Методы генетики. Медицинская биология Медицинское значение цитогенетического метода

Для определения изменений в хромосомном аппарате, связанных с неправильным набором Х-хромосом, часто применяют относительно простой, но довольно информативный метод исследования полового хроматина. Для этого шпателем делают легкий соскоб со слизистой внутренней поверхности щеки, который наносят на стекло. Попавшие туда слущенные клетки соответствующим образом обрабатывают и рассматривают под микроскопом. В эпителиальных клетках женщин обычно обнаруживается одно темное пятнышко - тельце Барра. У мужчин, которые имеют только одну Х-хромосому, его нет. Отсутствует тельце Барра и у женщин с синдромом Шерешевского-Тернера. При наличии в кариотипе женщины двух дополнительных хромосом (при трисомии-Х) в клетках таких телец два и т. д.

Однако диагноз хромосомного заболевания считается установленным только в случае, если проведено кариологическое обследование, то есть изучен кариотип. Определение кариотипа трудоемко и дорого.

Показаниями для кариотипирования являются:

Выявленная патология полового хроматина;
наличие у больного множественных пороков развития;
задержка психоречевого и умственного развития в сочетании с повышением числа микроаномалий;
повторные самопроизвольные аборты, мертворождения, рождение детей с пороками развития, хромосомной патологией (во всех этих случаях обследуется семейная пара, то есть обязательно муж и жена);
возраст беременной 35 лет и старше.

Однако при таком подходе оставался недифференцированным ряд сложных случаев хромосомной патологии, таких как добавочная маркерная хромосома, сложные случаи хромосомного мозаицизма (в организме больного имеется несколько клонов клеток - нормальных и аномальных). На основе классических методов дифференцированного окрашивания были разработаны микроцитогенетические методы. Они основаны на анализе хромосом на ранних стадиях их деления - прометафазе и профазе. С помощью микроцитогенетичес-ких методов удалось выявлять до 2000-3000 дискретных сегментов на хромосомах, в отличие от классического анализа, при котором выявлялось до 300-400 сегментов.
Эти методы с использованием светового микроскопа широко применяются в практике цитогенетических лабораторий и позволяют выявлять более 100 хромосомных синдромов.Методы FISH-диагностики стали широко использовать для исследования хромосомных аномалий в интерфазных ядрах, что особенно важно с практической точки зрения, так как метод экономичен и занимает мало времени. В норме, если например у пациента или плода есть дисомия по 21-й хромосоме, к ядре будут видны две флюоресцирующие цветные точки. При наличии трисомии хромосомы 21 (синдром Дауна) будут видны три точки.



Полимеразную цепную реакцию (ПЦР, PCR) изобрел в 1983 году американский ученый Кэри Мюллис . Впоследствии он получил за это изобретение Нобелевскую премию. В настоящее время ПЦР-диагностика является, пожалуй, самым точным и чувствительным методом диагностики инфекционных заболеваний.

В основе метода ПЦР лежит многократное удвоение определенного участка ДНК . В результате нарабатываются количества ДНК , достаточные для визуальной детекции. Также, этим методом проводят диагностику вирусных инфекций, таких как гепатиты, ВИЧ и др. Чувствительность метода значительно превосходит таковую у иммунохомических и микробиологических методов, а принцип метода позволяет диагностировать наличие инфекций со значительной антигенной изменчивостью.

Специфичность ПЦР при использовании технологии PCR даже для всех вирусных, хламидийных, микоплазменных, уреаплазменных и большинства других бактериальных инфекций достигает 100%. Метод ПЦР позволяет выявлять даже единичные клетки бактерий или вирусов. ПЦР-диагностика обнаруживает наличие возбудителей инфекционных заболеваний в тех случаях, когда другими методами (иммунологическими, бактериологическими, микроскопическими) это сделать невозможно.

Для определения генетического дефекта нужно знать, какой из генов затронут и где расположен этот ген. Мощным инструментом для определения пораженных генов и скрининга популяции людей на наличие измененного гена считается анализ полиморфизма длины рестрикционных фрагментов (ПДРФ). Широкое использование различных рестрикционных эндонуклеаз для анализа хромосомной ДНК выявило огромную вариабельность генома человека. Даже небольшие изменения в кодирующих и регуляторных областях структурных генов могут привести к прекращению синтеза определённого белка или к потере его функции в организме человека, что, как правило, сказывается на фенотипе пациента. Однако приблизительно 90% генома человека состоит из некодирующих последовательностей, которые более изменчивы и содержат множество так называемых нейтральных мутаций, или полиморфизмов, и не имеют фенотипического выражения. Такие полиморфные участки (локусы) используются в диагностике наследственных заболеваний в качестве генетических маркёров. Полиморфные локусы присутствуют во всех хромосомах и сцеплены с определённым участком

гена. Определив локализацию полиморфного локуса, можно установить, с каким геном связана мутация, вызвавшая заболевание у пациента.

Для выделения полиморфных участков ДНК применяются бактериальные ферменты - рестриктазы, продуктом которых являются сайты рестрикции. Спонтанные мутации, возникающие в полиморфных сайтах, делают их резистентными или, наоборот, чувствительными к действию специфичной рестриктазы.

Мутационная изменчивость в сайтах рестрикции может быть обнаружена по изменению длины рестрикцированных фрагментов ДНК, путём разделения их с использованием электрофореза и последующей гибридизации со специфическими ДНК-зондами. При отсутствии рестрикции в полиморфном сайте на электрофореграммах будет выявляться один крупный фрагмент, а при её наличии будет присутствовать меньший по размеру фрагмент. Наличие или отсутствие сайта рестрикции в тождественных ло-кусах гомологичных хромосом позволяет достаточно надёжно маркировать мутантный и нормальный ген и проследить его передачу потомству. Таким образом, при исследовании ДНК пациентов, в обеих хромосомах которых присутствует сайт рестрикции в полиморфной области, на электрофоре-грамме будут выявляться короткие фрагменты ДНК. У пациентов, гомозиготных по мутации, изменяющей полиморфный сайт рестрикции, будут выявляться фрагменты большей длины, а у гетерозиготных - короткие и длинные фрагменты.

Основа метода – микроскопическое изучение хромосомы. Цитологические исследования стали широко использоваться с начала 20-гг. ХХ в . для изучения морфологии хромосом, культивирования лейкоцитов для получения метафазных пластинок .

Развитие современной цитогенетики человека связано с именами цитологов Д.Тио и А.Левана. В 1956 г. они первыми установили, что у человека 46 хромосом , что положило начало широкому изучению митотических и мейотических хромосом человека.

В 1959 г. французские ученые Д.Лежен, Р.Тюрпен и М. Готье установили хромосомную природу болезни Дауна. В последующие годы были описаны многие другие хромосомные синдромы, часто встречающиеся у человека. Цитогенетика стала важнейшим разделом практической медицины. В настоящее время цитогенетический метод применяется для диагностики хромосомных болезней, составление генетических карт хромосом, изучения мутационного процесса и других проблем генетики человека.

В 1960 г. в г. Денвере была разработана первая Международная классификация хромосом человека. В ее основу легли размеры хромосом и положение первичной перетяжки – центромеры. Все хромосомы по форме разделены на метоцентрические, субметацентрические и акроцентрические и подразделены на 7 групп, обозначенных латинскими буквами А, В, С, D, E, F, G. Каждая пара хромосом была наделена порядковым номером от 1 до 22, выделены отдельно и поименованы латинскими буквами – Х и У половые хромосомы.

В 1971 г. на Пражской конференции генетиков в дополнении к Денверской классификации были представлены методы дифференциальной окраски хромосом, благодаря которым каждая хромосома приобретает свой неповторимый рисунок, что помогает точной идентификации.

Основные сведения о морфологии хромосом человека получены при изучении их в метафазах митоза и профазе – метафазе мейоза. При этом важно, количество делящихся клеток, было высоким. Важнейшие цитогенетические работы выполнены на лимфоцитах переферической крови, поскольку культивирование лимфоцитов в течение 2-3 суток в присутствии фитогемагглютинина позволяет получить метофазные пластинки для хромосомного анализа.

Цитогенетическому анализу подвергают однослойные метафазные пластинки с раздельно лежащими хромосомами. Для этого делящиеся клетки обрабатывают кольхицином и некоторыми химическими веществами.

Важным этапом цитогенетического анализа является окраска полученных препаратов. Ее проводят простыми дифференциальными и флуоресцентными методами.

Успехи молекулярной цитогенетики человека позволяют разработать новые методы изучения хромосом. Так, следует отметить метод флуоресцентной гибридизации, который дает возможность исследовать широкий круг вопросов: от локализации гена до расшифровки сложных перестроек между несколькими хромосомами.

Таким образом, соединение цитогенетических и молекулярно – генетических методов в генетике человека делает почти неограниченными возможности диагностики хромосомных аномалий.


Метод позволяет идентифицировать кариотип (особенность строения и число хромосом), путем записи кариограммы. Цитогенетическое исследование проводится у пробанда, его родителей, родственников или плода при подозрении на хромосомный синдром либо другое хромосомное нарушение.

Для определения кариотипа используют как прямые, так и непрямые методы исследования. В первом случае материал, взятый из костного мозга, лимфатических узлов, эмбриональных тканей, хориона, клеток амниотической жидкости или других тканей, изучают сразу же после получения. Однако прямой метод информативен только тогда, когда в материале имеется достаточное количество метафаз митоза, так как только в этой фазе хромосомы приобретают присущие им особенности строения и возможна их точная идентификация. В настоящее время широко применяются непрямые методы исследования.

Метод приготовления метафазных пластин. Взятую культуру (лимфоциты периферической крови и др.) помещают в питательную среду для культивирования. В норме в периферической крови не наблюдается митоза лимфоцитов, поэтому используют препараты (фитогемагглютинин), стимулирующие иммунологическую трансформацию лимфоцитов и их деление. Вторым этапом является остановка митотического деления клетки на стадии метафазы. Достигается это путем добавления в культуру тканей за 2-3 часа до окончания культивирования препаратов колхицин или колцимед. На третьем этапе, используя гипотонический раствор хлорида кальция или цитрат натрия, добиваются гипотонизации клеток, в результате чего клетка набухает, ядерная оболочка разрывается, межхромосомные связи рвутся, и хромосомы свободно плавают в цитоплазме. Далее полученная культура фиксируется смесью метанола и уксусной кислоты, центрифугируется и меняется фиксатор. Суспензия с фиксатором наносится на чистое предметное стекло, где метафазная пластинка расправляется и в ее пределах располагаются отдельно лежащие хромосомы. По мере высыхания фиксатора, клетка прочно прикрепляется к стеклу. Таким образом, независимо от культуры клеток, из которых были получены метафазные пластинки общий принцип получения препаратов следующий: накопление метафаз, гипотонизация, фиксация, раскапывание на предметное стекло.

Окраска препарата. Окраска препаратов является следующей стадией после получения метафазных пластин и делится на простые, дифференцированные и флюоресцентные. Каждая из видов окрашивания применяется для выявления только определенных изменений кариотипа. При простой окраске (метод окраски по Гимзе), возможно лишь групповая идентификация хромосом, поэтому данный метод используется для ориентировочного определения числовых аномалий кариотипа. Простая окраска широко применяется для изучения хромосомного мутагенеза при проверке факторов окружающей среды на мутантность. Краситель Гимзы окрашивает все хромосомы равномерно по всей длине, контурируя при этом центромеру, спутники и вторичные перетяжки. Дифференциальное окрашивание обусловлено способностью к избирательному окрашиванию по длине и обеспечивается сравнительно простыми температурно-солевыми воздействиями на фиксированные хромосомы. При этом выявляется структурная дифференцировка хромосом по длине, выражающееся в виде чередования эу- и гетерохроматических районов (темные и светлые), которые специфичны для каждой хромосомы, соответствующего плеча и района. Наиболее часто используется G-окраска. При этом хромосомы предварительно обрабатываются протеазой или солевым раствором. Для изучения мутационного процесса у человека широко используется метод дифференциальной окраски сестринских хроматид, основанный на способности включатся в последовательность репликации хромосомы аналога тимидина-5-бромдезоксиуридина. Участки хромосомы, включившие этот аналог, окрашиваются плохо, поэтому используя этот метод можно идентифицировать любую хромосому или хромосомную перестройку.

Исследование полового хроматина. Метод определения полового хроматина быстрее и проще, чем исследование набора хромосом (кариотипа), поэтому он применяется в качестве одного из скрининг-тестов при массовых обследованиях населения. В норме в клетках женского организма при определенных способах окраски вблизи ядерной мембраны образуется интенсивно окрашиваемое тельце - половой хроматин, или тельце Барра, которое образуется одной, неактивной Х-хромосомой. Другая Х-хромосома в клетках женского организма является активной. У мужчин имеется лишь одна Х-хромосома, и она всегда активна, поэтому в ядрах клеток мужского организма половой хроматин не определяется. Для исследования полового хроматина Х обычно берут соскоб со слизистой полости рта. Наиболее распространен экспресс-метод окраски по Сандерсу с использованием 2% раствора уксуснокислого ацетоорсеина с последующей иммерсионной микроскопией. Кроме того, в зрелых нейтрофилах крови выявляется еще и так называемая барабанная палочка, причем телец хроматина и барабанных палочек на единицу меньше числа Х-хромосом. В нейтрофилах у мужчин выявляются также околоядерные образования в виде «ниточек» и «волосков». Исчезновение у женщин неактивной Х-хромосомы ведет к отсутствию полового хроматина. Появление у мужчины дополнительной Х-хромосомы приводит к формированию тельца полового хроматина.

Показания для цитогенетического обследования больного:

  • 1) множественные пороки развития (с вовлечением трех и более систем); наиболее постоянные нарушения - пороки рзвития головного мозга, опорно-двигательной системы, сердца и мочеполовой системы;
  • 2) умственная отсталость в сочетании с нарушениями физического развития, дисплазиями, гипогенитализмом;
  • 3) стойкое первичное бесплодие у мужчин и у женщин при исключении гинекологической и урологической патологии;
  • 4) привычное невынашивание беременности, особенно на ранних стадиях;
  • 5) нарушение полового развития (гипогонадизм, половые инверсии);
  • 6) небольшая масса ребенка, рожденного при доношенной беременности.

Применение цитогенетического метода в клинической генетике обусловило развитие нового направления - клинической цитогенетики, которая позволяет:

  • - установить происхождение структурно перестроенных хромосом и их точную классификацию;
  • - выделить синдромы, обусловленные дисбалансом по участкам индивидуальных хромосом;
  • - накапливать сведения об изменениях хромосом в опухолевых клетках, у больных с наследственными заболеваниями крови и т.д.

Цитогенетическое исследование - это микроскопический анализ хромосом, результаты которого весьма важны для постановки диагноза, классификации, лечения и научного исследования заболеваний системы крови, прежде всего - онкогематологических. Значение цитогенетических методов для диагноза и лечения определяется доступностью опухолевых клеток для кариотипирования и их гетерогенностью, а с научной точки зрения - возможностью изучения изменений в структуре и функции генетических локусов, ассоциированных со злокачественной трансформацией.

Морфология хромосом сильно варьирует во время клеточного цикла. Для микроскопического анализа хромосомы должны быть визуализированы как дискретные структуры. Наилучшим образом это достигается на стадии прометафазы митоза, когда каждая хромосома видна как две идентичные хроматиды, и особенно на стадии метафазы, когда хромосомы максимально конденсированы и располагаются в одной плоскости в центре клетки отдельно одна от другой.
Нормальные клетки человека содержат 22 пары аутосом и одну пару половых : две Х-хромосомы у женщин и по одной копии половых хромосом (X и Y) у мужчин.

Для цитогенетического анализа лейкозов , миелодиспластических синдромов и хронических миелопролиферативных заболеваний исследуют клетки костного мозга. При невозможности их получения может быть исследована кровь (если она содержит бласты). Цитогенетический анализ лимфом выполняется в клетках ткани лимфатического узла. Культивирование клеток из опухоли повышает митотический индекс (пропорцию клеток, находящихся в фазе митоза) и способствует пролиферации злокачественных клеток.

Сравнительное кариотипирование нормальных клеток проводят в Т-лимфоцитах периферической крови, которые предварительно культивируют в среде с митогеном растительного происхождения - фитогемагглютинином.

Окрашивание хромосом в гематологии

В конце 1960-х годов была разработана методология дифференциального окрашивания метафазных хромосом , а в 1971 г. создана номенклатура хромосомных сегментов, позволяющая точно описывать хромосомные аномалии. Позднее были внедрены методики окрашивания менее конденсированных и, соответственно, более длинных профазных и прометафазных хромосом, которые обладают более высоким разрешением, так как позволяют визуализацию 500-2000 сегментов (метафазное окрашивание визуализирует только 300 сегментов).

Достаточно большое количество профазных и прометафазных клеток для анализа получают путем синхронизации клеточного цикла, культивируя клетки в среде, содержащей антиметаболит (например, метотрексат), который ингибирует синтез ДНК. Подавление синтеза ДНК останавливает клеточный цикл в интерфазе. Затем клетки переносят в среду без метотрексата, обогащенную тимидином, где они одновременно входят в фазу митоза. Обработка клеточной культуры колхицином останавливает митоз одновременно во всех клетках на стадии профазы или прометафазы.

Первая стойкая хромосомная аномалия при злокачественной опухоли человека была выявлена в 1960 г. у больных хроническим миелолейкозом и получила название филадельфийской хромосомы (Ph), по имени города, в котором было сделано это открытие. Применение технологии хромосомного окрашивания позволило выявить множество хромосомных аномалий, большая часть которых встречается при онкогематологических заболеваниях. Некоторые красители окрашивают различные участки хромосом с вариабельной интенсивностью в зависимости от структуры хроматина в этих участках, их нуклеотидного и белкового состава.

В результате такого окрашивания получают уникальный паттерн чередования светлых и темных поперечных полос, специфичный для каждой хромосомы.

В настоящее время существуют несколько видов дифференциального окрашивания хромосом . При Q-окрашивании акрихин-ипритом (quinacrine) или акрихиндигидрохлоридом выявляется особый тип флюоресценции каждой хромосомы с образованием Q-исчерченности (Q-banding) - поперечных флюоресцентных полос, называемых Q-полосами (Q.-bands). Это позволяет идентифицировать отдельные хромосомы. Анализ Q-полос выполняют с помощью флюоресцентного микроскопа.

Схема анализа ДНК методом FISH

При окрашивании по Гимзе (G-banding) хромосомы приобретают вид серии темных и светлых полос или бэндов (bands). G-окрашивание применяется чаще, чем Q-окрашивание, так как анализ выполняется с помощью светового микроскопа, а G-полосы, в отличие от Q-полос, не выцветают со временем. Наиболее широко применяется методика, называемая GTG-окрашиванием (G bands by trypsin using Giemsa), с предварительной обработкой трипсином.

R-бэндинг (обработка хромосом горячим спиртовым раствором перед окрашиванием по Гимзе) выявляет полосы, которые обратны G-полосам и называются R-полосами (reverse of G bands).

Помимо Q-, G- и R-окрашивания , позволяющих выявлять полосы вдоль всей длины хромосомы, существуют методики, специализированные для исследования отдельных хромосомных структур, в том числе конститутивного гетерохроматина (С-окрашивание - от англ. constitutive), теломерного района (Т-окрашивание) и района ядрышкового организатора (NOR-окрашивание - от англ. nucleolus organizing region). Размеры и положение С-полос уникальны для каждой хромосомы, но преимущественно они включают центромерныи район и используются при исследовании хромосомных транслокаций, вовлекающих центромерные районы хромосом.

Цитогенетический анализ опухолевых клеток затруднен в связи с неясной морфологией хромосом и слабой различимостью полос. Если в исследование взяты наиболее удобные для анализа метафазные пластинки, образец может быть ошибочно охарактеризован как цитогенетически нормальный.

С развитием методов рекомбинантной ДНК стало возможным использование гибридизации in situ для определения местоположения на хромосомах или в клеточном ядре любой ДНК- и РНК-последовательности. С ее помощью можно изучать и диагностировать онкологические и наследственные генетические болезни. Молекулярная гибридизация in situ является важным инструментом цитогенетических исследований, позволяет выявлять хромосомные перестройки, идентифицировать маркерные хромосомы, проводить быстрое кариотипирование клеточных линий. Важно, что подобный анализ можно проводить не только на метафазных хромосомах, но и на интерфазных ядрах.

Разрешающая способность «интерфазной цитогенетики» на два порядка выше, чем классической цитогенетики.

Несмотря на многоцелевое использование молекулярной гибридизации ДНК-ДНК (РНК) in situ , все модификации метода выполняются в соответствии с общими принципами. Существуют несколько вариантов, которые включают в себя несколько этапов: подготовка и мечение ДНК (РНК)-зонда, приготовление препаратов хромосом, собственно гибридизация, детекция гибридных молекул.

В 1980-х годах цитогенетическая методология обогатилась молекулярно-цитогенетическим методом, называемым флюоресцентной гибридизацией in situ (fluorescence in situ hybridization , FISH ), который вскоре стал наиболее популярным. Суть этого метода заключается в гибридизации ДНК-зондов к специфическим последовательностям ДНК, меченных флюорохромами, с метафазными или интерфазными хромосомами, которые визуализируются флюоресцентной микроскопией. Определение нуклеотидной последовательности методом FISH выполняется непрямым способом, путем гибридизации синтетического олигонуклеотида (зонда) с анализируемой ДНК (называемой также матричной ДНК или ДНК-мишенью).

Если зонд синтезирован с включением флюоресцентных или антигенных молекул, которые распознаются флюоресцирующими антителами , становится возможной визуализация относительного положения зонда на анализируемой ДНК.

Флюорохром может быть связан с ДНК ковалентно (прямое мечение) или посредством иммуноцитохимических реакций, когда ДНК-зонд метят гаптеном (биотин, дигоксигенин), а флюорохром связан с алкалоидом авидином (стрептавидином), обладающим сильным сродством к биотину (или с антителами против биотина или дигоксигенина). При использовании гаптенов возможна амплификация флюоресцентного сигнала с помощью биотинилированных антител к авидину и вторичных антител, специфичных предыдущему слою антител и окрашенных флюорохромом.

Для амплификации флюоресцентного сигнала применяется метод «иммунных сэндвичей». Например, на препарат, изображенный на схеме, наносят биотинилированные антитела к авидину, а затем снова комплекс авидин-флюоресцеин. При необходимости цикл может быть повторен. Антитела в свою очередь выявляются с помощью ферментативного (например, авидинпероксидазы) или флюоресцентного детектора.

Метод FISH предназначен для выявления:
1) гибридных клеток;
2) транслокаций и других, в том числе числовых, хромосомных аномалий;
3) меченых хромосом в интерфазных и метафазных клетках.

Высококонтрастная флюоресцентная гибридизация достигается благодаря использованию флюоресцентных красителей разного цвета. С помощью двуцветной FISH выявляются тонкие структурные аномалии, например хромосомные транслокации, в том числе и неразличимые при дифференциальном окрашивании.

В настоящее время возможно выполнение многоцветной гибридизации in situ для одновременного окрашивания всех хромосом в сложном кариотипе с множественными числовыми и структурными аномалиями. Комбинация разных модифицирующих агентов и флюорохромных красителей позволяет одновременно выявлять несколько последовательностей ДНК в одном ядре (флюоресцеин дает зеленую флюоресценцию, техасский красный и родамин - красную, гидроксикумарин - голубую и т. д.). Сочетание пяти флюорохромов в разных пропорциях и компьютерный анализ изображений позволяет одновременно окрасить разным цветом все хромосомы и визуализировать 27 различных ДНК-зондов, которые служат уникальной меткой для каждой хромосомы. Эта методика называется многоцветной FISH (multicolor, или multiplex, fluorescence in situ hybridization, M-FISH).

Значение цитогенетических методов неодинаково при разных онкогематологических заболеваниях. Миелоидные клетки обычно легко кариотипируются при дифференциальном окрашивании, и FISH лишь подтверждает результаты рутинной цитогенетики. Лимфоидные клетки у больных хроническим лимфолейкозом и, особенно, множественной миеломой кариотипировать значительно сложнее из-за низкого уровня пролиферации (даже при использовании В-клеточных митогенов). В этом случае FISH демонстрирует в несколько раз большую частоту анеуплоидии, чем обычные цитогенетические методики.

Клиническое значение цитогенетических исследований

Диагноз . Потомство клетки с приобретенной цитогенетической аномалией может иметь пролиферативное преимущество и давать начало клону - клеточной популяции, происходящей от одной клетки-предшественницы. Обнаружение клональных хромосомных аномалий способствует постановке диагноза клонального поражения костного мозга. Например, цитогенетический анализ позволяет установить диагноз миелодиспластического синдрома у пациентов с умеренной цитопенией или при наличии в аспирате костного мозга минимально выраженных качественных нарушений гемопоэза.

Цитогенетические исследования - это совокупность методов исследования связи между явлением наследственности и строением клеток (особенно структур клеточного ядра). Цитогенетические исследования играют важную роль в медико-биологических работах, так как с их помощью выясняют генетические особенности, изменчивость (см.), происхождение и эволюцию живых существ.

Объектом цитогенетических исследований служат в первую очередь (см.) человека, животных и растений, имеющие специфические для каждого вида свойства (количество, размеры, особенности строения) и образующие характерный для данного организма кариотип. Поэтому методы цитогенетических исследований используются при построении естественных классификаций живых организмов.

В цитогенетических исследованиях уделяют особое внимание полиплоидии - явлению, связанному с кратным увеличением числа хромосом, сопровождающимся появлением целого ряда новых свойств (увеличение общих размеров, вкусовых качеств фруктов и овощей, жизнестойкости у растений и т. д.). Разработка проблемы полиплоидии имеет практическое значение в , в селекции растений и животных.

С помощью цитогенетических исследований обнаруживают изменения в хромосомах, передающиеся потомству и определенным образом влияющие на признаки организма. Изучают вредные хромосомные перестройки, утрату, выпадение или добавление отдельных хромосом или участков хромосом. Они позволяют выявить участие наследственного фактора в возникновении ряда заболеваний человека (см. Наследственные болезни), в том числе нарушений развития, предрасположенность к злокачественным новообразованиям и т. д. Цитогенетические исследования привели к правильному пониманию природы .

С помощью цитогенетических исследований установлено, например, что в ядрах клеток различных тканей и органов, но только у самок, присутствуют интенсивно окрашиваемые специальными красителями образования, так называемые тельца Барра или (см.). Оказалось, что половой хроматин встречается у многих животных и у человека. Открытие полового хроматина позволило определять человека на клеточном уровне (это имеет особое значение для судебной медицины), диагностировать пол на ранних стадиях беременности и решать ряд других вопросов медицинской практики.

См. также Генетика, Наследственность.

Цитогенетические исследования - микроскопическое изучение особых структур клетки, обусловливающих процессы наследования и развития.

Цитогенетические исследования получают все более широкое применение в клинической медицине. Наиболее простым, быстрым и доступным методом цитогенетического анализа является исследование полового хроматина.

Половой хроматин представляет собой хроматиновое тельце, которое отсутствует у особей мужского пола, а у особей женского пола прилежит к ядерной оболочке.

Таким образом, это тельце может служить цитологическим признаком пола, в связи с чем оно и получило название половой хроматин.

Размеры телец полового хроматина у человека колеблются от 0,7 до 1,2 мк, форма их может варьировать (рис. 1 - 3). У женщин половой хроматин определяется в среднем в 40% ядер (рис. 4). Он образуется одной из Х-хромосом женского кариотипа, находящейся в неактивном, спирализованном состоянии. Половой хроматин можно определить в клетках слизистой оболочки полости рта, влагалища и мочеиспускательного канала, а также в клетках крови, биопсированной кожи, культивируемой ткани взрослого, в эмбриональной ткани, нервных клетках.

Наиболее простая и удобная методика определения полового хроматина в клетках слизистой оболочки полости рта предложена Тири (Н. Thiries) и усовершенствована Сандерсоном (S. Sanderson). Для исследования берут соскоб со слизистой оболочки щек. Материал переносят на предметное стекло, высушивают на воздухе и в течение 10 мин. фиксируют в метиловом спирте. Окраску производят каплей свежефильтрованного ацетоорсеина (1 г синтетического орсеина растворяют в 45 мл ледяной уксусной кислоты, подогревают до кипения и после охлаждения фильтруют, к 45 мл профильтрованного раствора добавляют 55 мл дистиллированной воды и эту смесь фильтруют повторно). При микроскопировании иммерсионным объективом подсчитывают количество хроматинположительных ядер на 100 клеток.

Исследование полового хроматина применяют для цитологического определения пола, быстрой и ранней диагностики заболеваний, связанных с аберрациями половых хромосом (в частности, синдромов Клайнфелтера, Шерешевского-Тернера и др.), характеристики ряда физиологических процессов (в частности, менструального цикла), исследования общих и локальных закономерностей ряда патологических процессов и прежде всего злокачественных новообразований, выяснения действия некоторых терапевтических методов и средств (антибиотиков, кортикостероидов, цитостатических препаратов).

К методам цитогенетического анализа относится также изучение кариотипа (см.).

Установлено, что хромосомный набор человека состоит из 46 хромосом (23 пары), двух половых хромосом (XX - у женщины, XY - у мужчины), 22 пар аутосом (рис. 5) и отличается высоким постоянством в клетках человеческого организма.

В зависимости от длины хромосом и расположения их центромер весь хромосомный набор делится на 7 групп - А, В, С, D, Е, F, G.

Для изучения хромосомного набора человека (кариотипа) используют методы культивирования лейкоцитов периферической крови, фибробластов эмбриональной ткани, культивирование клеток кожи и прямой метод определения хромосомного набора в клетках костного мозга.

Впервые об успешном культивировании неделящихся лейкоцитов сообщил советский биолог Г. К. Хрущев (1935). В 1958 г. Ноуэлл (P. Nowell) предложил использовать для стимуляции деления лейкоцитов вещество, выделенное из бобовых растений,- фитогемагглютинин (ФГА). Культивирование лейкоцитов осуществляют по модифицированной и усовершенствованной методике. 10 мл венозной крови, взятой стерильно в пробирку с гепарином (1 мл ампулированного гепарина разводят в 20 раз раствором Хенкса), помещают на 30-40 мин. в холодильник. Затем стерильно (в боксе) в кровь добавляют 0,7 - 1 мл 10% раствора желатины для ускорения осаждения эритроцитов. После отстаивания крови плазму отсасывают и помещают в стерильную колбу. К плазме добавляют среду 199 либо среду Игла из расчета 1,5 мл среды на 1 мл плазмы.

Для стимуляции митотической активности лейкоцитов в смесь добавляют 0,2 мл ФГА. Полученную клеточную суспензию помещают в термостат при t° 37° на 72 часа. За 2-3 часа до проведения фиксации на каждый флакон (суспензия для культивирования разливается по 1,5-2 мл в стерильные флаконы типа пенициллиновых) добавляют по 0,5-0,75 мкг колхицина (рабочий раствор колхицина: 10 мкг на 1 мл дистиллированной воды) и продолжают культивирование. В дальнейшем культуры центрифугируют в течение 5 мин. при 800 об/мин. Надосадочную жидкость сливают, к ней добавляют 3-5 мл 0,95% раствора цитрата натрия, нагретого до t°37°, который вызывает набухание клеток. В гипотоническом растворе клетки находятся от 15 до 30 мин., после чего надосадочную жидкость сливают, к осадку осторожно добавляют фиксатор (3 ч. абсолютного спирта + 1 ч. ледяной уксусной кислоты), ставят в холодильник на 15 мин., затем повторно центрифугируют и меняют фиксатор. На обезжиренные предметные стекла наносят 1-2 капли клеточной суспензии и высушивают над пламенем либо поджигают фиксатор («жженые» препараты). Препараты красят полихромной синью Унны, ацетоорсеином или по Романовскому. Хромосомный набор изучают при помощи иммерсионной микроскопии в 100 метафазных пластинах.

Для изучения хромосом используют также прямой метод определения хромосомного набора в клетках костного мозга: 1 мл свежеаспирированного пунктата костного мозга помещают в колбу с 30 мл среды 199 и 3 мл раствора колхицина (10 мкг на 1 мл). Содержимое колбы осторожно взбалтывают для равномерного распределения клеток, а затем центрифугируют. Надосадочную жидкость сливают и к осадку добавляют 10 мл 0,95% раствора цитрата натрия, подогретого до t° 37°. Клетки тщательно ресуспензируют и помещают в термостат при t° 37° на 40-45 мин. После этого вновь проводят центрифугирование, надосадочную жидкость сливают и к осадку добавляют свежеприготовленный фиксатор, состоящий из 3 ч. метилового спирта и 1 ч. концентрированной уксусной кислоты. Через 10 мин. осадок ресуспензируют и оставляют в фиксаторе еще на 20 мин. при комнатной температуре, затем центрифугируют в течение 10 мин., вновь меняют фиксатор и приготовляют препараты тем же способом, как при фиксации культуры лейкоцитов крови.

Исследование кариотипа может быть с успехом использовано для диагностики хромосомных заболеваний человека. За последнее время выделена целая группа хромосомных болезней, связанных с патологией как половых, так и аутосомных хромосом (см. Наследственные болезни). Помимо изменения количества хромосом, возможно нарушение их морфологии. Так, при хроническом миелоидном лейкозе наблюдается необычно малая акроцентрическая хромосома из 21-й пары. Появление анеуплоидии (увеличение или уменьшение числа хромосом, некратное гаплоидному числу хромосом) может служить прогностическим тестом для терминальной стадии лейкоза.

Цитогенетические исследования все ближе смыкаются с онкологическими. Возможно, что изменения хромосомного набора при раковых процессах можно будет использовать для их ранней диагностики. Для цитогенетических исследований используют методы кратковременных тканевых культур: метод плазменного сгустка с последующим исследованием субкультур и метод первично трипсинизированных суспензионных культур. Предпочтение следует отдать первому методу, так как второй требует большого количества ткани для получения суспензии клеток, способных к размножению.

Для создания наиболее благоприятных условий метаболизма используют плацентарную сыворотку человека, не обладающую токсичностью, 50% эмбриональный экстракт абортированных плодов человека, который готовят на среде Игла. Для закрепления кусочков на стекле и прикрепления большего числа клеток при применении суспензионных культур используют сухую человеческую плазму IV группы, разведенную перед употреблением средой Игла и плацентарной сывороткой 1:1; после внесения эксплантата добавляют эмбриональный экстракт. Культивирование проводят во флаконах Карреля (см. Культура тканей).

Рис. 1. Половой хроматин в виде овала (Х1100).
Рис. 2. Половой хроматин в виде треугольника (XI100).
Рис. 3. Половой хроматин в виде утолщения ядерной оболочки (Х1100).
Рис. 4. Хроматинотрицательное ядро у женщины (Х1100).
Рис. 5. Нормальный женский кариотип (x1100).