Метод акустической томографии (АТ). М.Ю

АКУСТИЧЕСКАЯ ТОМОГРАФИЯ, получение изображений объектов с помощью акустических волн; один из методов звуковидения. В более общем смысле к акустической томографии относят различные методы решения обратных волновых задач акустики, представляющие собой большой раздел современной математической физики и дискретной математики.

Акустическая томография позволяет получать послойные изображения внутренней структуры объекта посредством его многократного просвечивания акустическими волнами в различных пересекающихся направлениях. Полное восстановление структуры объекта осуществляется по его проекциям. Акустическая томография называется трансмиссионной, если объект располагается между излучателем и приёмником. В отражательной акустической томографии информация о структуре объекта формируется по отражённым эхо-сигналам от различных участков объекта, расположенных на разных глубинах (дальностях). При этом излучатель и приёмник звука находятся в одной плоскости и часто бывают совмещены. Возможна также и комбинация этих двух методов.

Восстанавливаемым изображением объекта (и самим объектом исследования) могут быть пространственные распределения любых параметров среды, которые вызывают изменения распространяющихся в этой среде акустических волн, - это изменения плотности, температуры, скорости звука, коэффициент преломления и отражения звука и другие.

Методы и устройства акустической томографии широко используются при решении разнообразных задач науки и техники благодаря современным техническим возможностям генерировать и принимать акустические волны в очень широком диапазоне частот - от десятков герц до нескольких гигагерц. Устройства ультразвуковой медицинской диагностики и визуализации биологических органов, работающие в диапазоне частот от 2 до 50 МГц, позволяют получать высококачественные изображения внутренних органов и кровеносных сосудов. На основе методов акустической томографии ведутся обширные исследования возможности измерения температуры биологических органов - акустическое температурное картирование.

Акустическая томография используется также для ультразвукового неразрушающего контроля различных материалов, сплавов и конструкций (диапазон частот - от сотен килогерц до нескольких мегагерц). Акустические трансмиссионные и отражательные микроскопы, работающие в диапазоне частот от сотен мегагерц до 1-2 ГГц, позволяют получать акустические изображения с разрешением таким же, как у оптических микроскопов. Наибольшее применение они находят в биологии, так как позволяют исследовать структуру клеток «in vivo», и микроэлектронике. Акустическая томография применяется при сейсмических исследованиях земной коры; используемые при этом частоты лежат в диапазоне от десятков герц до нескольких килогерц. Акустическая томография Мирового океана позволяет осуществлять измерения пространственного распределения плотности, солёности, температуры и скорости течений в водной среде; диапазон используемых здесь частот - от десятков герц до нескольких килогерц.

Лит.: Мюллер Р. К., Кавех М., Уэйд Г. Реконструктивная томография и ее применение в ультразвуковой технике //Труды Института инженеров по электротехнике и радиоэлектронике. 1979. Т. 67. № 4; Munk W., Wunsh С. Ocean acoustic tomography: Rays and modes // Reviews of Geophysics Space Physies. 1983. Vol. 21. № 4; Hammepep Ф. Математические аспекты компьютерной томографии. М., 1990.

Одной из основных причин разрушения труб поверхностей нагрева и образования течей является наличие зон концентрации (повышенных) механических напряжений, в которых процессы коррозии, ползучести и усталости протекают наиболее интенсивно.

Для определения таких зон и предназначен метод акустической томографии (АТ) трубопроводов, разработанный Е.В. Самойловым. Он основывается на известном физическом явлении эмиссии (излучении) сигналов зонами повышенных напряжений. В соответствии с фундаментальным решением теории акустики дефекты размером несколько десятков сантиметров и более излучают сигналы в диапазоне частот от 300 до 5000 Гц - акустический диапазон.

Процесс диагностики состоит в регистрации (записи) акустических сигналов, распространяющихся по трубе. Далее сигналы фильтруются, и с помощью корреляционного анализа осуществляется определение местоположения источников излучения (дефектов) по всей длине диагностируемого участка, а также оценка их уровня.

Таким образом, метод АТ определяет зоны аномалий по совокупности уровня утонения и напряжения стенки трубопровода.

Для выяснения эффективности метода АТ компанией «ИПК Шерна» был проведен анализ результатов технической диагностики, выполненной на трубопроводах тепловых сетей в 2010-2011 гг.

Основной задачей анализа являлась проверка зависимости результатов диагностики методом АТ и остаточной толщиной стенки трубопроводов, а также взаимозависимости результатов диагностики методами БМД и АТ

Программа исследований состояла из трех основных этапов:

1. Оценка результатов ультразвуковой (УЗК) толщинометрии в зонах дефектов, выявленных по методу АТ;

2. Сопоставление результатов диагностики методом АТ с местами, где возникли аварии;

3. Сопоставление результатов диагностики, полученных методами АТ и БМД.

Результаты работы

1. Обнаруживаются ли методом АТ утонения стенок трубопроводов?

В первую очередь анализировались участки, на которых были выявлены критические дефекты по методу АТ. В выделенных местах проводился дополнительный визуально-измерительный контроль и точечная УЗК толщинометрия.

В 60-65% случаев результаты подтверждались данными УЗК толщинометрии - в зонах дефектов по методу АТ фиксировались утонения, превышающие нормативно допустимые величины. Утонение распространялось на значительной площади, характеризовалось большим слоем коррозионных отложений. Трудностей с обнаружением таких утонений не возникало.

В остальных случаях, как правило, в зонах дефектов по методу АТ при помощи метода БМД фиксировались изменения магнитного поля, подтверждающие наличие напряженно деформированного состояния металла трубопровода.

На рис. 3 показаны некоторые результаты диагностики трубопроводов тепловых сетей по методу АТ и подтвержденные впоследствии.

Так, на рис. 3а показан участок тепловой сети, на котором были зафиксированы аномалии по методу АТ. Контрольная шурфовка выявила локальное пятно коррозии в области скользящей опоры. Остаточная толщина стенки трубы составила 1,9 мм при номинальной толщине 6 мм.

На участке трубопровода теплосети (рис. 3б), на котором была выявлена аномалия по методу АТ, УЗК толщинометрия показала, что остаточная толщина стенки трубы составляет 3,1 мм при номинальной толщине 6 мм.

На участке трубопровода, показанного на рис. 3в, была обнаружена критическая аномалия по методу АТ. В дальнейшем при проведении гидравлических испытаний из-за утонения стенки образовалось место утечки теплоносителя.

Рис. 3. Аномалии на различных участках трубопроводов теплосети, зафиксированные по методу АТ и подтвержденные впоследствии: а - локальное пятно коррозии в области скользящей опоры, выявленное в ходе контрольной шурфовки, остаточная толщина стенки трубы составила 1,9 мм при номинальной толщине 6 мм; б - УЗК толщинометрия показала, что остаточная толщина стенки трубы составила 3,1 мм при номинальной толщине 6 мм; в - на момент диагностики данного участка выявлена критическая аномалия по методу АТ (при проведении гидравлических испытаний из-за утонения стенки образовалось место утечки теплоносителя).

2. Все ли утонения обнаруживаются методом АТ?

Вторым направлением стал анализ мест аварий и инцидентов как в процессе эксплуатации, так и по результатам гидравлических и тепловых испытаний трубопроводов, приведших к утечке теплоносителя.

Фокус-группа была сформирована из 210 участков общей протяженностью 30354 п м. С декабря 2010 г. по сентябрь 2011 г. на них было выявлено 41 место утечки.

По результатам диагностики методом АТ, в зону критики попало 53% выявленных мест утечек, в зону докритики - 37%. Т.е. около 90% дефектов, которые привели к возникновению течей, были выявлены методом АТ.

Результаты анализа приведены в сводной таблице.

Таблица. Результаты анализа выявленных утечек на участках трубопроводов тепловых сетей общей протяженностью 30354 п м.

Напомним, что расшифровка уровня дефектов по методу АТ, а так же определение показателя «поток отказов» изложены в (с текстом которого можно ознакомиться на сайте http://www.watersound.ru).

Приведенные показатели лучше указанных в СО 153-34.0-20.673-2009 и отражают результат использования новой версии прибора «Каскад» и программного обеспечения «Акустическая томография».

3. Как соотносятся результаты диагностики методом АТ и БМД?

На большинстве участков параллельно диагностике методом АТ проводилась диагностика бесконтактным магнитометрическим методом. Результаты анализировались и сравнивались с фактическим состоянием трубопроводов.

Наличие дефектов, выявленных в штатном режиме обработки АТ, подтверждались результатами БМД в 75% случаев. При этом оценка критичности дефектов показала совпадение результатов обоих методов в 57% случаев (рис. 4). Так, на одном из участков трубопровода (рис. 4а), на котором в ходе диагностики по методу АТ и БМД была выявлена критическая аномалия, впоследствии при проведении гидравлических испытаний из-за утонения стенки произошел разрыв. На момент проведения диагностики обоими методами на участке трубопровода, показанном на рис. 4б, были также выявлены критические аномалии. Впоследствии при проведении гидравлических испытаний на нем произошел разрыв по нижней образующей от заиливания.

Более точная оценка по методу АТ получалась в 26% случаев и в 17% случаев оценка методом БМД была точнее.

Рис. 4. Примеры дефектов на трубопроводах тепловых сетей, зафиксированные при проведении диагностики как по методу АТ, так и по методу БМД: а - участок трубопровода, на котором обоими методами выявлены критические аномалии (впоследствии при проведении гидравлических испытаний трубопровода из-за утонения стенки произошел разрыв); б - на момент проведения диагностики обоими методами в этом месте трубопровода были выявлены критические аномалии (при проведении гидравлических испытаний произошел разрыв по нижней образующей от заиливания).

Метод АТ показывает хорошие результаты при условии учета общих факторов эксплуатации трубопроводов тепловых сетей. Дополнение технической диагностики по методу АТ методом БМД повышает качество получаемых результатов.

На основе полученных этими методами диагностики данных возможно дальнейшее уже локальное использование других контактных методов неразрушающего контроля для уточнения состояния наиболее критических участков трубопровода.

Подобный подход позволяет существенно ускорить и удешевить процесс технической диагностики трубопроводов и повысить его качество.

Метод АТ основывается на известном физическом явлении- возбуждении потоком воды зон (интервалов) повышенных напряжений трубопровода на их собственных резонансных частотах. К таким зонам относятся также и интервалы, на которых имеется утонение стенки трубы за счет коррозии (внутренней и внешней). Исследования на стенде и на действующих трубопроводах показали, что дефекты размером в поперечнике несколько десятков сантиметров и более излучают сигналы в диапазоне частот от 300 до 5000 Гц - акустический диапазон. Эти сигналы передаются через жидкость к концам участка трубы, где и фиксируются акселерометрами (виброакустическими датчиками).
Основное достоинство метода- высокая достоверность результатов и экономичность, обусловленная следующими технологическими особенностями:

  • для проведения диагностирования не требуется менять режим экспдуатации трубопровода;
  • на проведение диагностирования не влияют наличие у трубопровода углов поворота и компенсаторов;
  • для проведения диагностирования достаточно получить доступ к трубопроводу в камерах или смотровых колодцах, т.е. в основной массе случаев можно обойтись без шурфов;
  • для установки датчиков требуется снимать минимум изоляции. Получить доступ к металлу трубы достаточно в пятне, по площади соответствующем размерам основания датчика. Как правило такие места без изоляции имеются в любой камере или смотровом колодце;
  • обработка данных производится автоматически.

Синхронный регистратор акустических сигналов «Акустический томограф «Каскад-3»-улучшенная версия акустического томографа, обеспечивающая синхронную запись акустических сигналов по двум каналам. Полностью отечественная разработка.
В отличие от обычных корреляционных течеискателей синхронный регистратор акустических сигналов «Акустический томограф «Каскад-3» обладает не одной, а двумя функциями:

  • при совместном использовании с ПО "Акустическая томография- Каскад" для диагностики трубопроводов горячего и холодного водоснабжения;
  • при совместном использовании с ПО "Течь" как высокочувствительный корреляционный течеискатель.

Прибор имеет:

Акустический течеискатель состоит из трех блоков:

  • двух выносных автономных регистраторов, к которым подключаются высокочувствительные датчики
  • блока задания режимов регистрации.

Томограф позволяет осуществить одновременную синхронную регистрацию акустических сигналов, распространяющихся по воде, записать «шум тока воды». Далее информация переводится компьютер и обрабатывается с помощью специальных программ.

До перевода в компьютер прибор позволяет осуществить более 80-ти записей.

Необходимая одновременность регистрации сигналов на автономных и разнесенных блоках регистрации обеспечивается высоким уровнем синхронизации в момент начала работ и высокоточными таймерами. Такая схема работы обеспечивает большую надежность работы в городских условиях чем кабельные линии связи и радиоканалы.

В функции корреляционного течеискателя прибор позволяет обнаруживать течи:

  • длина единичного участка - от 50 до 300 м;
  • точность определения местоположения течи - 1% от длины участка;
  • минимальная интенсивность утечки воды - 0,5 м3/час.

Функция прибора для диагностики технического состояния трубопровода:

  • диаметр трубопровода - более 80 мм;
  • длина единичного участка - от 40 до 300 м;
  • точность определения местоположения дефекта - 1,5% от длины участка;
  • достоверность идентификации дефекта по параметру опасности образования течи - 80%.

Метод Акустической томографии является развитием технологии корреляционного течеискания. В связи с этим оборудование для Акустической томографии также обладает функциями корреляционных течеискателей.

Для обнаружения местоположения течи с помощью корреляционных течеискателей, на концах обследуемого участка, в точках доступа (тепловые и смотровые камеры, подвалы домов, шурф и т.п), на поверхность трубы устанавливаются два виброакустических датчика, которые фиксируют звуковые сигналы, распространяющиеся по воде внутри трубы. Сигналы от датчиков передаются на блок оператора, где осуществляется автоматическая их обработка.
В ходе обработки, поступающие акустические сигналы фильтруются для выделения значимых сигналов от течи на фоне различных шумов. Далее осуществляется корреляционный анализ, позволяющий определить местоположение источника сигнала.
О местоположении течи судят по расположению максимума корреляционной функции.
Рассмотрим принцип работы корреляционных течеискателей и показатели по обнаружению и определению местоположения течи несколько подробнее.