистые равнины.

  • Нижнетретичный период. Мягкий климат. Разделение на 3 климатические зоны. Формирование континентов.
  • Верхнетретичный период. Сухой климат. Возникновение степей, саванн.
  • Четвертичный период. Многократное оледенение северного полушария. Похолодание климата.

Все изменения на протяжении развития жизни на Земле можно записать в виде таблицы, которая отразит самые значительные этапы в становлении и развитии современного мира. Несмотря на уже известные методы исследования, и сейчас ученые продолжают изучать историю, совершают новые открытия, которые позволяют современному обществу узнать, как развивалась жизнь на Земле до появления человека.