Как решить систему способом подстановки. Системы линейных уравнений

Рассмотрим вначале случай, когда число уравнений равно числу переменных, т.е. m = n. Тогда матрица системы - квадратная, а ее определитель называют определителем системы.

Метод обратной матрицы

Рассмотрим в общем виде систему уравнений АХ = В с невырожденной квадратной матрицей А. В этом случае существует обратная матрица А -1 . Домножим слева обе части на А -1 . Получим А -1 АХ = А -1 В. Отсюда ЕХ = А -1 В и

Последнее равенство представляет собой матричную формулу для нахождения решения таких систем уравнений. Использование этой формулы получило название метода обратной матрицы

Например, решим этим методом следующую систему:

;

В конце решения системы можно сделать проверку, подставив найденные значения в уравнения системы. При этом они должны обратиться в верные равенства.

Для рассмотренного примера проведем проверку:

Метод решения систем линейных уравнений с квадратной матрицей по формулам Крамера

Пусть n= 2:

Если обе части первого уравнения умножить на a 22 , а обе части второго – на (-a 12), и затем сложить полученные уравнения, то мы исключим из системы переменнуюx 2 . Аналогично можно исключить переменнуюx 1 (умножив обе части первого уравнения на (-a 21), а обе части второго – наa 11). В результате получим систему:

Выражение в скобках есть определитель системы

Обозначим

Тогда система примет вид:

Из полученной системы следует, что если определитель системы 0, то система будет совместной и определенной. Ее единственное решение можно вычислить по формулам:

Если = 0, а 1 0 и/или 2 0, то уравнения системы примут вид 0*х 1 = 2 и/или0*х 1 = 2 . В этом случае система будет несовместной.

В случае, когда = 1 = 2 = 0, система будет совместной и неопределенной (будет иметь бесконечное множество решений), так как примет вид:

Теорема Крамера (доказательство опустим). Если определитель матрицы системыnуравненийне равен нулю, то система имеет единственное решение, определяемое по формулам:

,

где  j - определитель матрицы, получаемой из матрицы А заменой j-го столбца столбцом свободных членов.

Вышеприведенные формулы называют формулами Крамера .

В качестве примера решим этим методом систему, которую до этого решали методом обратной матрицы:

Недостатки рассмотренных методов:

1) существенная трудоемкость (вычисление определителей и нахождение обратной матрицы);

2) ограниченная область применения (для систем с квадратной матрицей).

Реальных экономические ситуации чаще моделируются системами, в которых число уравнений и переменных довольно значительное, причем уравнений больше, чем переменных Поэтому на практике более распространен следующий метод.

Метод Гаусса (метод последовательного исключения переменных)

Этот метод используется для решения системы m линейных уравнений с n переменными в общем виде. Его суть заключается в применении к расширенной матрице системы равносильных преобразований, с помощью которых система уравнений преобразуется к виду, когда ее решения становится легко найти (если они есть).

Это такой вид, в котором левая верхняя часть матрицы системы будет представлять собой ступенчатую матрицу. Этого добиваются с помощью тех же приемов, с помощью которых получали ступенчатую матрицу с целью определения ранга. При этом применяют к расширенной матрице элементарные преобразования, которые позволят получить равносильную систему уравнений. После этого расширенная матрица примет вид:

Получение такой матрицы называют прямым ходом метода Гаусса.

Нахождение из соответствующей системы уравнений значений переменных называют обратным ходом метода Гаусса. Рассмотрим его.

Отметим, что последние (m – r) уравнений примут вид:

Если хотя бы одно из чисел
не равно нулю, то соответствующее равенство будет ложным, а вся система несовместной.

Поэтому для любой совместной системы
. В этом случае последние (m – r) уравнений при любых значениях переменных будут тождествами 0 = 0, и их можно не принимать во внимание при решении системы (просто отбросить соответствующие строки).

После этого система примет вид:

Рассмотрим вначале случай, когда r=n. Тогда система примет вид:

Из последнего уравнения системы можно однозначно найти x r .

Зная x r , из него можно однозначно выразитьx r -1 . Затем из предыдущего уравнения, знаяx r иx r -1 , можно выразитьx r -2 и т.д. доx 1 .

Итак, в этом случае система будет совместной и определенной.

Теперь рассмотрим случай, когда rбазисными (основными), а все остальные –небазисными (неосновными, свободными). Последнее уравнение системы будет иметь вид:

Из этого уравнения можно выразить базисную переменную x r через небазисные:

Предпоследнее уравнение будет иметь вид:

Подставив в него вместо x r полученное выражение, можно будет выразить базисную переменнуюx r -1 через небазисные. И т.д. до переменнойx 1 . Чтобы получить решение системы, можно приравнять небазисные переменные к произвольным значениям и после этого вычислить базисные переменные по полученным формулам. Таким образом, в этом случае система будет совместной и неопределенной (иметь бесконечное множество решений).

Например, решим систему уравнений:

Совокупность базисных переменных будем называть базисом системы. Совокупность столбцов коэффициентов при них тоже будем называтьбазисом (базисными столбцами), илибазисным минором матрицы системы. То решение системы, в котором все небазисные переменные равны нулю, будем называтьбазисным решением .

В предыдущем примере базисным решением будет (4/5; -17/5; 0; 0) (переменные х 3 и х 4 (с 1 и с 2) приравнены к нулю, а базисные переменные х 1 и х 2 рассчитаны через них). Чтобы привести пример небазисного решения, надо приравнять х 3 и х 4 (с 1 и с 2) к произвольным числам, неравным одновременно нулю, и рассчитать через них остальные переменные. Например, при с 1 = 1 и с 2 = 0 получим небазисное решение – (4/5; -12/5; 1; 0). Подстановкой легко убедиться, что оба решения – верные.

Очевидно, что в неопределенной системе небазисных решений может быть бесконечно много. Сколько может быть базисных решений? Каждой строке преобразованной матрицы должна соответствовать одна базисная переменная. Всего в задаче nпеременных, а базисных строк –r. Поэтому число всевозможных наборов базисных переменных не может превысить число сочетаний изnпоr 2 . Оно может быть меньше, чем , потому что не всегда можно преобразовать систему к такому виду, чтобы именно этот набор переменных был базисным.

Что это за вид? Это такой вид, когда матрица, образованная из столбцов коэффициентов при этих переменных, будет ступенчатой, и при этом будет состоять из rстрок. Т.е. ранг матрицы коэффициентов при этих переменных должен быть равенr. Большеrон быть не может, так как число столбцов равноr. Если он окажется меньшеr, то это говорит о линейной зависимости столбцов при переменных. Такие столбцы не могут составить базис.

Рассмотрим, какие еще базисные решения могут быть найдены в рассмотренном выше примере. Для этого рассмотрим всевозможные сочетания из четырех переменных по две базисных. Таких сочетаний будет
, причем одно из них (х 1 и х 2) уже было рассмотрено.

Возьмем переменные х 1 и х 3 . Найдем ранг матрицы коэффициентов при них:

Так как он равен двум, они могут быть базисными. Приравняем небазисные переменные х 2 и х 4 к нулю: х 2 = х 4 = 0. Тогда из формулы х 1 = 4/5 – (1/5)*х 4 следует, что х 1 = 4/5, а из формулы х 2 = -17/5 + х 3 - - (7/5)*х 4 = -17/5 + х 3 следует, что х 3 = х 2 +17/5 = 17/5. Таким образом, мы получим базисное решение (4/5; 0; 17/5; 0).

Аналогично можно получить базисные решения для базисных переменных х 1 и х 4 – (9/7; 0; 0; -17/7); х 2 и х 4 – (0; -9; 0; 4); х 3 и х 4 – (0; 0; 9; 4).

Переменные х 2 и х 3 в этом примере нельзя взять в качестве базисных, так как ранг соответствующей матрицы равен единице, т.е. меньше двух:

.

Возможен и другой подход к определению того, можно или нет составить базис из некоторых переменных. При решении примера в итоге преобразования матрицы системы к ступенчатому виду она приняла вид:

Выбирая пары переменных, можно было рассчитать соответствующие миноры этой матрицы. Легко убедиться, что для всех пар, кроме х 2 и х 3 , они не равны нулю, т.е. столбцы линейно независимы. И только для столбцов при переменных х 2 и х 3
, что говорит об их линейной зависимости.

Рассмотрим еще один пример. Решим систему уравнений

Итак, уравнение, соответствующее третьей строке последней матрицы, противоречиво - оно привелось к неверному равенству 0 = -1, следовательно, данная система несовместна.

Метод Жордана-Гаусса 3 представляет собой развитие метода Гаусса. Суть его состоит в том, что расширенную матрицу системы преобразуют к виду, когда коэффициенты приrпеременных образуют единичную матрицу с точностью до перестановки строк или столбцов 4 (гдеr– ранг матрицы системы).

Решим этим методом систему:

Рассмотрим расширенную матрицу системы:

В этой матрице выберем единичный элемент. Например, коэффициент при х 2 в третьем ограничении 5 . Добьемся, чтобы в остальных строках в этом столбце стояли нули, т.е. сделаем столбец единичным. В процессе преобразований будем называть этотстолбец разрешающим (ведущим, ключевым). Третье ограничение (третьюстроку ) тоже будем называтьразрешающей . Самэлемент , который стоит на пересечении разрешающих строки и столбца (здесь это единица), тоже называютразрешающим .

В первой строке сейчас стоит коэффициент (-1). Чтобы получить на его месте ноль, умножим третью строку на (-1) и вычтем результат из первой строки (т.е. просто сложим первую строку с третьей).

Во второй строке стоит коэффициент 2. Чтобы получить на его месте ноль, умножим третью строку на 2 и вычтем результат из первой строки.

Результат преобразований будет иметь вид:

Из этой матрицы хорошо видно, что одно из первых двух ограничений можно вычеркнуть (соответствующие строки пропорциональны, т.е. эти уравнения следуют друг из друга). Вычеркнем, например, второе:

Итак, в новой системе два уравнения. Получен единичный столбец (второй), причем единица здесь стоит во второй строке. Запомним, что второму уравнению новой системы у нас будет соответствовать базисная переменная х 2 .

Выберем базисную переменную для первой строки. Это может быть любая переменная, кроме х 3 (потому что при х 3 в первом ограничении стоит нулевой коэффициент, т.е. набор переменных х 2 и х 3 здесь базисным быть не может). Можно взять первую или четвертую переменную.

Выберем х 1 . Тогда разрешающим элементом будет 5, и обе части разрешающего уравнения придется разделить на пять, чтобы получить в первом столбце первой строки единицу.

Добьемся, чтобы в остальных строках (т.е. во второй строке) в первом столбце стояли нули. Так как сейчас во второй строке стоит не ноль, а 3, надо вычесть из второй строки элементы преобразованной первой строки, умноженные на 3:

Из полученной матрицы можно непосредственно извлечь одно базисное решение, приравняв небазисные переменные к нулю, а базисные – к свободным членам в соответствующих уравнениях: (0,8; -3,4; 0; 0). Можно также вывести общие формулы, выражающие базисные переменные через небазисные: х 1 = 0,8 – 1,2х 4 ; х 2 = -3,4 + х 3 + 1,6х 4 . Эти формулы описывают все бесконечное множество решений системы (приравнивая х 3 и х 4 к произвольным числам, можно вычислить х 1 и х 2).

Отметим, что суть преобразований на каждом этапе метода Жордана-Гаусса заключалась в следующем:

1) разрешающую строку делили на разрешающий элемент, чтобы получить на его месте единицу,

2) из всех остальных строк вычитали преобразованную разрешающую, умноженную на тот элемент, который стоял в данной строке в разрешающем столбце, чтобы получить на месте этого элемента ноль.

Рассмотрим еще раз преобразованную расширенную матрицу системы:

Из этой записи видно, что ранг матрицы системы А равен r.

В ходе проведенных рассуждений мы установили, что система будет совместной тогда и только тогда, когда
. Это означает, что расширенная матрица системы будет иметь вид:

Отбрасывая нулевые строки, мы получим, что ранг расширенной матрицы системы тоже равен r.

Теорема Кронекера-Капелли . Система линейных уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы этой системы.

Вспомним, что ранг матрицы равен максимальному числу ее линейно независимых строк. Из этого следует, что если ранг расширенной матрицы меньше числа уравнений, то уравнения системы линейно зависимы, и одно или несколько из них могут быть исключены из системы (поскольку являются линейной комбинацией остальных). Система уравнений будет линейно независимой лишь в том случае, если ранг расширенной матрицы равен числу уравнений.

При этом для совместных систем линейных уравнений можно утверждать, что если ранг матрицы равен числу переменных, то система имеет единственное решение, а если он меньше числа переменных, то система неопределенная и имеет бесконечно много решений.

1Например, пусть в матрице пять строк (исходный порядок строк – 12345). Надо поменять вторую строку и пятую. Чтобы вторая строка попала на место пятой, «сдвинулась» вниз, последовательно три раза поменяем соседние строки: вторую и третью (13245), вторую и четвертую (13425) и вторую и пятую (13452). Затем, чтобы пятая строка попала на место второй в исходной матрице, надо «сдвинуть» вверх пятую строку путем только двух последовательных перемен: пятой и четвертой строк (13542) и пятой и третьей (15342).

2Числом сочетаний из n по r называют число всех различных r–элементных подмножеств n–элементного множества (различными множествами считаются те, которые имеют различный состав элементов, порядок отбора при этом не важен). Его вычисляют по формуле:
. Напомним смысл знака “!” (факториал):
0!=1.)

3Поскольку этот метод более распространен, чем рассмотренный ранее метод Гаусса, и по своей сути представляет собой сочетание прямого и обратного хода метода Гаусса, его тоже иногда называют методом Гаусса, опуская первую часть названия.

4Например,
.

5Если бы в матрице системы не было единиц, то можно было бы, например, разделить обе части первого уравнения на два, и тогда первый коэффициент стал бы единичным; или т.п.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

На данном уроке мы рассмотрим методы решения системы линейных уравнений. В курсе высшей математики системы линейных уравнений требуется решать как в виде отдельных заданий, например, «Решить систему по формулам Крамера», так и в ходе решения остальных задач. С системами линейных уравнений приходится иметь дело практически во всех разделах высшей математики.

Сначала немного теории. Что в данном случае обозначает математическое слово «линейных»? Это значит, что в уравнения системы все переменные входят в первой степени : без всяких причудливых вещей вроде и т.п., от которых в восторге бывают только участники математических олимпиад.

В высшей математике для обозначения переменных используются не только знакомые с детства буквы .
Довольно популярный вариант – переменные с индексами: .
Либо начальные буквы латинского алфавита, маленькие и большие:
Не так уж редко можно встретить греческие буквы: – известные многим «альфа, бета, гамма». А также набор с индексами, скажем, с буквой «мю»:

Использование того или иного набора букв зависит от раздела высшей математики, в котором мы сталкиваемся с системой линейных уравнений. Так, например, в системах линейных уравнений, встречающихся при решении интегралов, дифференциальных уравнений традиционно принято использовать обозначения

Но как бы ни обозначались переменные, принципы, методы и способы решения системы линейных уравнений от этого не меняются. Таким образом, если Вам встретится что-нибудь страшное типа , не спешите в страхе закрывать задачник, в конце концов, вместо можно нарисовать солнце, вместо – птичку, а вместо – рожицу (преподавателя). И, как ни смешно, систему линейных уравнений с данными обозначениями тоже можно решить.

Что-то у меня есть такое предчувствие, что статья получится довольно длинной, поэтому небольшое оглавление. Итак, последовательный «разбор полётов» будет таким::

– Решение системы линейных уравнений методом подстановки («школьный метод») ;
– Решение системы методом почленного сложения (вычитания) уравнений системы ;
– Решение системы по формулам Крамера ;
– Решение системы с помощью обратной матрицы ;
– Решение системы методом Гаусса .

С системами линейных уравнений все знакомы из школьного курса математики. По сути дела, начинаем с повторения.

Решение системы линейных уравнений методом подстановки

Данный метод также можно назвать «школьным методом» или методом исключения неизвестных. Образно говоря, его еще можно назвать «недоделанным методом Гаусса».

Пример 1


Здесь у нас дана система из двух уравнений с двумя неизвестными. Обратите внимание, что свободные члены (числа 5 и 7) расположены в левой части уравнения. Вообще говоря, без разницы, где они находятся, слева или справа, просто в задачах по высшей математике нередко они расположены именно так. И такая запись не должна приводить в замешательство, при необходимости систему всегда можно записать «как обычно»: . Не забываем, что при переносе слагаемого из части в часть у него нужно поменять знак.

Что значит решить систему линейных уравнений? Решить систему уравнений – это значит найти множество её решений. Решение системы представляет собой набор значений всех входящих в неё переменных, который обращает КАЖДОЕ уравнение системы в верное равенство. Кроме того, система может быть несовместной (не иметь решений) .Не тушуйтесь, это общее определение =) У нас же будет всего лишь одно значение «икс» и одно значение «игрек», которые удовлетворяют каждому уравнению с-мы.

Существует графический метод решения системы, с которым можно ознакомиться на уроке Простейшие задачи с прямой . Там же я рассказал о геометрическом смысле системы двух линейных уравнений с двумя неизвестными. Но сейчас на дворе эра алгебры, и числа-числа, действия-действия.

Решаем : из первого уравнения выразим:
Полученное выражение подставляем во второе уравнение:

Раскрываем скобки, приводим подобные слагаемые и находим значение :

Далее вспоминаем про то, от чего плясали:
Значение нам уже известно, осталось найти:

Ответ :

После того, как решена ЛЮБАЯ система уравнений ЛЮБЫМ способом, настоятельно рекомендую выполнить проверку (устно, на черновике либо калькуляторе) . Благо, делается это легко и быстро.

1) Подставляем найденный ответ в первое уравнение :

– получено верное равенство.

2) Подставляем найденный ответ во второе уравнение :

– получено верное равенство.

Или, если говорить проще, «всё сошлось»

Рассмотренный способ решения не является единственным, из первого уравнения можно было выразить , а не .
Можно наоборот – что-нибудь выразить из второго уравнения и подставить в первое уравнение. Кстати, заметьте, самый невыгодный из четырех способов – выразить из второго уравнения:

Получаются дроби, а оно зачем? Есть более рациональное решение.

Тем не менее, в ряде случаев без дробей всё-таки не обойтись. В этой связи обращаю Ваше вниманиена то, КАК я записал выражение. Не так: , и ни в коем случае не так: .

Если в высшей математике Вы имеете дело с дробными числами, то все вычисления старайтесь проводить в обыкновенных неправильных дробях .

Именно , а не или !

Запятую можно использовать лишь иногда, в частности, если – это окончательный ответ какой-нибудь задачи, и с этим числом больше не нужно выполнять никаких действий.

Многие читатели наверняка подумали «да зачем такое подробное объяснение, как для класса коррекции, и так всё понятно». Ничего подобного, вроде бы такой простой школьный пример, а сколько ОЧЕНЬ важных выводов! Вот еще один:

Любое задание следует стремиться выполнить самым рациональным способом . Хотя бы потому, что это экономит время и нервы, а также снижает вероятность допустить ошибку.

Если в задаче по высшей математике Вам встретилась система двух линейных уравнений с двумя неизвестными, то всегда можно использовать метод подстановки (если не указано, что систему нужно решить другим методом) Ни один преподаватель не подумает, что ты лох снизит оценку за использование «школьного метода».
Более того, в ряде случаев метод подстановки целесообразно использовать и при большем количестве переменных.

Пример 2

Решить систему линейных уравнений с тремя неизвестными

Похожая система уравнений часто возникает при использовании так называемого метода неопределенных коэффициентов, когда мы находим интеграл от дробно-рациональной функции . Рассматриваемая система взята мной как раз оттуда.

При нахождении интеграла – цель быстро найти значения коэффициентов , а не изощряться формулами Крамера, методом обратной матрицы и т.д. Поэтому, в данном случае уместен именно метод подстановки.

Когда дана любая система уравнений, в первую очередь желательно выяснить, а нельзя ли ее как-нибудь СРАЗУ упростить? Анализируя уравнения системы, замечаем, что второе уравнение системы можно разделить на 2, что мы и делаем:

Справка: математический знак обозначает «из этого следует это», он часто используется в ходе решения задач.

Теперь анализируем уравнения, нам нужно выразить какую-нибудь переменную через остальные. Какое уравнение выбрать? Наверное, Вы уже догадались, что проще всего для этой цели взять первое уравнение системы:

Здесь без разницы, какую переменную выражать, можно было с таким же успехом выразить или .

Далее, выражение для подставляем во второе и третье уравнения системы:

Раскрываем скобки и приводим подобные слагаемые:

Третье уравнение делим на 2:

Из второго уравнения выразим и подставим в третьей уравнение:

Практически всё готово, из третьего уравнения находим:
Из второго уравнения:
Из первого уравнения:

Проверка: Подставим найденные значения переменных в левую часть каждого уравнения системы:

1)
2)
3)

Получены соответствующие правые части уравнений, таким образом, решение найдено верно.

Пример 3

Решить систему линейных уравнений с 4 неизвестными

Это пример для самостоятельного решения (ответ в конце урока).

Решение системы методом почленного сложения (вычитания) уравнений системы

В ходе решения систем линейных уравнений нужно стараться использовать не «школьный метод», а метод почленного сложения (вычитания) уравнений системы. Почему? Это экономит время и упрощает вычисления, впрочем, сейчас станет всё понятнее.

Пример 4

Решить систему линейных уравнений:

Я взял ту же систему, что и первом примере.
Анализируя систему уравнений, замечаем, что коэффициенты при переменной одинаковы по модулю и противоположны по знаку (–1 и 1). В такой ситуации уравнения можно сложить почленно:

Действия, обведенные красным цветом, выполняются МЫСЛЕННО.
Как видите, в результате почленного сложения у нас пропала переменная . В этом, собственно, и состоит суть метода – избавиться от одной из переменных .

Напомним для начала определение решения системы уравнений с двумя переменными.

Определение 1

Пара чисел называется решением системы уравнений с двумя переменными, если при их подстановки в уравнение получается верное равенство.

В дальнейшем будем рассматривать системы из двух уравнений с двумя переменными.

Существуют четыре основных способа решения систем уравнений : способ подстановки, способ сложения, графический способ, способ ведения новых переменных. Рассмотрим эти способы на конкретных примерах. Для описания принципа использования первых трех способов будем рассматривать систему двух линейных уравнений с двумя неизвестными:

Способ подстановки

Способ подстановки заключается в следующем: берется любое из данных уравнений и выражается $y$ через $x$, затем $y$ подставляется в уравнение системы, откуда и находится переменная $x.$ После этого мы легко можем вычислить переменную $y.$

Пример 1

Выразим из второго уравнения $y$ через $x$:

Подставим в первое уравнение, найдем $x$:

\ \ \

Найдем $y$:

Ответ: $(-2,\ 3)$

Способ сложения.

Рассмотрим данный способ на примере:

Пример 2

\[\left\{ \begin{array}{c} {2x+3y=5} \\ {3x-y=-9} \end{array} \right.\]

Умножим второе уравнение на 3, получим:

\[\left\{ \begin{array}{c} {2x+3y=5} \\ {9x-3y=-27} \end{array} \right.\]

Теперь сложим оба уравнения между собой:

\ \ \

Найдем $y$ из второго уравнения:

\[-6-y=-9\] \

Ответ: $(-2,\ 3)$

Замечание 1

Отметим, что в данном способе необходимо умножать одно или оба уравнения на такие числа, чтобы при сложении одна из переменных «исчезла».

Графический способ

Графический способ заключается в следующем: оба уравнения системы изображается на координатной плоскости и находится точка их пересечения.

Пример 3

\[\left\{ \begin{array}{c} {2x+3y=5} \\ {3x-y=-9} \end{array} \right.\]

Выразим из обоих уравнений $y$ через $x$:

\[\left\{ \begin{array}{c} {y=\frac{5-2x}{3}} \\ {y=3x+9} \end{array} \right.\]

Изобразим оба графика на одной плоскости:

Рисунок 1.

Ответ: $(-2,\ 3)$

Способ введения новых переменных

Этот способ рассмотрим на следующем примере:

Пример 4

\[\left\{ \begin{array}{c} {2^{x+1}-3^y=-1} \\ {3^y-2^x=2} \end{array} \right.\]

Решение.

Данная система равносильна системе

\[\left\{ \begin{array}{c} {{2\cdot 2}^x-3^y=-1} \\ {3^y-2^x=2} \end{array} \right.\]

Пусть $2^x=u\ (u>0)$, а $3^y=v\ (v>0)$, получим:

\[\left\{ \begin{array}{c} {2u-v=-1} \\ {v-u=2} \end{array} \right.\]

Решим полученную систему методом сложения. Сложим уравнения:

\ \

Тогда из второго уравнения, получим, что

Возвращаясь к замене, получим новую систему показательных уравнений:

\[\left\{ \begin{array}{c} {2^x=1} \\ {3^y=3} \end{array} \right.\]

Получаем:

\[\left\{ \begin{array}{c} {x=0} \\ {y=1} \end{array} \right.\]

Урок и презентация на тему: "Системы уравнений. Метод подстановки, метод сложения, метод введения новой переменной"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 9 класса
Тренажер к учебникам Атанасяна Л.С. Тренажер к учебникам Погорелова А.В.

Способы решения систем неравенств

Ребята, мы с вами изучили системы уравнений и научились решать их с помощью графиков. Теперь давайте посмотрим, какие еще существуют способы решения систем?
Практически все способы их решения не отличаются от тех, что мы изучали в 7 классе. Сейчас нам нужно внести некоторые корректировки согласно тем уравнениям, что мы научились решать.
Суть всех методов, описанных в данном уроке, это замена системы равносильной системой с более простым видом и способом решения. Ребята, вспомните, что такое равносильная система.

Метод подстановки

Первый способ решения систем уравнений с двумя переменными нам хорошо известен - это метод подстановки. С помощью этого метода мы решали линейные уравнения. Теперь давайте посмотрим, как решать уравнения в общем случае?

Как же нужно действовать при решении?
1. Выразить одну из переменных через другую. Чаще всего в уравнениях используют переменные x и y. В одном из уравнений выражаем одну переменную через другую. Совет: внимательно посмотрите на оба уравнения, прежде чем начать решать, и выберете то, где будет легче выразить переменную.
2. Полученное выражение подставить во второе уравнение, вместо той переменной, которую выражали.
3. Решить уравнение, которое у нас получилось.
4. Подставить получившееся решение во второе уравнение. Если решений несколько, то подставлять надо последовательно, чтобы не потерять пару решений.
5. В результате вы получите пару чисел $(x;y)$, которые надо записать в ответ.

Пример.
Решить систему с двумя переменными методом подстановки: $\begin{cases}x+y=5, \\xy=6\end{cases}$.

Решение.
Внимательно посмотрим на наши уравнения. Очевидно, что выразить y через x в первом уравнении гораздо проще.
$\begin{cases}y=5-x, \\xy=6\end{cases}$.
Подставим первое выражение во второе уравнение $\begin{cases}y=5-x, \\x(5-2x)=6\end{cases}$.
Решим второе уравнение отдельно:
$x(5-x)=6$.
$-x^2+5x-6=0$.
$x^2-5x+6=0$.
$(x-2)(x-3)=0$.
Получили два решения второго уравнения $x_1=2$ и $x_2=3$.
Последовательно подставим во второе уравнение.
Если $x=2$, то $y=3$. Если $x=3$, то $y=2$.
Ответом будет две пары чисел.
Ответ: $(2;3)$ и $(3;2)$.

Метод алгебраического сложения

Этот метод мы также изучали в 7 классе.
Известно, что рациональное уравнение от двух переменных мы можем умножить на любое число, не забывая умножить обе части уравнения. Мы умножали одно из уравнений на некое число так, чтобы при сложении получившегося уравнения со вторым уравнением системы, одна из переменных уничтожалась. Потом решали уравнение относительно оставшейся переменной.
Этот метод работает и сейчас, правда не всегда возможно уничтожить одну из переменных. Но позволяет значительно упростить вид одного из уравнений.

Пример.
Решить систему: $\begin{cases}2x+xy-1=0, \\4y+2xy+6=0\end{cases}$.

Решение.
Умножим первое уравнение на 2.
$\begin{cases}4x+2xy-2=0, \\4y+2xy+6=0\end{cases}$.
Вычтем из первого уравнения второе.
$4x+2xy-2-4y-2xy-6=4x-4y-8$.
Как видим, вид получившегося уравнения гораздо проще исходного. Теперь мы можем воспользоваться методом подстановки.
$\begin{cases}4x-4y-8=0, \\4y+2xy+6=0\end{cases}$.
Выразим x через y в получившемся уравнении.
$\begin{cases}4x=4y+8, \\4y+2xy+6=0\end{cases}$.
$\begin{cases}x=y+2, \\4y+2(y+2)y+6=0\end{cases}$.
$\begin{cases}x=y+2, \\4y+2y^2+4y+6=0\end{cases}$.
$\begin{cases}x=y+2, \\2y^2+8y+6=0\end{cases}$.
$\begin{cases}x=y+2, \\y^2+4y+3=0\end{cases}$.
$\begin{cases}x=y+2, \\(y+3)(y+1)=0\end{cases}$.
Получили $y=-1$ и $y=-3$.
Подставим эти значения последовательно в первое уравнение. Получим две пары чисел: $(1;-1)$ и $(-1;-3)$.
Ответ: $(1;-1)$ и $(-1;-3)$.

Метод введения новой переменной

Этот метод мы также изучали, но давайте посмотрим на него еще раз.

Пример.
Решить систему: $\begin{cases}\frac{x}{y}+\frac{2y}{x}=3, \\2x^2-y^2=1\end{cases}$.

Решение.
Введем замену $t=\frac{x}{y}$.
Перепишем первое уравнение с новой переменной: $t+\frac{2}{t}=3$.
Решим получившееся уравнение:
$\frac{t^2-3t+2}{t}=0$.
$\frac{(t-2)(t-1)}{t}=0$.
Получили $t=2$ или $t=1$. Введем обратную замену $t=\frac{x}{y}$.
Получили: $x=2y$ и $x=y$.

Для каждого из выражений исходную систему надо решить отдельно:
$\begin{cases}x=2y, \\2x^2-y^2=1\end{cases}$.   $\begin{cases}x=y, \\2x^2-y^2=1\end{cases}$.
$\begin{cases}x=2y, \\8y^2-y^2=1\end{cases}$.    $\begin{cases}x=y, \\2y^2-y^2=1\end{cases}$.
$\begin{cases}x=2y, \\7y^2=1\end{cases}$.       $\begin{cases}x=2y, \\y^2=1\end{cases}$.
$\begin{cases}x=2y, \\y=±\frac{1}{\sqrt{7}}\end{cases}$.      $\begin{cases}x=y, \\y=±1\end{cases}$.
$\begin{cases}x=±\frac{2}{\sqrt{7}}, \\y=±\frac{1}{\sqrt{7}}\end{cases}$.     $\begin{cases}x=±1, \\y=±1\end{cases}$.
Получили четыре пары решений.
Ответ: $(\frac{2}{\sqrt{7}};\frac{1}{\sqrt{7}})$; $(-\frac{2}{\sqrt{7}};-\frac{1}{\sqrt{7}})$; $(1;1)$; $(-1;-1)$.

Пример.
Решить систему: $\begin{cases}\frac{2}{x-3y}+\frac{3}{2x+y}=2, \\\frac{8}{x-3y}-\frac{9}{2x+y}=1\end{cases}$.

Решение.
Введем замену: $z=\frac{2}{x-3y}$ и $t=\frac{3}{2x+y}$.
Перепишем исходные уравнения с новыми переменными:
$\begin{cases}z+t=2, \\4z-3t=1\end{cases}$.
Воспользуемся методом алгебраического сложения:
$\begin{cases}3z+3t=6, \\4z-3t=1\end{cases}$.
$\begin{cases}3z+3t+4z-3t=6+1, \\4z-3t=1\end{cases}$.
$\begin{cases}7z=7, \\4z-3t=1\end{cases}$.
$\begin{cases}z=1, \\-3t=1-4\end{cases}$.
$\begin{cases}z=1, \\t=1\end{cases}$.
Введем обратную замену:
$\begin{cases}\frac{2}{x-3y}=1, \\\frac{3}{2x+y}=1\end{cases}$.
$\begin{cases}x-3y=2, \\2x+y=3\end{cases}$.
Воспользуемся методом подстановки:
$\begin{cases}x=2+3y, \\4+6y+y=3\end{cases}$.
$\begin{cases}x=2+3y, \\7y=-1\end{cases}$.
$\begin{cases}x=2+3(\frac{-1}{7}), \\y=\frac{-1}{7}\end{cases}$.
$\begin{cases}x=\frac{11}{7}, \\x=-\frac{11}{7}\end{cases}$.
Ответ: $(\frac{11}{7};-\frac{1}{7})$.

Задачи на системы уравнений для самостоятельного решения

Решите системы:
1. $\begin{cases}2x-2y=6, \\xy =-2\end{cases}$.
2. $\begin{cases}x+y^2=3, \\xy^2=4\end{cases}$.
3. $\begin{cases}xy+y^2=3, \\y^2-xy=5\end{cases}$.
4. $\begin{cases}\frac{2}{x}+\frac{1}{y}=4, \\\frac{1}{x}+\frac{3}{y}=9\end{cases}$.
5. $\begin{cases}\frac{5}{x^2-xy}+\frac{4}{y^2-xy}=-\frac{1}{6}, \\\frac{7}{x^2-xy}-\frac{3}{y^2-xy}=\frac{6}{5}\end{cases}$.