Какими были первые древние живые организмы биология. Какой была древнейшая жизнь? Самые старые деревья


Представляем вам старейшие живые организмы, существующие на нашей планете по сей день. Эти древние организмы зародились миллионы лет назад и продолжают существовать совместно с нами.

Цианобактерии
Окаменелости цинобактерий возрастом 3,5 миллиарда были обнаружены в Западной Австралии. Цианобактерии, или сине-зеленые водоросли, является одним из видов бактерий, способных к фотосинтезу. Считается, что это сыграло определенную роль в формировании атмосферы Земли и сделало ее пригодной для жизни.



Губки
Губки появились 580 миллионов лет назад. Такие древне представители были найдены в Австралии, Китае и Монголии.



Медузы
Медузы появились 505 миллионов лет назад и относятся к группе кишечнополостных. К этой же группе относятся и кораллы, морские анемоны и другие обитатели морей.


Мечехвосты
Появились 450 миллионов лет назад. Мечехвостов считают живыми ископаемые. Эти членистоногие обитают в неглубоких океанических водах с мягким песчаным или илистым дном.


Латимерия
Эта редкая рыба появилась 400 миллионов лет назад. Последний экземпляр был пойман в 1998 году.



Гинкго
Появившееся 270 миллионов лет назад, Гинкго является единственным живым представителем гинкговых растений. Геологические катаклизмы почти полностью стерли этот вид с лица Земли.


Наутилус
Еще одно живое ископаемое, зародившееся 235 миллионов лет назад. Наутилус появился в конце триасового периода. Наутилусы встречаются в западной части Тихого океана.



Осетры
Осетры появились 200 миллионов лет назад и также относятся к ряду живых ископаемых, хоть они и изменились в процессе эволюции.


Martialis Heureka
Этот наиболее примитивный вид муравьев возник 100 миллионов лет назад и за все это время практически не изменился. Вид был обнаружен в бассейне Амазонки в 2000 году. Муравьи живут под землей.

3. ПЕРВЫЕ ЖИВЫЕ ОРГАНИЗМЫ

Строение первых живых организмов хотя и было гораздо совершеннее, чем у коацерватных капелек, но все же оно было несравненно проще нынешних живых существ. Естественный отбор, начавшийся в коацерватных капельках, продолжался и с появлением жизни. В течение долгого времени строение живых существ все более улучшалось, приспособлялось к условиям существования (Рис.7).

Рисунок 7. Нитевидная форма бактерий и колония бактерий

Вначале пищей для живых существ были только органические вещества, возникшие из первичных углеводородов. Но с течением времени количество таких веществ уменьшилось. В этих условиях первичные живые организмы выработали в себе способность строить органические вещества из элементов неорганической природы -- из углекислоты и воды. В процессе последовательного развития у них появилась способность поглощать энергию солнечного луча, разлагать за счет нее углекислоту и строить в своем теле из ее углерода и воды органические вещества. Так возникли простейшие растения -- сине-зеленые водоросли (Рис.8).

Рисунок 8. Сине-зеленые водоросли

Остатки сине-зеленых водорослей обнаруживаются в древнейших отложениях земной коры.

Другие живые существа сохранили прежний способ питания, но пищей им стали служить первичные растения. Так возникли в своем первоначальном виде животные.

На заре жизни и растения, и животные были мельчайшими одноклеточными существами, подобными живущим в наше время бактериям, сине-зеленым водорослям, амебам. Большим событием в истории последовательного развития живой природы стало возникновение многоклеточных организмов, т. е. живых существ, состоящих из многих клеток, объединенных в один организм. Постепенно, но значительно быстрее, чем раньше, живые организмы становились все сложнее и разнообразнее.

С образованием сложных ультра молекулярных систем (пробионтов) включающих нуклеиновые кислоты, белки ферменты и механизм генетического кода, появляется жизнь на Земле. Пробионты нуждались в различных химических соединениях -- нуклеотидах, аминокислотах и др. Из-за низкой степени генетической информации, пробионты обладали достаточно ограниченными возможностями. Дело в том, что они использовали для своего роста готовые органические соединения, синтезированные в ходе химической эволюции, и если бы жизнь на своем раннем этапе существовала только в форме одного вида организмов, то первичный бульон был бы достаточно быстро исчерпан.

Однако благодаря тенденции к приобретению большого разнообразия свойств, и в первую очередь, к возникновению способности синтезировать органические вещества из неорганических соединений с использованием солнечного света, этого не произошло.

В начале следующего этапа образуются биологические мембраны-органеллы, ответственные за форму, структуру, активность клетки (Рис. 9).

Рисунок 9. Мембранные органеллы - эндоплазматическая сеть (ЭПС), аппарат Гольджи, митохондрии, лизосомы, пластиды

Биологические мембраны построены из агрегатов белков и липидов, способных отграничить органическое вещество от среды и служить защитной молекулярной оболочкой. Предполагается, что образование мембран могло начаться еще в процессе формирования коацерватов. Но для перехода от коацерватов к живой материи были необходимы не только мембраны, но и катализаторы химических процессов -- ферменты или энзимы. Отбор коацерватов усиливал накопление белковоподобных полимеров, ответственных за ускорение химических реакций. Результаты отбора фиксировались в строении нуклеиновых кислот. Система успешно работающих последовательностей нуклеотидов в ДНК усовершенствовалась именно путем отбора. Возникновение самоорганизации зависело как от исходных химических предпосылок, так и от конкретных условий земной среды. Самоорганизация возникла как реакция на определенные условия. При самоорганизации отсеивалось множество различных неудачных вариантов, до тех пор, пока основные черты строения нуклеиновых кислот и белков не достигли оптимального соотношения с точки зрения естественного отбора.

Благодаря предбиологическому отбору самих систем, а не только отдельных молекул, системы приобрели способность совершенствовать свою организацию. Это был уже следующий уровень биохимической эволюции, который обеспечивал возрастание их информационных возможностей. На последнем этапе эволюции обособленных органических систем сформировался генетический код (Рис.10). После образования генетического кода эволюция развивается вариациями. Чем дальше она продвигается во времени, тем многочисленнее и сложнее вариации.

Рисунок 10. Генетический код в виде таблицы и графического рисунка

Однажды возникнув, жизнь стала развиваться быстрыми темпами показывая ускорение эволюции во времени. Так, развитие от первичных пробионтов до аэробных форм потребовало около 3 млрд лет, тогда как для становления человека потребовалось около 3 млн лет.

Влияние токсикантов на личиночное развитие озерной лягушки

В последние годы во всём мире сельскохозяйственной продукции, выращенной без применения пестицидов, отдаётся большое предпочтение. В практику сельского хозяйства внедряются многочисленные безъядные препараты, способные заменить пестициды...

Генетически модифицированные организмы. Принципы получения, применение

Гетеротрофные организмы. Окисление органических веществ (дыхание) для энергетического обеспечения жизнедеятельности

Гетеротрофные организмы, гетеротрофы, организмы, использующие для своего питания готовые органические соединения (в отличие от автотрофных организмов...

Гигиена воды

Использование типичных кишечных организмов в качестве индикаторов фекального загрязнения (а не самих патогенных агентов) является общепризнанным принципом мониторинга и оценки микробиологической безопасности водоснабжения...

Жизнь на Марсе и спутниках Юпитера

Первые утверждения о возможности жизни на Марсе относятся к середине XVII века, когда впервые были обнаружены и опознаны полярные шапки Марса; в конце XVIII века Уильямом Гершелем было доказано сезонное уменьшение...

Эпоха великих открытий и изобретений, отметившая начало нового периода истории человечества, произвела революцию и в естественных науках. Открытие новых стран принесло сведения об огромном количестве физических фактов, неизвестных ранее...

История развития метеорологии как науки

Путешественники и мореплаватели древности уже весьма давно обратили внимание на различие климатов тех или других стран, которые им довелось посетить. Климатология, таким образом, в течение веков шла рука об руку с географией...

Концепции современного естествознания

Современная космология возникла в начале ХХ в. после создания релятивистской теории тяготения. Первая релятивистская модель, основанная на новой теории тяготения и претендующая на описание всей Вселенной, была построена А. Эйнштейном в 1917 г...

Основные проблемы генетики и роль воспроизводства в развитии живогов развитии живого

Развитие генной инженерии создало принципиально новую основу для конструирования последовательностей ДНК, нужную исследователям...

Первым представителем рода Homo многие исследователи считают Homo habilis - Человека умелого, а также Homo rudolfensis Человека рудольфского...

Основные этапы эволюции приматов

В 1959 году рядом с костными остатками Зинджантропа бойсова, впоследствии отнесенного к массивным австралопитекам, Лики обнаружил грубые каменные орудия. Искусственность обработки гальки не вызывала сомнений...

Особенности биологии и экологии Аphroditiformia Баренцева моря

Чешуйчатые многощетинковые черви с давних пор привлекают внимание исследователей. Уже Линней в десятом издании своей Systema naturae (1758) выделил в качестве самостоятельного рода Aphrodita aculeata...

Цветные озера мира

Итак, в предыдущем параграфе нашей работы мы убедились в том, что многие озера синего, голубого, зеленого, жёлтого, белого...

Человек как предмет естествознания и обществознания

Живые организмы не только улавливают свет и тепло солнца и луны, но и обладают различными механизмами, точно определяющими положение Солнца, реагирующими на ритм приливов, фазы луны и движение нашей планеты. Они растут и размножаются в ритме...

Еще с детства у меня на полке стоит интересная книжка об истории нашей планеты, которую читают уже мои дети. Постараюсь кратко передать то, что мне запомнилось, и расскажу, когда появились живые организмы.

Когда появились первые живые организмы

Зарождение произошло благодаря ряду благоприятных условий не позже чем 3,5 млрд. лет назад - в архейскую эру. Первые представители живого мира имели простейшее строение, однако постепенно в результате естественного отбора сложились условия для усложнения организации организмов. Это привело к появлению совершенно новых форм.


Итак, последующие периоды развития жизни выглядят следующим образом:

  • протерозой - начало существования первых примитивных многоклеточных, например, моллюсков и червей. Помимо этого в океанах развивались водоросли - предки сложноорганизованных растений;
  • палеозой - это время разлива морей и значительных изменений в очертаниях суши, что привело к частичному вымиранию большей части животных и растений;
  • мезозой - новый виток в развитии жизни, сопровождающийся возникновением массы видов с последующим прогрессивным видоизменением;
  • кайнозой - особо важный этап - появление приматов и развитие из них человека. В это время планета приобрела привычные нам очертания суши.

Как выглядели первые организмы

Первые существа представляли собой небольшие комочки белков, совершенно не защищенные от какого-либо воздействия. Большая часть погибала, однако выжившие были вынуждены приспосабливаться, что положило начало эволюции.


Несмотря на всю простоту первых организмов, они обладали важными способностями:

  • воспроизведение;
  • усвоение веществ из окружающей среды.

Можно сказать, что нам повезло - в истории нашей планеты практически отсутствовали радикальные изменения климата. В противном случае даже малое изменение температуры могло уничтожить маленькую жизнь, а значит, не появился бы человек. Первые организмы не обладали ни скелетом, ни раковинами, поэтому ученым достаточно сложно проследить историю по геологическим отложениям. Единственное, что позволяет утверждать о жизни в архее - содержание пузырьков газа в древних кристаллах.

Страница 20 из 36

Какой была древнейшая жизнь?

Наши знания о ранее живших организмах невелики. Ведь миллиарды особей, представлявших самые разные виды, исчезли, не оставив никакого следа. По оценке некоторых палеонтологов, в ископаемом состоянии до нас дошли останки только 0,01% всех видов живых организмов, населявших Землю. Среди них только те организмы, которые могли сохранить структуру своих форм путем замещения или в результате сохранности отпечатков. Все прочие виды до нас просто не дошли, и о них мы не сможем узнать ничего и никогда.

Долгое время считалось, что возраст древнейших отпечатков живых организмов, к которым относятся трилобиты и другие высокоорганизованные водные организмы, составляет 570 млн лет. Позже были найдены следы намного более древних организмов – минерализовавшихся нитчатых и округлых микроорганизмов примерно десятка различных видов, напоминающих простейшие бактерии и микроводоросли. Возраст этих останков был оценен в 3,2–3,5 млрд лет. Они были найдены в кремнистых пластах Западной Австралии. Эти организмы, видимо, имели сложную внутреннюю структуру, в них присутствовали химические элементы, соединения которых были способны осуществлять фотосинтез. Данные организмы бесконечно сложны по сравнению с самым сложным из известных органических соединений неживого (абиогенного) происхождения. Нет сомнений, что это не самые ранние формы жизни, и что существовали их более древние предшественники.

Поэтому сегодня ученые уже не сомневаются в том, что истоки жизни на Земле уходят в тот «темный» первый миллиард лет существования нашей планеты, не оставивший следа в ее геологической истории. Подтверждает эту точку зрения и тот факт, что известный биогеохими-ческий цикл углерода, связанный с фотосинтезом в биосфере, стабилизировался более 3,8 млрд лет назад. Это позволяет считать, что фотоавтотрофная биосфера существовала на нашей планете не менее 4 млрд лет назад. Но по данным цитологии и молекулярной биологии, фотоавтотрофные организмы были вторичными в процессе эволюции живого вещества. Автотрофному способу питания живых организмов должен был предшествовать гетеротрофный способ, как более простой. Автотрофные организмы, строящие свое тело за счет неорганических минеральных веществ, имеют более позднее происхождение. Об этом свидетельствуют следующие факты:

Все современные организмы обладают системами, приспособленными к использованию готовых органических веществ как исходного строительного материала для процессов биосинтеза;

Преобладающее число видов организмов в современной биосфере Земли может существовать только при постоянном снабжении готовыми органическими веществами;

У гетеротрофных организмов не встречается никаких признаков или рудиментарных остатков тех специфических ферментных комплексов и биохимических реакций, которые необходимы для автотрофного способа питания.

Таким образом, можно сделать вывод о первичности гетеротрофного способа питания. Древнейшая жизнь, вероятно, существовала в качестве гетеротрофных бактерий, получавших пищу и энергию от органического материала абиогенного происхождения, образовавшегося еще раньше, на космической стадии эволюции Земли. На этом основании начало жизни как таковой отодвигается еще дальше, за пределы каменной летописи земной коры, более чем
на 4 млрд лет назад.

Учитывая вышесказанное, нетрудно прийти к общему заключению о том, что жизнь на Земле существует примерно столько же времени, сколько существует сама планета. Именно это имел в виду В.И. Вернадский, когда говорил о вечности жизни на Земле.

Говоря о древнейших организмах на Земле, также следует отметить, что по типу своего строения они были прокариотами, возникшими вскоре после появления археклетки. В отличие от эукариотов они не имели оформленного ядра, и молекула ДНК располагалась в клетке свободно, т.е. не была отделена от цитоплазмы ядерной мембраной. Различия между прокариотами и эукариотами гораздо глубже, чем между высшими растениями и высшими животными, те и другие относятся к эукариотам. Представители прокариотов живут и сегодня. Это бактерии и сине-зеленые водоросли. Очевидно, первые организмы, жившие в очень жестких условиях первоначальной Земли, были похожи на них.

Ученые также не сомневаются в том, что древнейшие организмы Земли были анаэробными организмами, получавшими необходимую им энергию за счет дрожжевого брожения. Большинство современных организмов являются аэробными и используют кислородное дыхание (окислительные процессы), дающее им необходимое количество энергии для жизни.

Сегодня уже не вызывает сомнений, что В.И. Вернадский, предположивший, что жизнь сразу возникла в виде примитивной биосферы, был прав. Только разнообразие видов живых организмов могло обеспечить выполнение всех функций живого вещества в биосфере. Ведь жизнь является мощнейшей геологической силой, вполне сравнимой по энергетическим затратам и внешним эффектам с такими геологическими процессами, как горообразование, извержение вулканов, землетрясения и т.д. Жизнь не просто существует в окружающей ее среде, но активно эту среду формирует, преобразуя ее «под себя». Не следует забывать, что весь лик современной Земли, все ее ландшафты, все осадочные породы, метаморфические породы (граниты, гнейсы, образовав-шиеся из осадочных пород), запасы полезных ископаемых, современная атмосфера являются результатом действия живого вещества.

Эти данные позволили Вернадскому утверждать, что с самого начала биосферы входящая в нее жизнь должна была быть уже сложным телом, а не однородным веществом, так как биогеохимические функции жизни в силу своего разнообразия и сложности не могут быть связаны только с какой-то одной формой жизни. Таким образом, первичная биосфера изначально была представлена богатым функциональным разнообразием. Поскольку организмы проявляются не единично, а в массовом эффекте, первое появление жизни должно было произойти не в виде какого-то одного вида организмов, а в их совокупности. Иными словами, сразу должны были появиться первичные биоценозы. Состояли они из простейших одноклеточных организмов, так как все без исключения функции живого вещества в биосфере могут быть выполнены ими.

И, наконец, следует сказать, что первичные организмы и биосфера могли существовать только в воде. Выше мы уже говорили, что все организмы нашей планеты теснейшим образом связаны с водой. Именно связанная вода, не теряющая своих основных свойств, является важнейшим составным компонентом живых организмов и составляет 60–99,7% веса.

Именно в водах первичного океана образовался «первичный бульон». Ведь морская вода сама по себе представляет естественный раствор, содержащий все химические элементы. В ней образовались вначале простые, а затем и сложные органические соединения, среди которых были аминокислоты и нуклеотиды. В этом «первичном бульоне» и произошел скачок, давший начало жизни на Земле. Немаловажное значение для появления и дальнейшего развития жизни имела радиоактивность воды, которая тогда была в 20–30 раз большей, чем сейчас. Хотя первичные организмы были намного устойчивее к радиации, чем современные, мутации в те времена происходили намного чаще, поэтому естественный отбор шел интенсивнее, чем в наши дни.

Кроме того, не следует забывать о том, что первичная атмосфера Земли не содержала свободного кислорода, поэтому в ней отсутствовал озоновый экран, защищающий нашу планету от ультрафиолетовой радиации Солнца. В силу этих причин на суше жизнь просто не могла возникнуть, а вода служила достаточным препятствием для этих лучей.

Итак, подводя итоги, следует отметить, что первичные организмы, возникшие на Земле более 4 млрд лет назад, обладали следующими свойствами:

Они были гетеротрофными организмами, то есть питались готовыми органическими соединениями, накопленными на этапе космической эволюции Земли;

Они были прокариотами – организмами, лишенными оформленного ядра;

Они были анаэробными организмами, использующими в качестве источника энергии дрожжевое брожение;

Они появились в виде первичной биосферы, состоящей из биоценозов, включающих различные виды одноклеточных организмов;

Они появились и долгое время существовали только в водах первичного океана.



Оглавление
Живые системы.
Дидактический план
Специфика и системность живого
Основные свойства живых систем
Уровни организации живых систем
Биохимические основы жизни
Становление клеточной теории
Строение и размножение клеток
Типы клеток и организмов
Происхождение и сущность жизни
История проблемы происхождения жизни и основные гипотезы происхождения жизни

Которые включают в себя растения и животных, которые пережили десятки тысяч лет .

Однако, несмотря на их стойкость и кажущееся бессмертие, они могут вскоре исчезнуть из-за изменений климата и вмешательства человека.

Фотограф и художник Рейчел Суссман (Rachel Sussman) обошла нашу планету, посетив более 20 стран и все континенты, чтобы запечатлеть эти древние существа. Она нашла живые растения и организмы, которым более 2000 лет .

Фотограф утверждает, что все эти организмы находятся в опасности из-за растущей температуры, повышения уровня моря, окисления океанов и таяния ледяного покрова.

Все эти организмы, начиная от 5500-летнего мха в Антарктиде до 100 000-летней морской травы на дне океана, смогли сохраниться несмотря ни на что. Однако за последние 5 лет, два из них погибли.

Самые старые деревья

Так, подземный лес в ЮАР, которому 13 000 лет, был свален бульдозером, чтобы проложить новую дорогу.

А кипарис , которому 3500 лет погиб в 2012 году, когда женщина из Флориды в США, находясь под наркотическим опьянением, подожгла его.

Дерево дземонсуги или японский кедр, которому от 2000 до 7000 лет, которое выросло еще в эпоху Дземон в Японии, - это одно из старейших деревьев на острове Яку в Японии.

Баобаб Гленкое в провинции Лимпопо в ЮАР - одно из самых стойких деревьев в мире. Его обхват составлял 47 метров, пока его не раскололи две молнии в 2009 году. Его возраст составляет примерно 2000 лет.

Пандо – 80 000-летняя клональная колония тополя осинообразного в штате Юта, США, состоящая из 47 000 стволов. Это единый организм, соединенный одной подземной корневой системой.

Древние организмы

Мозговой коралл у восточного побережья острова Тобаго в Атлантическом океане размером 5,4 метра, которому 2000 лет.

Актинобактерия , которой от 400 000 до 600 000 лет, являющаяся самым древним живым организмом, находится в вечной мерзлоте Сибири и может погибнуть в случае таяния.

Самые древние растения

3000-летняя Ярета - небольшое цветковое растение (родственник петрушки), произрастающее в Южной Америке растет всего на 1,2 см в год. Эта ярета была сфотографирована в пустыне Атакама в Чили.

Антарктический мох - которому 5500 лет - на острове Мордвинова в Антарктиде, было особенно сложно найти. Последний раз его видели 25 лет назад, но с помощью современных навигационных систем и исследователей экспедиции National Geographic его удалось обнаружить.

100 000-летняя морская трава на Балеарских островах в Испании, которая состоит их древних гигантских клонов – организмов, простирающихся почти на 16 км.

Вельвичия удивительная – это растение, растущее в Намибии и Анголе в экстремальных засушливых условиях пустыни Намиб, достигающая возраста 2000 лет.

Строматолиты – многослойные структуры в Австралии, построенные микроорганизмами на мелководье, которым 2000 - 3000 лет.