Как происходит размножение бактерий? Размножение микроорганизмов.

Термин «рост» в применении к микроорганизмам означает увеличение размеров отдельной особи, а «размножение» — повышение числа особей в популяции. При росте микробной клетки объем ее возрастает значительно быстрее, чем поверхность, поэтому распределение питательных веществ в цитоплазме клетки становится менее эффективным и клетка делится. Перед делением ее происходит удвоение молекул ДНК. Каждая дочерняя клетка получает копию материнской ДНК.

Быстрота размножения разных микробов, выращиваемых в одинаковых условиях, различна. Для большинства бактерий период генерации (время, прошедшее роорганизмы могут использовать большой набор окисляемых органических соединений, чаще всего глюкозу. Энергия получается из этих соединений в результате их окисления или, точнее, отдачи ими электронов.

Совокупность биохимических процессов, в результате которых освобождается энергия, необходимая для жизнедеятельности клетки, называется дыханием, или биологическим окислением. Применительно к микроорганизмам говорят об анаэробном и аэробном типах дыхания.

Между двумя последовательными делениями клетки) в среднем равен 15—30 мин; например, для кишечной палочки —15—17 мин, возбудителей брюшного тифа — 23 мин, коринебактерий дифтерии — 34 мин. Микобактерии туберкулеза делятся медленнее — один раз за 18 ч, спирохеты — за 10 ч.

Способы размножения у различных групп микроорганизмов неодинаковы: бактерии, риккетсии, спирохеты размножаются путем поперечного деления на две равноценные особи. Грамположительные бактерии делятся путем образования перегородки, врастающей от периферии к центру. У микобактерий туберкулеза поперечная перегородка образуется внутри клетки, затем она расщепляется на два слоя и клетка делится на две части, В образовании перегородки принимает участие как цитоплазматическая мембрана, так и клеточная стенка. По-видимому, в процессе деления бактерий активное участие принимает мезосома, тесно связанная с цитоплазматической мембраной. Грамотрицательные бактерии и риккетсии истончаются в центре и делятся перетяжкой на две особи. Размножение клубеньковых бактерий и фраициселл происходит путем образования почки, которая, по величине меньше исходной клетки. У бактерий существует также процесс конъюгации — временного соединения двух особей.

Рост бактерий и спирохет не всегда сопровождается их делением. Соли желчных кислот, мыла, пенициллин, ультрафиолетовые лучи задерживают деление клетки, в результате чего образуются длинные нити значительно большего размера, чем исходные клетки.
При внесении бактерий в питательную среду различают фазы их роста и размножения, которые определяются наличием доступных источников питания и накоплением токсических продуктов обмена (рис. 21).

Первая фаза — латентная (лаг-фаза) — соответствует приспособлению бактерий к новым условиям существования. В этот период бактерии адаптируются к питательной среде, роста их не наблюдается.

Вторая фаза — логарифмического роста (экспоненциальная), когда бактерии энергично растут, увеличиваются, при достижении определенного размера начинают делиться на две дочерние клетки. Деление в этот период происходит с постоянной скоростью. Среднее время генерации (или удвоения) для каждого вида бактерий различно. В это время бактерии извлекают из среды питательные вещества, в результате чего в ней начинают накапливаться продукты обмена.

Третья фаза — стационарного роста, во время которой число организмов в культуре все время остается постоянным. В этот период в питательной среде количество питательных веществ значительно уменьшается, а накопление продуктов обмена увеличивается. Условия жизни для микроорганизмов становятся все менее благоприятными. Длительность стационарной фазы у разных бактерий различная.

Четвертая фаза — отмирания, когда клеток бактерий становится все меньше и они погибают. В конце этой фазы число отмирающих бактерий начинает преобладать над числом жизнеспособных клеток. Полная гибель микробов в культуре может наступить через несколько недель или месяцев, что зависит от вида микроба, реакции среды и других факторов.

Простейшие могут размножаться поперечным делением, перетяжкой на две равноценные особи — амебы и продольным делением — трипаносомы, лямблии, балантидии. Балантидии перед делением на две особи могут обмениваться своими ядрами — микронуклеусами (процесс конъюгации), малярийный плазмодий имеет бесполый и половой цикл развития.

Вирусы размножаются (репродуцируются) только внутри живой клетки организма хозяина.

Процесс воспроизведения вируса складывается из нескольких этапов:

1) проникновение вируса в клетку;

2) внутриклеточное размножение;

3) созревание вируса и образование внешних оболочек у некоторых вирусов; 4) выделение вируса из клетки.

Процесс проникновения вируса в чувствительную клетку начинается с его адсорбции на поверхности клетки, обладающей специфическими вирусными рецепторами. Процесс освобождения нуклеиновой кислоты от капсида и внешних оболочек начинается уже в цитоплазматической мембране клетки и заканчивается в цитоплазме (вирус гриппа, осповакцины).

Фаза внутриклеточного размножения вируса, или его воспроизведение, начинается обычно с процессов подавления клеточного макромолекулярного синтеза. Все энергетические системы клетки, ее ферменты, РНК, рибосомы начинают работать на воспроизведение вируса. Пораженная клетка поставляет вирусу нуклеотиды для построения нуклеиновых кислот, аминокислоты — для белков. Репликация (англ. replicate — копировать, повторять) вирусной РНК осуществляется с помощью ферментов — полимераз, а матрицей служит сама молекула РНК вируса. У ДНК-содержащих вирусов на матрице ДНК в ядре клетки синтезируется специфическая РНК, которая затем определяет синтез вирусной ДНК и белка. Белки вирусов синтезируются в рибосомах клетки.

Созревание вирусной частицы, заключение вирусной нуклеиновой кислоты в капсид, происходит в ядре пораженной клетки (герпесвирусы, аденовирусы) или в цитоплазме (вирусы группы оспы, рабдовирусы, пикорнавирусы). Формирование внешних оболочек у миксовирусов, тогавирусов происходит при прохождении через цитоплазматическую мембрану клетки хозяина. Вирус герпеса часть своей внешней оболочки получает, проходя через мембрану ядра клетки.

Выделение вируса из клетки может происходить по-разному. Миксовирусы и тогавирусы по мере созревания могут часами выделяться клеткой без ее повреждения. Вирус полиомиелита (не имеющий внешней оболочки) образуется в клетке быстро, остается в ней долго и выделяется мгновенно, в виде вспышки. Конечным результатом взаимодействия вируса и клетки хозяина могут быть быстрая деструкция и гибель клетки. Иногда вирусы могут долго присутствовать в клетке, не вызывая ее гибели, и сохраняются в бесконечном числе клеточных генераций — латентные вирусы. В некоторых случаях вирус может разрушаться клеткой без видимых последствий для нее (абортивная вирусная инфекция).

Размножение микроорганизмов - увеличение концентрации микроорганизмов в единице объема среды, направленное на сохранение вида.

Для микроорганизмов характерно:

    разнообразие способов размножения;

    переключение с одного способа размножения на другой;

    возможность одновременного использования нескольких способов;

    высокая скорость размножения.

Способы размножения микроорганизмов

I . Половой с пособ размножения наблюдается толькоу эукариот.

II. Бесполые способы размножения.

    Равновеликое бинарное поперечное деление (простое деление, изоморфное деление, митоз) наблюдается у большинства одноклеточных микроорганизмов (бактерий, риккетсий, простейших, дрожжей), в результате образуются две новые дочерние полноценные особи, наделенные генетической информацией мате­ринской клетки, симметричные в отношении продольной и поперечной оси, сама материнская клетка исчезает.

При этом у большинства Грам+ бактерий деление происходит путем синтеза поперечной перегородки, идущей от периферии к центру (рис. 63А). Клетки большинства Грам- бактерий делятся путем перетяжки клетки (клетка истончается посередине) (рис. 63Б).

    Почкование (неравновеликое бинарное деление) наблюдается у представителей родов Francisella и Mycoplasma и дрожжеподобных грибов. При почковании материнская клетка дает начало дочерней клетке: на одном из полюсов материнской клетки образуется маленький вырост (почка), увеличивающийся в процессе роста. Постепенно почка достигает размеров материнской клетки, после чего отделяется. КС почки полностью синтезируется заново (рис. 63В). В процессе почкования симметрия наблюдается в отношении только продольной оси. Между материнской и дочерней клетками существуют морфологические и физиологические различия. Новая дочерняя клетка лучше приспосабливается к меняющимся условиям.

    Фрагментация нитевидных форм характерна для рода Actinomyces и Mycoplasma .

    Образование экзоспор характерно для Streptomycetes , дрожжеподобных и плесневых грибов.

    Особый цикл разви тия наблюдается у Chlamydia . К делению в клетках макроорганизма способны лишь вегетативные формы хламидий (ретикулярные или инициальные тельца). Их цикл, состоящий из нескольких делений, завершается образованием промежуточных форм, из которых формируются элементарные тельца, дающие начало вегетативным формам. После разрушения стенки вакуоли и клетки-хозяина элементарные тельца высвобождаются, и цикл повторяется. Цикл длится 40–48 ч.

    Множественное деление описано для одной группы одноклеточных цианобактерий. В основе множественного деления лежит принцип равновеликого бинарного деления. Отличие заключается в том, что в этом случае после бинарного деления не происходит роста образовавшихся дочерних клеток, а они снова подвергаются делению (рис. 63Г).

Множественное деление (шизогония) описано также у простейших (малярийных плазмодиев): ядерный материал делится на множество ядрышек, окружается участками цитоплазмы, в результате образуется множество дочерних клеток.

Механизм и фазы простого деления

А. Рост до определенной степени зрелости. Рост клетки не беспределен и после достижения определенных размеров бактериальная клетка начинает делиться. Во время деления рост клетки замедляется и начинается вновь после деления.

Б. Кариокинез ( репликация ДНК и д еление нуклеоида). Из созревшей цитоплазмы поступает сигнал, который активирует ген-инициатор на ДНК. Микроорганизмы под действием гена-инициатора синтезируют белок-инициатор, который действует на ген-репликатор - специальный участок ДНК, с которого начинается удвоение ДНК и деление на две нити.

Деление молекулы ДНК (репликация) происходит по полуконсервативному механизму и в норме всегда предшествует делению клетки. Репликация ДНК начинается в точке прикрепления кольцевой хромосомы к ЦПМ, где локализован ферментативный аппарат, ответственный за репликацию.

Механизм репликации ДНК выражается в разрыве водородных связей между ее двумя полинуклеотидными цепями, раскручивании их и синтезе с помощью ДНК-полимеразы вдоль каждой старой цепи новых цепей с комплементарной последовательностью оснований. После расхождения в дочерние клетки по одной старой и одной новой полинуклеотидной цепи между ними восстанавливаются водородные связи и формируется полуконсервативная двухцепочечная ДНК.

В норме существует определенная временная связь между репликацией хромосомы и делением бактериальной клетки. Воздействия различными химическими веществами и физическими факторами, приводящие к подавлению репликации ДНК, останавливают и клеточное деление. Однако при некоторых условиях связь между обоими процессами может быть нарушена, и клетки способны делиться в отсутствие синтеза ДНК.

В. Цитокинез (деление клетки). Параллельно с репликацией молекул ДНК происходит синтез мембраны рядом с мезосомой, в области контакта ДНК с ЦПМ. Образование перегородки приводит к делению клетки. Моментом, инициирующим деление клетки, является окончание репликации ДНК. Это приводит к разделению дочерних молекул ДНК и оформлению обособленных хромосом. Вновь образованные дочерние клетки отделяются друг от друга.

Угнетение синтеза мембраны до окончания репликации приводит к нарушению процесса деления: клетка перестает делиться и растет в длину. У некоторых бактерий образование перегородки не приводит к разделению клеток: образуются многокамерные клетки.

Г. Расхождение образовавшихся дочерних клеток происходит в результате лизиса среднего слоя КС. Если после многократного деления в одной плоскости клетки не расходятся, образуются цепочки палочковидных (Bacillus ) или сферических (Streptococcus ) клеток или парные клетки (Neisseria ) . Разъединение клеток возможно с обособлением одной из клеток путем движения по поверхности другой, в результате бактерии располагаются беспорядочно (Escherichia ). Если при разъединении одна из дочерних клеток, не отрываясь от точки деления, передвигается по дуге, создается V -образная форма (Corynebacterium , Bifidobacterium ). После бинарного деления и расхождения клеток в нескольких плоскостях образуются клеточные скопления разной формы: гроздья (Staphylococcus ), пакеты (Sarcina ) (рис. 65). Если деление нуклеоида предшествует клеточному делению, образуются многонуклеоидные микроорганизмы. Под влиянием неблагоприятных внешних факторов (соли желчных кислот, УФ-лучи, ПАВ, антибиотики) деление клетки может остановиться с сохранением ее роста. В таком случае возможно образование удлиненных нитевидных клеток.

Рис. 65. Деление кокков

Период генерации - интервал времени, в течение которого происходит удвоение количества бактерий Скорость размножения микроорганизмов и период генерации зависят от вида микроорганизма, величины и свойств инокулята, состава питательной среды, ее рН, аэрации, температуры инкубации, других факторов. При благоприятных условиях у многих микроорганизмов деление происходит через 15–30 мин (E . coli , S . typhi ). У прихотливых микроорганизмов деление осуществляется через 45–90 мин (Streptococcus , Corynebacterium ) и даже через 18 ч (M . tuberculosis ).

Размножение бактерий путем деления — самый распространенный метод увеличения численности микробной популяции. После деления происходит рост бактерий до исходного размера, для чего необходимы определенные вещества (факторы роста).

Способы размножения бактерий различны, но для большинства их видов присуща форма бесполового размножения способом деления. Способом почкования бактерии размножаются исключительно редко. Половое размножение бактерий присутствует в примитивной форме.

Рис. 1. На фото бактериальная клетка в стадии деления.

Генетический аппарат бактерий

Генетический аппарат бактерий представлен единственной ДНК — хромосомой. ДНК замкнута в кольцо. Хромосома локализована в нуклеотиде, не имеющем мембраны. В бактериальной клетке имеются плазмиды.

Нуклеоид

Нуклеоид является аналогом ядра. Он расположен в центре клетки. В нем локализована ДНК — носитель наследственной информации в свернутом виде. Раскрученная ДНК достигает в длину 1 мм. Ядерное вещество бактериальной клетки не имеет мембраны, ядрышка и набора хромосом, не делится митозом. Перед делением нуклеотид удваивается. Во время деления число нуклеотидов увеличивается до 4-х.

Рис. 2. На фото бактериальная клетка на срезе. В центральной части виден нуклеотид.

Плазмиды

Плазмиды представляют собой автономные молекулы свернутые в кольцо двунитевой ДНК. Их масса значительно меньше массы нуклеотида. Несмотря на то, что в ДНК плазмид закодирована наследственная информация, они не являются жизненно важными и необходимыми для бактериальной клетки.

Рис. 3. На фото бактериальная плазмида.

Этапы деления

После достижения определенных размеров, присущих взрослой клетке, запускаются механизмы деления.

Репликация ДНК

Репликация ДНК предшествует клеточному делению. Мезосомы (складки цитоплазматической мембраны) удерживают ДНК до тех пор, пока процесс деления (репликации) не завершится.

Репликация ДНК осуществляется с помощью ферментов ДНК-полимеразами. При репликации водородные связи в 2-х спиральной ДНК разрываются, в результате чего из одной ДНК образуются две дочерние односпиральные. В последующем, когда дочерние ДНК заняли свое место в разделенных дочерних клетках, происходит их восстановление.

Как только репликация ДНК завершилась, в результате синтеза появляется перетяжка, разделяющая клетку пополам. Вначале делению подвергается нуклеотид, затем цитоплазма. Синтез клеточной стенки завершает деление.

Рис. 4. Схема деления бактериальной клетки.

Обмен участками ДНК

У сенной палочки процесс репликации ДНК завершается обменом участками 2-х ДНК.

После деления клетки образуется перемычка, по которой ДНК одной клетки переходит в другую. Далее обе ДНК сплетаются. Некоторые отрезки обоих ДНК слипаются. В местах слипания происходит обмен отрезками ДНК. Одна из ДНК по перемычке уходит обратно в первую клетку.

Рис. 5. Вариант обмена ДНК у сенной палочки.

Типы делений бактериальных клеток

Если клеточное деление опережает процесс разделения, то образуются многоклеточные палочки и кокки.

При синхронном клеточном делении образуются две полноценные дочерние клетки.

Если нуклеотид делится быстрее самой клетки, то образуются многонуклеотидные бактерии.

Способы разделения бактерий

Деление с помощью разламывания

Деление с помощью разламывания характерно для сибиреязвенных бацилл. В результате такого деления клетки переламываются в местах сочленения, разрывая цитоплазматические мостики. Далее отталкиваются друг от друга, образуя цепочки.

Скользящее разделение

При скользящем разделении после деления клетка обосабливается и как бы скользит по поверхности другой клетки. Данный способ разделения характерен для некоторых форм эшерихий.

Секущееся разделение

При секущемся разделении одна из разделившихся клеток свободным концом описывает дугу круга, центром которого является точка ее контакта с другой клеткой, образуя римскую пятерку или клинопись (коринебактерии дифтерии, листерии).

Рис. 6. На фото бактерии палочковидной формы, образующие цепочки (сибиреязвенные палочки).

Рис. 7. На фото скользящий способ разделения кишечных палочек.

Рис. 8. Секущийся способ разделения коринебактерий.

Вид скоплений бактерий после деления

Скопления делящихся клеток имеют разнообразную форму, которая зависит от направления плоскости деления.

Шаровидные бактерии располагаются по одному, по двое (диплококки), пакетами, цепочками или как гроздья винограда. Палочковидные бактерии — цепочками.

Спиралевидные бактерии — хаотично.

Рис. 9. На фото микрококки. Они круглые, гладкие, имеют белую, желтую и красную окраску. В природе микрококки распространены повсеместно. Живут в разных полостях человеческого организма.

Рис. 10. На фото бактерии диплококки — Streptococcus pneumoniae.

Рис. 11. На фото бактерии сарцины. Кокковидные бактерии соединяются в пакеты.

Рис. 12. На фото бактерии стрептококки (от греческого «стрептос» — цепочка). Располагаются цепочками. Являются возбудителями целого ряда заболеваний.

Рис. 13. На фото бактерии «золотистые» стафилококки. Располагаются, как «гроздья винограда». Скопления имеют золотистую окраску. Являются возбудителями целого ряда заболеваний.

Рис. 14. На фото извитые бактерии лептоспиры — возбудители многих заболеваний.

Рис. 15. На фото палочковидные бактерии рода Vibrio.

Скорость деления бактерий

Скорость деления бактерий крайне высока. В среднем одна бактериальная клетка делится каждые 20 минут. В течение только одних суток одна клетка образует 72 поколения потомства. Микобактерии туберкулеза делятся медленно. Весь процесс деления занимает у них около 14 часов.

Рис. 16. На фото отображен процесс деления клетки стрептококка.

Половое размножение бактерий

В 1946 году учеными было обнаружено половое размножение в примитивной форме. При этом гаметы (мужские и женские половые клетки) не образуются, однако некоторые клетки обмениваются генетическим материалом (генетическая рекомбинация ).

Передача генов осуществляется в результате конъюгации — однонаправленного переноса части генетической информации в виде плазмид при контакте бактериальных клеток.

Плазмиды представляют собой молекулы ДНК небольшого размера. Они не связаны с геномом хромосом и способны удваиваться автономно. В плазмидах содержаться гены, которые повышают устойчивость бактериальных клеток к неблагоприятным условиям внешней среды. Бактерии часто передают эти гены друг другу. Отмечается так же передача генной информации бактериям другого вида.

При отсутствии истинного полового процесса именно конъюгация играет огромную роль при обмене полезными признаками. Так передается способность бактерий проявлять лекарственную устойчивость. Для человечества особо опасным является передача устойчивости к антибиотикам между болезнетворными популяциями.

Рис. 17. На фото момент конъюгации двух кишечных палочек.

Фазы развития бактериальной популяции

При посевах на питательную среду развитие бактериальной популяции проходит несколько фаз.

Исходная фаза

Исходная фаза — это период от момента посева до их роста. В среднем исходная фаза длится 1 — 2 часа.

Фаза задержки размножения

Это фаза интенсивного роста бактерий. Ее длительность составляет около 2-х часов. Она зависит от возраста культуры, периода приспособления, качества питательной среды и др.

Логарифмическая фаза

В эту фазу отмечается пик скорости размножения и увеличения бактериальной популяции. Ее длительность составляет 5 — 6 часов.

Фаза отрицательного ускорения

В эту фазу отмечается спад скорости размножения, уменьшается количество делящихся и увеличивается число погибших бактерий. Причина отрицательного ускорения — истощение питательной среды. Ее длительность составляет около 2-х часов.

Стационарная фаза максимума

В стационарную фазу отмечается равное количество погибших и вновь образованных особей. Ее длительность составляет около 2-х часов.

Фаза ускорения гибели

В эту фазу прогрессивно нарастает количество погибших клеток. Ее длительность составляет около 3-х часов.

Фаза логарифмической гибели

В эту фазу клетки бактерий отмирают с постоянной скоростью. Ее длительность составляет около 5-и часов.

Фаза уменьшения скорости отмирания

В эту фазу оставшиеся живыми клетки бактерий переходят в состояние покоя.

Рис. 18. На рисунке отображена кривая роста бактериальной популяции.

Рис. 19. На фото колонии синегнойной палочки сине-зеленого цвета, колонии микрококков желтого цвета, колонии Bacterium prodigiosum кроваво-красного цвета и колонии Bacteroides niger черного цвета.

Рис. 20. На фото колонии бактерий. Каждая колония — потомство одной-единственной клетки. В колонии число клеток исчисляется миллионами. вырастает колония за 1 — 3 суток.

Деление магниточувствительных бактерий

В 1970-х годах были открыты бактерии, обитающие в морях, которые обладали чувством магнетизма. Магнетизм позволяет этим удивительным существам ориентироваться по линиям магнитного поля Земли и находить серу, кислород и другие, так необходимые ей вещества. Их «компас» представлен магнитосомами, которые состоят из магнита. При делении магниточувствительные бактерии делят свой компас. При этом перетяжки при делении становится явно недостаточно, поэтому бактериальная клетка сгибается и делает резкий перелом.

Рис. 21. На фото момент деления магниточувствительной бактерии.

Рост бактерий

Вначале деления бактериальной клетки две молекулы ДНК расходятся в разные концы клетки. Далее клетка делится на две равноценные части, которые отделяются друг от друга и увеличиваются до исходного размера. Скорость деления многих бактерий составляет в среднем 20 — 30 минут. В течение только одних суток одна клетка образует 72 поколения потомства.

Масса клеток в процессе роста и развития быстро поглощает питательные вещества из окружающей среды. Этому способствуют благоприятные факторы внешней среды — температурный режим, достаточное количество питательных веществ, необходимая pH среды. Для клеток аэробов необходим кислород. Для анаэробов он представляет опасность. Однако безграничное размножение бактерий в природе не происходит. Солнечный свет, сухой воздух, недостаток пищи, высокая температура окружающей среды и другие факторы губительно действуют на бактериальную клетку.

Рис. 22. На фото момент деления клетки.

Факторы роста

Для роста бактерий необходимы определенные вещества (факторы роста), часть из которых синтезируется самой клеткой, часть поступает из окружающей среды. Потребность в факторах роста у всех бактерий разная.

Потребность в факторах роста является постоянным признаком, что позволяет использовать его для идентификации бактерий, подготовке питательных сред и использовать в биотехнологии.

Факторы роста бактерий (бактериальные витамины) — химические элементы, большинством из которых являются водорастворимые витамины группы В. В эту группу входят так же гемин, холин, пуриновые и пиримидиновые основания и другие аминокислоты. При отсутствии факторов роста наступает бактериостаз.

Бактерии используют факторы роста в минимальных количествах и в неизменном виде. Ряд химических веществ этой группы входят в состав клеточных ферментов.

Рис. 23. На фото момент деления палочковидной бактерии.

Важнейшие бактериальные факторы роста

  • Витамин В1 (тиамин) . Принимает участие в углеводном обмене.
  • Витамин В2» (рибофлавин) . Принимает участие в окислительно-восстановительных реакциях.
  • Пантотеновая кислота является составной частью кофермента А.
  • Витамин В6 (пиридоксин) . Принимает участие в обмене аминокислот.
  • Витамины В12 (кобаламины — вещества, содержащие кобальт). Принимают активное участие в синтезе нуклеотидов.
  • Фолиевая кислота . Некоторые ее производные входят в состав ферментов, катализирующих процессы синтеза пуриновых и пиримидиновых оснований, а также некоторых аминокислот.
  • Биотин . Участвует в азотистом обмене, а также катализирует синтез ненасыщенных жирных кислот.
  • Витамин РР (никотиновая кислота). Участвует в окислительно-восстановительных реакциях, образовании ферментов и обмене липидов и углеводов.
  • Витамин Н (парааминобензойная кислота). Является фактором роста многих бактерий, в том числе населяющих кишечник человека. Из парааминобензойной кислоты синтезируется фолиевая кислота.
  • Гемин . Является составной частью некоторых ферментов, которые принимают участие в реакциях окислениях.
  • Холин . Принимает участие в реакциях синтеза липидов клеточной стенки. Является поставщиком метильной группы при синтезе аминокислот.
  • Пуриновые и пиримидиновые основания (аденин, гуанин, ксантин, гипоксантин, цитозин, тимин и урацил). Вещества необходимы главным образом в качестве компонентов нуклеиновых кислот.
  • Аминокислоты . Эти вещества являются составляющими белков клетки.

Потребность в факторах роста некоторых бактерий

Ауксотрофы для обеспечения жизнедеятельности нуждаются в поступлении химических веществ из вне. Например, клостридии не способны синтезировать лецитин и тирозин. Стафилококки нуждаются в поступлении лецитина и аргинина. Стрептококки нуждаются в поступлении жирных кислот — компонентов фосфолипидов. Коринебактерии и шигеллы нуждаются в поступлении никотиновой кислоты. Золотистые стафилококки, пневмококки и бруцеллы нуждаются в поступлении витамина В1. Стрептококки и бациллы столбняка — в пантотеновой кислоте.

Прототрофы самостоятельно синтезируют необходимые вещества.

Рис. 24. Разные условия окружающей среды по-разному влияют на рост колоний бактерий. Слева — стабильный рост в виде медленно расширяющегося круга. Справа — быстрый рост в виде «побегов».

Изучение потребности бактерий в факторах роста позволяет ученым получать большую микробную массу, так необходимую при изготовлении антимикробных препаратов, сывороток и вакцин.

Подробно о бактерияx читай в статьях:

Размножение бактерий является механизмом повышения числа микробной популяции. Деление бактерий — основной способ размножения. После деления бактерии должны достигнуть размеров взрослых особей. Рост бактерий происходит путем быстрого поглощения питательных веществ их окружающей среды. Для роста необходимы определенные вещества (факторы роста), часть из которых синтезирует сама бактериальная клетка, часть поступает из окружающей среды.

Изучая рост и размножение бактерий, ученые постоянно открывают полезные свойства микроорганизмов, использование которых в повседневной жизни и на производстве ограничивается только их свойствами.

Клетки, как любой живой организм, рождаются, живут и умирают. Рост и размножение бактерий происходит очень быстро, они могли бы захватить все жизненное пространство на планете, если бы не их хрупкость и сдерживающие факторы (температура, уровень кислотности среды, отсутствие пищи и т. д.). При благоприятных условиях удвоение клетки занимает в среднем около получаса. Однако в критических ситуациях некоторые виды микроорганизмов (спорообразующие бактерии) способны образовывать споры и «впадать в спячку» на довольно длительный период.

Быстрое размножение бактерий имеет свои плюсы и минусы. Использование микроорганизмов в биотехнологиях (дрожжи, молочнокислые, азотфиксирующие организмы, плесневые грибки и т. д.) направлено на улучшение качества жизни. Однако неконтролируемый рост болезнетворных (патогенных) микробов опасен для людей. Навредить здоровью может и собственная микрофлора человека. В медицине существует понятие синдрома избыточного бактериального роста, при котором количество условно-патогенных микробов в организме человека резко увеличивается, что представляет угрозу для здоровья.

С чего все начинается

Рост и размножение клетки – это два различных процесса. Под ростом понимают увеличение массы клетки вследствие формирования всех клеточных структур. Размножение – это увеличение количества клеток в колонии. Различают бинарное деление, почкование и генетическую рекомбинацию (процесс, напоминающий половое размножение).

Большинство прокариотических (безъядерных) клеток, к которым принадлежат все бактерии, размножается путем разделения надвое (бинарное деление). Таким способом размножаются, например, молочнокислые бактерии. Процесс начинается с удвоения бактериальной хромосомы (молекула ДНК, заменяющая ядро) и протекает в несколько этапов:

  • клетка удлиняется;
  • наружная оболочка «врастает» внутрь и образует поперечную перегородку (перетяжку);
  • две новые (дочерние) клетки расходятся в разные стороны.

В результате получаются два идентичных организма.

Отдельные микроорганизмы делятся почкованием, но это скорее исключение из общего правила. Процесс заключается в образовании на одном из полюсов клетки короткого выступа, в который «дрейфует» одна из половин разделившегося нуклеоида (молекулы ДНК с генетической информацией). Затем выступ разрастается и отделяется от материнской клетки.

Есть еще вариант, напоминающий половое размножение, – генетическая рекомбинация. В этом случает происходит обмен генетической информацией и в результате получается клетка, содержащая гены своих родителей. Существуют три способа передачи генетической информации:

  • конъюгация – прямая передача (не обмен) части ДНК при контакте от одной бактерии к другой (процесс идет только в одном направлении);
  • трансдукция – перенос фрагмента ДНК с помощью бактериофага (вируса бактерий);
  • трансформация – поглощение генетической информации отмерших или уничтоженных клеток из окружающей среды.

Таким образом, только в результате бинарного деления и почкования получаются идентичные друг другу клетки. При генетической рекомбинации клетка претерпевает изменения, вырабатывая новые свойства и получая другие функции.

Скорость и фазы роста микроорганизмов

В питательных средах рост и размножение бактерий проходят в несколько стадий, различных по количеству доступной пищи и накоплению отходов жизнедеятельности:

  1. Первая фаза (латентная) определяется факторами адаптации к питательной среде. В это время микроорганизмы только осваиваются с новыми условиями. Рост бактерий не наблюдается.
  2. Вторая фаза (экспоненциальная) характеризуется ростом в геометрической прогрессии (увеличение по экспоненциальной кривой). В этот период бактериальные клетки активно растут, используя всю доступную пищу (максимальная скорость роста). Достигнув определенного размера, бактерия начинает делиться, причем процесс размножения протекает с постоянной скоростью, так как запасов пищи пока достаточно. В результате увеличившейся скорости роста и размножения происходит накопление в среде отходов жизнедеятельности (токсинов). К концу фазы скорость роста начинает уменьшаться.
  3. Третья фаза характеризуется стационарным ростом, т. е. количество «новорожденных» клеток совпадает с числом отмерших. Кривая роста и размножения на этом отрезке больше не поднимается. Скорость роста замедляется. Какое-то время общая численность бактерий в питательной среде остается неизменной. Однако за счет появления новых «членов семьи» запасы питательных веществ уменьшаются, а токсичность среды увеличивается. Этот процесс ухудшает условия жизни всей колонии.
  4. Четвертая фаза – отмирание микроорганизмов – возникает в результате катастрофического уменьшения пищи и увеличения токсичности среды. Количество живых организмов неуклонно уменьшается, в конце концов, жизнеспособных клеток становится меньше, чем их отмерших собратьев.

Скорость кинетического роста бактериальной колонии во многом зависит от вида бактерий, состава питательных сред, количества посеянных (внесенных в среду) клеток, возраста культуры, способа дыхания и еще ряда факторов. Например, для размножения молочнокислых бактерий важно поддержание температур в довольно узком диапазоне (25-30⁰С) и определенный уровень кислотности среды (рН). Для размножения аэробных и анаэробных клеток решающим фактором становится наличие или отсутствие кислорода для дыхания, а спорообразующим клеткам необходимо достаточное количество пищи.

Условия выращивания микробов в искусственных средах

Для изучения (медицина, микробиология) и использования (промышленность) выращивают бактериальные культуры на искусственных питательных средах, которые разделяются по консистенции, происхождению и назначению:

  • жидкие, полужидкие и плотные (твердые) искусственные среды;
  • среды животного, растительного происхождения или синтетические (химически чистые соединения в строго определенной концентрации);
  • обычные (универсальные), дифференциальные (различаются по видам бактерий), специальные, избирательные или среды обогащения (подавляющие рост нежелательных микробов).

Существуют бактерии, которым требуются особые условия. Например, анаэробные микроорганизмы (как спорообразующие, так и не спорообразующие) культивируют в анаэробных условиях (без кислорода). Для аэробных клеток решающим фактором размножения становится кислород. Факультативные анаэробы способны менять способ дыхания в зависимости от условий. Спорообразующие аэробные организмы, используемые для получения пробиотиков, очень чувствительны к уменьшению питания и его качеству. Спорообразующие анаэробы требуют полного отсутствия кислорода. Основной принцип культивирования микроорганизмов – создание благоприятных условий (питание, дыхание, температура), что иногда представляет определенные трудности.

Так, для выращивания анаэробов применяют метод глубокого посева, т. е. культуру бактерий вносят в глубину плотной питательной среды, добавляют в атмосферу роста химические вещества, поглощающие кислород, или откачивают воздух, замещая его инертным газом. В случае со спорообразующими бактериями используют внесение в питательную среду ингибитора белкового синтеза, тем самым останавливая процесс спорообразования.

Культивирование микроорганизмов

Под культивированием понимают искусственное выращивание клеток в контролируемых условиях. Конечная цель – получение биопрепарата из бактерий или с помощью бактерий. Такие препараты могут быть лечебными, диагностическими, профилактическими. Существует несколько методов культивирования:

  1. Стационарный способ характеризуется постоянством среды, какое-либо вмешательство в процесс отсутствует. Однако при таком методе культивирования в жидких питательных средах анаэробные организмы дают незначительный выход.
  2. Метод глубинного культивирования используют в промышленности для выращивания бактериальной биомассы. Для этой цели применяют специальные емкости. Факторами роста являются поддержание температуры и подача в жидкие среды питательных веществ. Кроме того, при необходимости проводят перемешивание или подачу кислорода (для дыхания аэробных бактерий).
  3. Метод проточных сред (промышленное культивирование) основан на постоянном поддержании культуры в экспонентной фазе роста. Это достигается непрерывным внесением питательных веществ и выведением токсичных отходов жизнедеятельности клеток. Такая технология позволяет достичь максимального выхода различных биологически активных веществ (антибиотические препараты, витамины и т. д.).

Одним из важнейших промышленных препаратов является культура молочнокислых бактерий, которые используются для приготовления молочной закваски, квашения капусты, силосования кормов, производства заменителя плазмы крови. Для получения гарантированного конечного результата нужно строго контролировать получаемое качество молочнокислых бактерий.

Нужны соответствующая питательная среда и препарат с чистой культурой молочнокислых бактерий, выращенной в лабораторных условиях. Далее процесс культивирования оставляют до момента наступления третьей фазы (равновесия), после чего можно приступать к сбору «урожая» молочнокислых бактерий.

Синдром избыточного бактериального роста

Не всегда рост бактериальных клеток приносит пользу, излишнее увеличение популяций бактерий в организме человека может быть опасным для здоровья. Нарушение качественного и количественного состава микрофлоры кишечника называют клиническим синдромом избыточного роста бактерий. Медики утверждают, что использовать для описания этого процесса термин «дисбактериоз» не совсем корректно. Дело в том, что количество полезных для организма анаэробных бактерий (бифидобактерии) действительно уменьшается, но число условно-патогенных клеток (например, аэробной кишечной палочки) увеличивается.

На разных участках желудочно-кишечного тракта обитают различные бактерии. В тонком кишечнике по мере продвижения постепенно меняется состав микрофлоры и количество микроорганизмов. Аэробные (растущие в кислородной среде) виды бактерий постепенно уступают место анаэробным (бескислородная среда). При клиническом синдроме избыточного роста бактериальный спектр смещается в сторону грамотрицательных (большинство патогенных), факультативно-аэробных и анаэробных организмов.

По мере приближения к толстой кишке увеличивается количество анаэробных бактерий (бифидобактерии и бактероиды). Основные представители анаэробной микрофлоры – бифидобактерии – отвечают за синтез белков, витаминов группы В, различных кислот и других необходимых для жизни веществ. Аэробные микроорганизмы (кишечная палочка) вырабатывают целый ряд витаминов и кислот, участвующих в пищеварении и поддерживающих иммунитет.

Молочнокислые бактерии – еще один представитель кишечной микрофлоры. Они относятся к микроаэрофильным организмам, т. е. одним из факторов роста и размножения молочнокислых бактерий является кислород, но в очень небольших количествах. Эти микроорганизмы отвечают за регулирование кислотности желудочно-кишечного тракта, благодаря чему тормозится рост гнилостных бактерий.

Каждый вид бактерий выполняет свою, четко обозначенную функцию. При синдроме избыточного роста фекальная микрофлора, в нормальных условиях обитающая в толстом кишечнике (кишечная палочка или анаэробные клетки), попадает в тонкую кишку. Меняется количественный и качественный состав бактериальной микрофлоры, выполнение некоторых функций замедляется или становится невозможным. Появляются условия для роста и размножения патогенных бактерий.

Клинические критерии заболевания

Критерием развития синдрома избыточного бактериального роста могут служить:

  • нарушение пищеварения, снижение иммунитета, изменение кислотности желудка;
  • нарушение целостности кишечного тракта;
  • последствия оперативного вмешательства;
  • заболевания желудочно-кишечного тракта;
  • стрессы;
  • неконтролируемый прием антибиотических препаратов.

Клинические проявления синдрома избыточного роста бактерий легко спутать с другими заболеваниями, зачастую они наслаиваются друг на друга, полностью искажая картину. Поставить диагноз в таких случаях можно только с помощью специальных тестов, направленных на выявление синдрома избыточного роста, определяющих не только количество, но и видовую принадлежность бактерий. Такой подход позволит подобрать необходимые медикаментозные препараты для коррекции состава микрофлоры.

Клинические симптомы заболевания:

  • на ранней стадии болезни появляется диарея и метеоризм;
  • вздутие живота и спазматические боли;
  • утомляемость, слабость;
  • быстрое похудение.

Для лечения синдрома избыточного роста применяют антибактериальные препараты. В дальнейшем для восстановления микрофлоры понадобятся пробиотические и пребиотические препараты.

Большое разнообразие бактериальных клеток (автотрофы и гетеротрофы, аэробные и анаэробные, спорообразующие и неспорообразующие и т. д.) диктует определенные условия для их размножения. Основной принцип культивирования в промышленных масштабах – строгий контроль условий среды и скорости роста. В природе редко существуют идеальные среды для развития микроорганизмов. В противном случае бактерии давно заполонили бы все доступное пространство.

Микробиология: конспект лекций Ткаченко Ксения Викторовна

1. Рост и размножение бактерий

Рост бактерий – увеличение бактериальной клетки в размерах без увеличения числа особей в популяции.

Размножение бактерий – процесс, обеспечивающий увеличение числа особей в популяции. Бактерии характеризуются высокой скоростью размножения.

Рост всегда предшествует размножению. Бактерии размножаются поперечным бинарным делением, при котором из одной материнской клетки образуются две одинаковые дочерние.

Процесс деления бактериальной клетки начинается с репликации хромосомной ДНК. В точке прикрепления хромосомы к цитоплазматической мембране (точке-репликаторе) действует белок-инициатор, который вызывает разрыв кольца хромосомы, и далее идет деспирализация ее нитей. Нити раскручиваются, и вторая нить прикрепляется к цитоплазматической мембране в точке-прорепликаторе, которая диаметрально противоположна точке-репликатору. За счет ДНК-полимераз по матрице каждой нити достраивается точная ее копия. Удвоение генетического материала – сигнал для удвоения числа органелл. В септальных мезосомах идет построение перегородки, делящей клетку пополам.

Двухнитевая ДНК спирализуется, скручивается в кольцо в точке прикрепления к цитоплазматической мембране. Это является сигналом для расхождения клеток по септе. Образуются две дочерние особи.

На плотных питательных средах бактерии образуют скопления клеток – колонии, различные по размерам, форме, поверхности, окраске и т. д. На жидких средах рост бактерий характеризуется образованием пленки на поверхности питательной среды, равномерного помутнения или осадка.

Размножение бактерий определяется временем генерации. Это период, в течение которого осуществляется деление клетки. Продолжительность генерации зависит от вида бактерий, возраста, состава питательной среды, температуры и др.

Фазы размножение бактериальной клетки на жидкой питательной среде:

1) начальная стационарная фаза; то количество бактерий, которое попало в питательную среду и в ней находится;

2) лаг-фаза (фаза покоя); продолжительность – 3–4 ч, происходит адаптация бактерий к питательной среде, начинается активный рост клеток, но активного размножения еще нет; в это время увеличивается количество белка, РНК;

3) фаза логарифмического размножения; активно идут процессы размножения клеток в популяции, размножение преобладает над гибелью;

4) максимальная стационарная фаза; бактерии достигают максимальной концентрации, т. е. максимального количества жизнеспособных особей в популяции; количество погибших бактерий равно количеству образующихся; дальнейшего увеличения числа особей не происходит;

5) фаза ускоренной гибели; процессы гибели преобладают над процессом размножения, так как истощаются питательные субстраты в среде. Накапливаются токсические продукты, продукты метаболизма. Этой фазы можно избежать, если использовать метод проточного культивирования: из питательной среды постоянно удаляются продукты метаболизма и восполняются питательные вещества.

Из книги Рассказ о жизни рыб автора Правдин Иван Федорович

Возраст и рост рыб Не зная быстроты роста и продолжительности жизни деревьев, нельзя вести лесное хозяйство; не зная возраста и роста домашних животных, невозможно правильно заниматься скотоводством. Лесовод давно научился определять возраст деревьев по годичным

Из книги Гидропоника для любителей автора Зальцер Эрнст Х

Почему может прекратиться рост растений Если это случится, то сразу же следует вспомнить о "законе минимума". Что же под этим подразумевается?Позволим себе здесь небольшое отступление и мысленно представим прогулку семьи с маленькими и более взрослыми детьми. Семья

Из книги Микробиология: конспект лекций автора Ткаченко Ксения Викторовна

2. Питание бактерий Под питанием понимают процессы поступления и выведения питательных веществ в клетку и из клетки. Питание в первую очередь обеспечивает размножение и метаболизм клетки.Среди необходимых питательных веществ выделяют органогены – это восемь

Из книги Микробиология автора Ткаченко Ксения Викторовна

2. Изменчивость у бактерий Различают два вида изменчивости – фенотипическую и генотипическую.Фенотипическая изменчивость – модификации – не затрагивает генотип. Модификации затрагивают большинство особей в популяции. Они не передаются по наследству и с течением

Из книги Семена разрушения. Тайная подоплека генетических манипуляций автора Энгдаль Уильям Фредерик

6. Рост, размножение, питание бактерий Рост бактерий – увеличение бактериальной клетки в размерах без увеличения числа особей в популяции.Размножение бактерий – процесс, обеспечивающий увеличение числа особей в популяции. Бактерии характеризуются высокой скоростью

Из книги Муравей, семья, колония автора Захаров Анатолий Александрович

Рост населения и государственная безопасность В апреле 1974 года, по мере того, как мировая засуха и американская сельскохозяйственная политика набирали обороты, госсекретарь кабинета Никсона и советник по государственной безопасности Генри Киссинджер разослал некий

Из книги Возрастная анатомия и физиология автора Антонова Ольга Александровна

РОСТ СЕМЬИ И СОВЕРШЕНСТВОВАНИЕ ЕЕ ОРГАНИЗАЦИИ Структура в известной мере является как бы результирующей различных аспектов жизни, характеристик семьи муравьев. В структуре находят достаточно полное выражение состав общины и ее численность, видовые особенности

Из книги Экология автора Митчелл Пол

РОСТ ПРИСПОСОБИТЕЛЬНЫХ ВОЗМОЖНОСТЕЙ СЕМЬИ Большие размеры семьи сами по себе - это важное новое свойство. (Примерно в той же степени, как и размеры отдельного индивида). Многочисленная семья всегда более конкурентоспособна, ей легче отстоять свой кормовой участок от

Из книги Бегство от одиночества автора Панов Евгений Николаевич

3.3. Рост и работа мышц

Из книги Путешествие в страну микробов автора Бетина Владимир

3.6. Рост позвоночника. Позвоночник взрослого и ребенка Позвоночник составляют 24 свободных позвонка (7 шейных, 12 грудных и 5 поясничных) и 9-10 несвободных (5 крестцовых и 4–5 копчиковых). Свободные позвонки, сочленяемые между собой, соединены связками, между которыми находятся

Из книги Микрокосм автора Циммер Карл

РОСТ ПОПУЛЯЦИИ В каком-то из изданий было сказано, что если бы человеческая популяция продолжала расти с нынешней скоростью, то через 200 лет огромная масса людей устремилась бы в космос со скоростью света. Этого, конечно, не произойдет; это всего лишь шутка, показывающая,

Из книги Гены и развитие организма автора Нейфах Александр Александрович

«Рост за пределы особи» Итак, перед нашими глазами прошли главные персонажи эффектного эволюционного спектакля, который вывел на сцену жизни множество совершенно удивительных существ. При всех тех различиях, которые придают бесспорное своеобразие каждой обширной

Из книги автора

Рост и размножение микроорганизмов Как сказал известный французский физиолог XIX века Клод Бернар, жизнь есть творение. Живые организмы отличаются от неживой природы главным образом тем, что растут и размножаются. Их рост и размножение лучше всего наблюдать у таких

Из книги автора

Микробы ускоряют рост растений В различных органах растений образуются вещества, регулирующие и до известной степени ускоряющие их рост. К таким веществам относится, например, f3-индолилуксусная кислота (гетероауксин).Интересно, что гетероауксин вырабатывают и выделяют

Из книги автора

«Роскошный рост» Escherichia coli обитала в организме наших предков на протяжении миллионов лет еще тогда, когда предки эти вовсе не были людьми. Но только в 1885 г. вид Homo sapiens и его жильцы были официально представлены друг другу. Немецкий педиатр по имени Теодор Эшерих занимался

Из книги автора

1. Размножение - это рост, наследственность и развитие Размножение - одно из самых специфических и самых сложных свойств жизни. Это и естественно, так как в эволюции отбор идет именно на эту способность: в борьбе за существование побеждают те организмы, которые