Особенности кругооборота воды и некоторых веществ в биосфере.

Между литосферой, гидросферой, атмосферой и живыми организмами Земли постоянно происходит обмен химическими элементами. Этот процесс имеет циклический характер: переместившись из одной сферы в другую, элементы вновь возвращаются в первоначальное состояние. Круговорот элементов имел место в течение всей истории Земли, насчитывающей 4,5 млрд. лет.

Гигантские массы химических веществ переносятся водами Мирового океана. В первую очередь это относится к растворенным газам - диоксиду углерода, кислороду, азоту. Холодная вода высоких широт растворяет газы атмосферы. Поступая с океаническими течениями в тропический пояс, она их выделяет, так как растворимость газов при нагревании уменьшается. Поглощение и выделение газов происходит также при смене теплых и холодных сезонов года.

Огромное влияние на природные циклы некоторых элементов оказало появление жизни на планете. Это, в первую очередь, относится к круговороту главных элементов органического вещества - углерода, водорода и кислорода, а также таких жизненно важных элементов как азот, сера и фосфор. Живые организмы оказывают влияние и на круговорот многих металлических элементов. Несмотря на то, что суммарная масса живых организмов Земли меньше массы земной коры в миллионы раз, растения и животные играют важнейшую роль в перемещении химических элементов.

Деятельность человека также оказывает влияние на круговорот элементов. Особенно заметным оно стало в последнее столетие. При рассмотрении химических аспектов глобальных изменений в круговоротах химических элементов следует учитывать не только изменения в природных круговоротах за счет добавления или удаления присутствующих в них химических веществ в результате обычных циклических или вызванных человеком воздействий, но и поступление в окружающую среду химических веществ, ранее не существовавших в природе. Рассмотрим один из наиболее важных примеров циклического перемещения и миграции химических элементов.

Углерод - основной элемент жизни - содержится в атмосфере в виде диоксида углерода. В океане и пресных водах Земли углерод находится в двух главных формах: в составе органического вещества и в составе взаимосвязанных неорганических частиц: гидрокарбонат-иона - , карбонат иона и растворенного диоксида углерода . Большое количество углерода сосредоточено в виде органических соединений в животных и растениях. Много "неживого" органического вещества имеется в почве. Углерод литосферы содержится также в карбонатных минералах (известняк, доломит, мел, мрамор). Часть углерода входит в состав нефти, каменного угля и природного газа.

Связующим звеном в природном круговороте углерода является диоксид углерода (рис. 1).



Упрощенная схема глобального цикла углерода. Числа в рамках отражают размеры резервуаров в миллиардах тонн - гигатоннах (Гт). Стрелки показывают потоки, а связанные с ними числа выражены в Гт/год.

Самыми крупными резервуарами углерода являются морские отложения и осадочные породы на суше. Однако большая часть этого вещества не взаимодействует с атмосферой, а подвергается круговороту через твердую часть Земли в геологических временных масштабах. Поэтому эти резервуары играют лишь второстепенную роль в сравнительно быстром цикле углерода, протекающем с участием атмосферы. Следующим по величине резервуаром является морская вода. Но и здесь глубинная часть океанов, где содержится основное количество углерода, не взаимодействует с атмосферой так быстро, как их поверхность. Самыми маленькими резервуарами являются биосфера суши и атмосфера. Именно небольшой размер последнего резервуара делает его чувствительным даже к незначительным изменениям процентного содержания углерода в других (больших) резервуарах, например, при сжигании ископаемых топлив.

Современный глобальный цикл углерода состоит из двух меньших циклов. Первый из них заключается в связывании диоксида углерода в ходе фотосинтеза и новом образовании его в процессе жизнедеятельности растений и животных, а также при разложении органических остатков. Второй цикл обусловлен взаимодействием диоксида углерода атмосферы и природных вод:

В последнее столетие в углеродный цикл существенные изменения внесла хозяйственная деятельность человека. Сжигание ископаемого топлива - угля, нефти и газа - привело к увеличению поступления диоксида углерода в атмосферу. Это не очень сильно влияет на распределение масс углерода между оболочками Земли, но может иметь серьезные последствия из-за усиления парникового эффекта.

Природные ресурсы

Каждое животное или растение является звеном в цепях питания своей экосистемы, обменивается веществами с неживой природой, а следовательно - включено в круговорот веществ биосферы. Химические элементы в составе различных соединений циркулируют между живыми организмами, атмосферой и почвой, гидросферой и литосферой. Начавшись в одних экосистемах, круговорот заканчивается в других. Вся биомасса планеты участвует в круговороте веществ, это придает биосфере целостность и устойчивость. Живые организмы существенно влияют на перемещение и превращение многих соединений. В биологическом круговороте задействованы прежде всего элементы, входящие в состав органических веществ: С, N, S, Р, О, Н, а также ряд металлов (Fe, Ca, Mg и др.).

Циркуляция соединений осуществляется в основном за счет энергии Солнца. Зеленые растения, аккумулируя его энергию и потребляя из почвы минеральные соединения, синтезируют органические вещества. Органика распространяется в биосфере по цепям питания. Редуценты разрушают растительную и животную органику до минеральных соединений, замыкая биологический цикл.

В верхних слоях океана и на поверхности суши преобладает образование органического вещества, а в почве и глубинах моря - его минерализация. Миграция птиц, рыб, насекомых способствует и переносу накопленных ими элементов. Существенно на круговорот элементов влияет деятельность человека.

Круговорот воды. Нагреваемые солнцем воды планеты испаряются. Выпадающая живительным дождем влага возвращается обратно в океан в качестве речных вод или очищенных фильтрацией грунтовых вод, перенося огромное количество неорганических и органических соединений. Живые организмы активно участвуют в круговороте воды, являющейся необходимым компонентом процессов метаболизма (о биологической роли воды см. § 1). На суше большая часть вод испаряется растениями, уменьшая водосток и препятствуя эрозии почвы. Поэтому при вырубке лесов поверхностный сток увеличивается сразу в несколько раз и вызывает интенсивный размыв почвенного покрова. Лес замедляет таяние снега, и талая вода, постепенно стекая, хорошо увлажняет поля. Уровень грунтовых вод повышается, а весенние наводнения редко бывают разрушительными.

Влажные тропические леса смягчают жаркий экваториальный климат, задерживая и постепенно испаряя воду (это явление называют транспирацией). Вырубка тропических лесов вызывает в близлежащих районах катастрофические засухи. Хищническое уничтожение лесов способно превратить в пустыни целые страны, как это уже случилось в северной Африке. Круговорот воды, регулируемый растительностью, - важнейшее условие поддержания жизни на Земле.

Круговорот углерода. В процессе фотосинтеза растения поглощают углерод в составе углекислого газа. Продуцируемые ими органические вещества содержат значительное количество углерода, распространяющегося в экосистеме по цепям питания. В процессе дыхания организмы выделяют углекислый газ. Органические остатки в море и на суше минерализуются редуцентами. Один из продуктов минерализации - углекислый газ - возвращается в атмосферу, замыкая цикл.

В течение 6-8 лет живые существа пропускают через себя весь углерод атмосферы. Ежегодно в процесс фотосинтеза вовлекается до 50 млрд. т углерода. Часть его накапливается в почве и на дне океанов - в скелетах водорослей и моллюсков, коралловых рифах. Существенный запас углерода содержится в составе осадочных пород. На основе ископаемых растений и планктонных организмов сформированы месторождения каменного угля, органогенного известняка и торфа, природного газа и, возможно, нефти (некоторые ученые предполагают абиогенное происхождение нефти). Природное топливо при сгорании пополняет количество атмосферного углерода. Ежегодно содержание углерода в атмосфере увеличивается на 3 млрд. т и может нарушить устойчивость биосферы. Если темп прироста сохранится, то интенсивное таяние полярных льдов, вызванное парниковым эффектом углекислого газа, приведет к затоплению обширных прибрежных территорий по всему миру.

Круговорот азота. Значение азота для живых организмов определяется в основном его содержанием в белках и нуклеиновых кислотах. Азот, как и углерод, входит в состав органических соединений, круговороты этих элементов тесно связаны. Главный источник азота - атмосферный воздух. Благодаря фиксации живыми организмами азот поступает из воздуха в почву и воду. Ежегодно синезеленые связывают около 25 кг/га азота. Эффективно фиксируют азот и клубеньковые бактерии.

Растения поглощают соединения азота из почвы и синтезируют органические вещества. Органика распространяется по цепям питания вплоть до редуцентов, разлагающих белки с выделением аммиака, преобразующегося далее другими бактериями до нитритов и нитратов. Аналогичная циркуляция азота происходит между организмами бентоса и планктона. Денитрифицирующие бактерии восстанавливают азот до свободных молекул, возвращающихся в атмосферу. Небольшое количество азота фиксируется в виде оксидов молниевыми разрядами и попадает в почву с атмосферными осадками, а также поступает от вулканической деятельности, компенсируя убыль в глубоководные отложения. Азот поступает в почву также в виде удобрений после промышленной фиксации из воздуха атмосферы.

Круговорот азота - более замкнутый цикл, нежели круговорот углерода. Лишь незначительное его количество вымывается реками или уходит в атмосферу, покидая границы экосистем.

Круговорот серы. Сера входит в состав ряда аминокислот и белков. Соединения серы поступают в круговорот в основном в виде сульфидов из продуктов выветривания пород суши и морского дна. Ряд микроорганизмов (например, хемосинтезирующие бактерии) способны переводить сульфиды в доступную для растений форму - сульфаты. Растения и животные отмирают, минерализация их остатков редуцентами возвращает соединения серы в почву. Так, серобактерии окисляют до сульфатов образующийся при разложении белков сероводород. Сульфаты способствуют переводу труднорастворимых соединений фосфора в растворимые. Количество минеральных соединений, доступных растениям, возрастает, улучшаются условия для их питания.

Ресурсы серосодержащих полезных ископаемых весьма значительны, а избыток этого элемента в атмосфере, приводящий к кислотным дождям и нарушающий процессы фотосинтеза вблизи промышленных предприятий, уже беспокоит ученых. Количество серы в атмосфере существенно увеличивается при сжигании природного топлива.

Круговорот фосфора. Этот элемент содержится в ряде жизненно важных молекул. Его круговорот начинается вымыванием фосфорсодержащих соединений из горных пород и поступлением их в почву. Часть фосфора уносится в реки и моря, другая - усваивается растениями. Биогенный круговорот фосфора происходит по общей схеме: продуцентыконсументыредуценты.

Значительные количества фосфора вносятся на поля с удобрениями. Около 60 тыс. т фосфора ежегодно возвращается на материк с выловом рыбы. В белковом рационе человека рыба составляет от 20% до 80%, некоторые малоценные сорта рыб перерабатываются на удобрения, богатые полезными элементами, в т. ч. фосфором.

Ежегодная добыча фосфорсодержащих пород составляет 1-2 млн. т. Ресурсы фосфорсодержащих пород пока велики, но в будущем человечеству, вероятно, придется решать проблему возвращения фосфора в биогенный круговорот.

Природные ресурсы. Возможность нашей жизни, ее условия находятся в зависимости от природных ресурсов. Биологические и особенно пищевые ресурсы служат материальной основой жизни. Минеральные и энергетические ресурсы, включаясь в производство, служат основой стабильного уровня жизни.

Ресурсы принято делить на неисчерпаемые и исчерпаемые. Энергия Солнца и ветра, атмосферный воздух и вода практически неисчерпаемы. Однако при современном неэкологичном промышленном производстве воду и воздух можно лишь условно считать неисчерпаемыми ресурсами. Во многих районах в связи с загрязнением возник дефицит чистой воды и воздуха. Для того, чтобы эти ресурсы оставались неисчерпаемыми, необходимо бережное отношение к природе.

Исчерпаемые ресурсы делят на невозобновляемые и возобновляемые. К невозобновляемым относятся утраченные виды животных и растений, большинство полезных ископаемых. Возобновляемыми ресурсами являются древесина, промысловые животные и рыбы, растения, а также некоторые полезные ископаемые, например, торф.

Интенсивно потребляя природные ресурсы, человеку необходимо соблюдать природное равновесие. Сбалансированность ресурсов в круговороте веществ определяет устойчивость биосферы.

1. Каким образом живые организмы участвуют в круговороте веществ? Где преобладает образование органического вещества, где происходит его минерализация?
2. Опишите круговорот воды. Какова роль лесов в его регуляции?
3. Как происходит круговорот углерода? Можно ли исключить из круговорота растения?
4. В чем особенности круговоротов азота, серы, фосфора?
5. Какие ресурсы требуют особенно бережного отношения?

Хозяйственная деятельность человека и глобальные экологические проблемы

Около 10-15% поверхности суши распахано, 25% представляют собой полностью или частично окультуренные пастбища. Если к этому добавить 3-5% поверхности, занятой транспортной сетью, промышленностью, зданиями и сооружениями, и около 1-2% территории Земли, поврежденной разработками полезных ископаемых, то окажется, что почти половина поверхности суши видоизменена деятельностью человека.

С развитием цивилизации ее негативный вклад в биосферные круговороты увеличивается. На каждую тонну промышленной продукции приходится 20-50 т отходов. На каждого человека в крупных городах приходится более 1 т пищевого и бытового мусора в год. Дисгармония в биосфере отражается как на растительном и животном мире, так и на здоровье людей. Множество загрязняющих веществ, попадая в почву, атмосферу и водоемы, накапливаются в тканях растений и животных и через пищевые цепи заражают организм человека. Токсичные соединения способны заметно увеличивать количество мутаций, приводящих к врожденным и наследственным отклонениям. Сопоставление данных по различным регионам планеты привело ученых к выводу, что не менее 80% раковых заболеваний вызваны химическим загрязнением среды.

Загрязнение атмосферы в основном происходит от сжигания природного топлива транспортом, коммунальным хозяйством, промышленностью. В городах на долю транспорта приходится более 60% загрязняющих веществ, на предприятия теплоэнергетики - около 15%, и 25% выбросов приходятся на промышленные и строительные предприятия. Основные загрязнители воздуха - оксиды серы, азота, метан и угарный газ. У растений загрязнение атмосферы ведет к серьезным нарушениям метаболизма и различным заболеваниям. От сернистого газа разрушается хлорофилл и затрудняется развитие пыльцевых зерен, высыхают и опадают листья и хвоя. Не менее пагубно воздействие и других загрязняющих веществ.

Ежегодно в атмосферу выбрасывается около 100 млн. т оксидов серы, более 70 млн. т оксидов азота, 180 млн. т угарного газа.

Кислотные осадки . Высокая концентрация загрязняющих веществ приводит к образованию кислотных дождей и смога. Кислотные осадки (дождь, снег, туман) образуются при растворении в воде диоксидов серы и азота (SО2, NО2). Кислые осадки вымывают из листьев растений белки, аминокислоты, сахар, калий, повреждают верхний защитный слой. Растворы кислот вносят в почву кислую среду, вызывают вымывание гумуса, снижая количество жизненно важных солей кальция, калия, магния. Кислотные почвы бедны микроорганизмами, в них замедляется скорость деструкции опада, сокращение численности редуцентов нарушает сбалансированность экосистем.

Кислотные дожди уничтожают громадные экосистемы, вызывают гибель растений и лесов, превращают озера и реки в безжизненные водоемы. В США за последние 100 лет кислотные дожди стали в 40 раз более кислыми, около 200 озер остались без рыбы, в Швеции 20% озер находятся в катастрофическом состоянии. Более 70% шведских кислых дождей вызвано выбросами других стран. Около 20% кислых дождей в Европе - следствие выбросов окислов серы в Северной Америке.

Смог. В нижних слоях атмосферы под действием солнечного света загрязняющие вещества образуют крайне вредные для живых организмов соединения, наблюдаемые как туман. В больших городах количество солнечного света из-за смога уменьшается на 10-15%, ультрафиолетовых лучей - на 30%.

Озоновые дыры . В атмосфере на высоте 20-25 км расположено большое количество молекул озона (О3), поглощающего жесткую часть солнечного спектра, губительную для живых организмов. В 1982 г. ученые обнаружили дыру в озоновом слое над Антарктидой, в 1987 г. - над Северным полюсом. Ученые опасаются, не возникнут ли дыры и над обитаемой частью земного шара. Это может привести к всплеску заболеваний раком кожи, катарактой, к нарушениям лесных и морских экосистем.

По каким же причинам возникают озоновые дыры? Ученые предполагают, что главной из них является накопление фреонов (хлорфторуглеродов СFСl3, СF2Сl2), используемых при изготовлении аэрозолей и в холодильной промышленности. Эти газы сохраняются в атмосфере десятилетиями. Попадая в стратосферу, они разлагаются солнечной радиацией с образованием атомов хлора, катализирующих превращение озона в кислород.

Парниковый эффект . Некоторые атмосферные газы хорошо пропускают видимый свет и поглощают тепловое излучение планеты, вызывая общее потепление. Парниковый эффект на 50% обусловлен присутствием углекислого газа, 18% вносит метан и 14% фреоны. Увеличение количества СО2 в атмосфере вызвано в основном сжиганием топлива и сведением лесов под распашку, а также интенсивной минерализацией гумуса обширных пахотных земель.

Метан поступает в атмосферу из болотистых районов, от переувлажненных почв рисовых плантаций, от многочисленных скотоводческих хозяйств, при вскрытии угольных месторождений. Метан - один из основных продуктов метаболизма жвачных, придающий характерный острый запах их выделениям. В ХХ в. количество СО2 в атмосфере выросло на 25%, а метана - на 100%, что повысило среднюю температуру на 0,5°С. При такой тенденции в ближайшие 50 лет температура может подняться на 3-5°С. Расчеты показывают, что таяние полярных льдов приведет к повышению уровня мирового океана на 0,5-1,5 м. В Египте окажутся затопленными 20-30% плодородных земель дельты Нила, под угрозой окажутся прибрежные селения и крупные города Китая, Индии и США. Общее количество осадков увеличится, но в центральных частях материков климат может стать более засушливым и пагубным для урожая, прежде всего зерновых и риса (для 60% населения Азии рис - основной продукт).

Таким образом, даже небольшие изменения в газовом составе атмосферы опасны для природных экосистем.

Нарушения в гидросфере . Крупномасштабные ошибки в сельскохозяйственной деятельности привели к разрушению многих природных экосистем. Отвод стоков Амударьи и Сырдарьи под орошение хлопковых плантаций стал причиной катастрофического падения уровня Аральского моря. Пыльные бури в его высыхающем ложе вызвали засоление почв на огромных территориях. Деградация природных экосистем Приаралья - результат недостатка воды и опустынивания.

Хищнический забор воды на орошение, на нужды промышленного производства (на выплавку 1 т никеля уходит 4000 м 3 воды, на производство 1 т бумаги - 100 м 3 , 1 т синтетического волокна - до 5000 м 3), уничтожение водоохранных лесов и осушение болот привели к массовому исчезновению рек. Если в 1785 г. в районе Калуги было более 1 млн. речек, то в 1990 г. их осталось всего 200!

Экосистемы рек очень чувствительны и уязвимы. Огромное количество удобрений, смываемых с полей, отходов животноводства и канализационных вод вызывает рост концентрации в водоемах соединений азота и фосфора. В водных экосистемах начинается бурное развитие синезеленых водорослей, вытесняющих необходимые зоопланктону диатомовые водоросли. Рыбы гибнут от голода. Синезеленые накапливаются на дне и гниют (разлагаются бактериями), отравляя воду и истощая запасы кислорода. Живописные водоемы превращаются в дурно пахнущие, покрытые тиной и пеной сточные канавы. Если вода не отравлена, то на каждом квадратном метре насчитывается до 15 моллюсков, каждый из которых за сутки тщательно фильтрует до 50 л воды. Эти существа гибнут с поступлением в водоемы посторонних химических веществ. Самыми устойчивыми к загрязнению воды являются пиявки, асцидии и личинки стрекоз.

Составные части биосферы взаимосвязаны круговоротом веществ и пищевыми цепями, нарушение одной экосистемы вызывает смещение экологического равновесия в других. Когда в северном полушарии насекомых стали травить ДДТ, вскоре значительные количества этого яда обнаружили в организмах антарктических пингвинов, получивших его с рыбой. Многие ядохимикаты очень устойчивы и способны длительное время накапливаться в тканях организмов, многократно умножаясь на каждом следующем пищевом уровне.

Вследствие неразумной хозяйственной деятельности человека природные водоемы оказались отравленными солями тяжелых металлов - ртути, свинца, а также меди и цинка. Эти соединения накапливаются в иле, в тканях рыб, а через пищевые цепи попадают в организм человека, вызывая тяжелейшие отравления. Содержание свинца в тканях организмов жителей индустриальных районов США за последние 100 лет выросло в 50-1000 раз. Даже в ледниках Памиро-Алтая содержание ртути увеличилось в пять раз. Ничтожнейшие количества многих химикатов нарушают поведение рыб, омаров и других водных видов. На этих признаках основана регистрация минимальных концентраций меди, ртути, кадмия, фенолов. Один из самых распространенных пестицидов - токсафен - при содержании 1:108 (1 часть на 100 млн.) вызывает гибель некоторых рыб (например, гамбузий), необратимые изменения в печени и жабрах сомов и форели.

Утечка нефти при добыче и транспортировке приводит к образованию на поверхности рек и морей нефтяной пленки (более 40% всей нефти добывается на шельфе). По наблюдениям со спутников, загрязнено около 10-15% поверхности мирового океана. Нефть с поверхности постепенно испаряется и разлагается бактериями, но это происходит медленно. Гибнет множество водных птиц, уничтожается планктон, а вслед за ним и его основные потребители - обитатели морских глубин. "Бентическая пустыня" в Балтийском море охватывает более 20% поверхности дна. Нефть препятствует обогащению вод кислородом. В результате нарушается газовый баланс гидросферы с атмосферой и смещается экологическое равновесие.

Интенсивная добыча рыбы и моллюсков истощила многие шельфовые экосистемы.

Разрушение почв . Обширная распашка степей в нашей стране и США стала причиной пыльных бурь, унесших миллионы гектаров плодороднейших земель. Для воссоздания сантиметрового слоя почвы природе требуется 100-300 лет! В настоящее время около 1/3 обрабатываемых угодий утратили 50% плодородного слоя из-за различных видов эрозии. Ежегодно из-за эрозии теряется около 3 млн. га, по причине опустынивания - 2 млн. га, вследствие отравления химическими веществами - 2 млн. га.

Почвы многих сельскохозяйственных районов оказались засоленными. В Приаралье это произошло в результате пыльных соляных бурь, в других районах - от неправильной организации стока оросительных вод. Избыток воды вызывает подъем к поверхности богатых солями грунтовых вод. Интенсивное испарение производит засоление верхних горизонтов почвы, и через несколько лет на таких землях становится невозможным выращивать сельскохозяйственные культуры. Засоление почвы еще 4000 лет назад привело к упадку сельского хозяйства в Месопотамии. Ирригационные воды сначала обеспечивали там хорошие урожаи, но вследствие интенсивного испарения вызвали химическую деградацию почвы.

Большая проблема связана и с физической деградацией обрабатываемых земель - сильным уплотнением тяжелыми сельскохозяйственными машинами.

Утрата природного разнообразия видов. Значительная часть животных и растений обитает в лесных биоценозах. Если 1500 лет назад леса занимали 7 млрд. га планеты, то сегодня - не более 4 млрд. га. Особенно варварски идет вырубка тропических лесов, в которых сосредоточено около 80% всех видов растений планеты. Тропические леса расположены в основном в слаборазвитых странах, для которых продажа древесины - один из основных источников дохода. Леса в тропиках сократились до 7% территории суши, и если темпы их уничтожения сохранятся, то к 2030 г. от них останется лишь четверть.

В Центральной России практически уничтожены хвойные леса, интенсивно вырубаются самые ценные и наиболее доступные для техники лесные массивы Сибири и Дальнего Востока. С уничтожением лесов нарушается климат, деградируют почвы, умирают реки, исчезают животные и растения.

Уникальный лес в бассейне Амазонки вырубают на 2% в год. В Гаити еще 20 лет назад леса занимали 80% территории, сегодня - только 9%. Из-за хищнической вырубки каждый год безвозвратно исчезают тысячи видов растений, на грани исчезновения находятся около 20 тыс. видов цветковых, 300 видов млекопитающих, 350 видов птиц. С исчезновением каждого вида растений вымирает от 5 до 35 видов животных (в основном, беспозвоночных), экологически с ним связанных.

Ежегодно в Европе уничтожается около 300 млн. мигрирующих и зимующих птиц, 55 млн. особей болотной, полевой и лесной дичи, в США - 2,5 млн. траурных голубей, в Греции - 3 млн. скворцов, на о. Майорка - 3,5 млн. дроздов.

С развитием сельского хозяйства почти полностью исчезли степи в Евразии. Варварски разрушаются экосистемы тундры. Во многих районах океана находятся под угрозой исчезновения коралловые рифы.

Видовое разнообразие - это не только красота, но и необходимый фактор устойчивости биосферы. Экосистемы способны противостоять внешним биотическим, климатическим, токсическим воздействиям, если населены достаточно большим количеством разнообразных видов. В одном из исследований ученые вносили в экосистемы ядовитое вещество фенол. Нейтрализуют фенол только бактерии, но оказалось, что нейтрализация эффективнее совершается в экосистеме с большим разнообразием организмов. Исчезновение видов - это невосполнимая потеря для биосферы и реальная опасность для выживания человечества.

Разнообразие растительности расширяет возможности для поддержания здоровья. Огромное количество лекарств сегодня производится из дикорастущих растений. Мы еще не знаем всех полезных качеств растений, не можем предположить, какие из них нам понадобятся. В 1960 г. выживали только 20% детей, больных лейкемией, сегодня - 80%, т.к. в одном из лесных тропических растений Мадагаскара ученым удалось найти активные вещества для борьбы с этой болезнью. Теряя видовое разнообразие, мы теряем свое будущее.

В настоящее время существует международная программа по сохранению редких и исчезающих видов флоры и фауны.

Радиоактивное заражение атмосферы. Радиоактивные частицы в атмосферных потоках быстро распространяются на большие расстояния, заражая почву и водоемы, растения и животных. Через четыре месяца после каждого ядерного взрыва на атоллах Тихого океана радиоактивный стронций обнаруживался в молоке европейских женщин.

Радиоактивные изотопы особенно опасны тем, что способны замещать в организмах другие элементы. Стронций-90 по свойствам близок к кальцию и накапливается в костях, цезий-137 сходен с калием и концентрируется в мышцах. Особенно много радиоактивных элементов накапливается в организмах консументов, потреблявших зараженные растения и животных. Так, в организмах эскимосов Аляски, питавшихся мясом оленей, было обнаружено чрезвычайно много цезия-137. Олени питаются лишайниками, накапливающими за свою продолжительную жизнь значительные количества радиоактивных изотопов. Их содержание в лишайниках в тысячи раз превышает почвенное. В тканях оленей это количество возрастает еще втрое, а в организмах эскимосов радиоактивного цезия оказывается вдвое больше, чем у оленей. Смертность населения некоторых арктических районов от злокачественных образований заметно выше средней.

Особенно долго сохраняется радиация после аварий на АЭС. Во время чернобыльской катастрофы радиоактивные частицы поднялись на высоту 6 км. Атмосферными потоками они в первый же день распространились над Украиной и Белоруссией. Затем облако разделилось, одна его часть на второй-четвертый день оказалась над Польшей и Швецией, к концу недели пересекла Европу и на 10-й день достигла Турции, Ливана и Сирии. Другая часть облака за неделю пересекла Сибирь, на 12-й день оказалась над Японией, и на 18-й день после аварии радиоактивное облако посетило Северную Америку.

Изучение биосферных процессов помогает понять важность каждой частички сотворенного мира и осознать болезненное состояние разума современного человека. На Западе, а теперь и в России преобладает стремление к комфортному американскому образу жизни как наивысшему благу. Что же такое Америка глазами эколога? Это 5,5% населения планеты, 40% потребления природных ресурсов и 70% вредных выбросов! Такова цена роскошной жизни за счет других народов и будущего планеты.

Пришло время трезво отнестись к желаниям все больших материальных благ и понять, что стратегия индустриально-потребительского общества ведет нас к катастрофе. Если в ближайшие десятилетия мы не перейдем к правильным духовным ориентирам, то нашим потомкам достанется проблема выживания. Мы должны вспомнить о бережном отношении друг к другу и к нашей родной планете - бесценному богатству, вверенному нам Творцом.

1. Опишите четыре основных следствия загрязнения атмосферы. Как распространяются загрязняющие вещества?
2. Чем опасно ирригационное земледелие?
3. Каковы негативные последствия избытка удобрений?
4. Почему ученые считают опасным для человека сокращение видового многообразия экосистем?
5. Является ли загрязнение окружающей среды следствием бездуховности нашей цивилизации? С чего необходимо начать оздоровление планеты?


© Все права защищены

Круговороты химических элементов

Химические элементы путешествуют, как и люди. Однако средств передвижения у химических элементов больше, потому что они используют транспорт, созданный и природой, и человеком. В природе химические элементы передвигаются в земной коре вместе с магматическими расплавами, по земле - в виде обломков горных пород, с глубинными и поверхностными водами, с живыми организмами.

Химическим элементам помогают путешествовать люди, отправляя их с продуктами питания (зерном, фруктами, овощами), с сырьем для промышленности (железной рудой, древесиной, углем) по железным дорогам, на самолетах и морских судах.

На пути химических элементов могут возникнуть препятствия - геохимические барьеры, заставляющие их накапливаться в земной коре, почвах, илах и живых организмах. Химические элементы всегда путешествуют вместе.

Круговорот азота в природе

При гниении органических веществ значительная часть содержащегося в них азота превращается в аммиак, который под влиянием живущих в почве и трифицирующих бактерий окисляется затем в азотную кислоту. Последняя, вступая в реакцию с находящимися в почве карбонатами, например, с карбонатом кальция СаСОз, образует нитраты

2НNОз + СаСОз = Са(NОз) 2 + СО 2 +Н 2 О

Некоторая же часть азота всегда выделяется при гниении в свободном виде в атмосферу. Свободный азот выделяется также при горении органических веществ, при сжигании дров, каменного угля, торфа. Кроме того, существуют бактерии, которые при недостаточном доступе воздуха могут отнимать кислород от нитратов, разрушая их с выделением свободного азота. Деятельность этих денитрифицирующих бактерий приводит к тому, что часть азота из доступной для зеленых растений формы (нитраты) переходят в недоступную (свободный азот). Таким образом, далеко не весь азот, входивший в состав погибших растений, возвращается обратно в почву, часть его постепенно выделяется в свободном виде.

Непрерывная убыль минеральных азотных соединений давно должна была бы привести к полному прекращению жизни на Земле, если бы в природе не существовали процессы, возмещающие потери азота. К таким процессам относятся, прежде всего, происходящие в атмосфере электрические разряды, при которых всегда образуется некоторое количество оксидов азота; последние с водой дают азотную кислоту, превращающуюся в почве в нитраты. Другим источником пополнения азотных соединений почвы является жизнедеятельность так называемых азотобактерий, способных усваивать атмосферный азот. Некоторые из этих бактерий поселяются на корнях растений из семейства бобовых, вызывая образование характерных вздутий - «клубеньков», почему они и получили название клубеньковых бактерий. Усваивая атмосферный азот, клубеньковые бактерии перерабатывают его в азотные соединения, а растения, в свою очередь, превращают последние в белки и другие сложные вещества.

Таким образом, в природе совершается непрерывный круговорот азота. Однако ежегодно с урожаем с полей убираются наиболее богатые белками части растений, например, зерно. Поэтому в почву необходимо вносить удобрения, возмещающие убыль в ней важнейших элементов питания растений.

На поверхности земного шара постоянно происходят процессы окисления (дыхание растительных и животных организмов, гниение), в результате чего свободный кислород связывается с другими элементами, входящими в состав органических веществ, и образует разнообразные соединения, например углекислый газ CO 2 , воду Н 2 О.

Круговорот кислорода в природе

Но количество свободного кислорода в атмосфере остаётся неизменным. Это происходит потому, что природу протекают процессы, обратные окислению, в результате которых образуется свободный кислород. Действительно, как показал русский ученый К.А. Тимирязев, в зеленых листьях растений под действием солнечных лучей и хлорофилла из воды и углекислого газа СО 2 образуются органические вещества и кислород О 2 , выделяющийся в атмосферу.

Освобожденный кислород снова затрачивается при окислении органических веществ. Образующиеся при этом окислении вода и углекислый газ вновь превращаются в зеленых листьях на солнечном свету в органические вещества и свободный кислород и т. д. Так осуществляется круговорот кислорода в природе, т. е. попеременное вхождение его в соединения и выделение из них.

Круговорот фосфора

Растения могут произрастать, если в почве содержатся фосфаты. Но этих солей даже в наиболее плодородных почвах содержится мало. Там, где человек не вмешивается в жизнь природы, извлеченный растениями из почвы фосфор вновь возвращается в почву при гниении остатков растений и животных. Так осуществляется круговорот фосфора в природе.

Круговорот углерода

Подробно другим элементам, атомы углерода в природе не находятся постоянно в одних и тех же соединениях, а переходят из одних веществ в другие.

До 17 млрд. т углерода двуокиси углерода ежегодно переходит из атмосферы в состав органических веществ растений. Много углерода, перешедшего в состав растений, усваивается организмами животных и человека с растительной пищей. Часть ассимилированного растениями углерода отлагается в земле в виде торфа, угля и сланцев.

Кроме поглощения двуокиси углерода растениями, много ее связывается также в результате взаимодействия с карбонатами земной коры, которые при этом переходят в бикарбонаты.

Наряду с процессами связывания двуокиси углерода идут процессы выделения ее в атмосферу. В огромном количестве двуокись углерода образуется при дыхании животных, человека и растений. Выделение двуокиси углерода в атмосферу происходит также при сжигании различных видов топлива. Наконец, атмосфера пополняется двуокисью углерода благодаря деятельности вулканов, выделению газов из трещин земли и водных источников. Так происходит в природе непрерывный круговорот углерода.

Углерод в природе содержится в различных осадочных горных породах: меле, известняке. Большое количество углерода входит в состав растительной биомассы. Содержание в атмосфере углекислого газа сравнительно невелико – менее 1 % (точнее 0,03 % по объему), но именно этот углерод приковывает сегодня внимание ученых.

Углекислый газ необходим растениям для фотосинтеза. В процессе фотосинтеза образуются органические вещества, служащие источником питания для всех живых организмов. В то же время углекислый газ способен вызывать парниковый эффект.

Фотосинтез – основной процесс, постоянно изымающий углекислый газ из атмосферы. В настоящее время происходит сокращение площади лесов, что особенно пагубно – влажных тропических лесов. Загрязнение поверхности океана нефтепродуктами препятствует нормальному газообмену и фотосинтезу водорослей.

В то же время неуклонно растет потребление ископаемого топлива: природного газа, нефти, каменного угля, – при сжигании которого в атмосферу выбрасывается углекислый газ. Углекислый газ выделяется также при гниении органических веществ, дыхании животных и человека.

В создавшейся ситуации, важную роль в регуляции содержания CO 2 в атмосфере играют донные отложения карбоната кальция, образующиеся при отмирании мелких морских беспозвоночных. При повышении содержания в атмосфере углекислого газа, он растворяется в воде, известняк вступает с ним в реакцию с образованием гидрокарбонатов, что связывает избыток углекислоты:

CaCO 3 + CO 2 + H 2 O Ca(HCO 3) 2

Если в атмосфере возникает недостаток углекислого газа, равновесие смещается влево, гидрокарбонаты разлагаются с освобождением CO 2 .

Билет № 24

1. Аммиак: состав молекулы, химическая связь в молекуле. Физические и химические свойства аммиака.

Молекулярная формула аммиака NH 3 . Три атома водорода соединены с азотом ковалентными полярными связями(азот более электроотрицателен). В образовании связей принимают участие три неспаренных электрона азота и по одному электрону водорода. Структурная формула:
H – N – H
l
H
Аммиак – бесцветный газ с характерным резким запахом. Легче воздуха, его можно собирать в перевернутые вверх дном сосуды. Аммиак хорошо растворяется в воде (в 1 литре воды при комнатной температуре растворяется около 700 литров аммиака). При повышенном давлении аммиак легко переходит в жидкое состояние. При последующем испарении поглощается много тепла, поэтому его используют в качестве хладагента в холодильных установках.

Аммиак химически активен.

Ион аммония образуется, например, при растворении аммиака в воде:

NH 3 + H 2 O NH 4 + + OH –

Поэтому раствор аммиака обладает щелочными свойствами и окрашивает индикатор фенолфталеин в малиновый цвет.

Аммиак взаимодействует с кислотами. Если близко поднести стеклянные палочки, смоченные концентрированным раствором аммиака и концентрированной соляной кислотой, образуется «дым» из кристалликов хлорида аммония:

NH 3 + HCl = NH 4 Cl

Аммиак горит в кислороде с образованием молекулярного азота:

4NH 3 + 3O 2 = 2N 2 + 6H 2 O

В присутствии платины в качестве катализатора, азот аммиака окисляется до оксида азота (II):

4NH 3 + 5O 2 = 4NO + 6H 2 O

Эта реакция используется в производстве азотной кислоты и азотных удобрений. 10%-ный раствор аммиака в воде используется в медицине под названием «нашатырный спирт».

При нагревании аммиак разлагается (реакция обратная синтезу):

2NH 3 N 2 + 3H 2

Билет № 25

1. Источники химического загрязнения воздуха. Пагубные последствия химического загрязнения воздуха. Меры предупреждения химических загрязнений воздуха.

1) С промышленными выбросами в атмосферу ежегодно поступает более 600 млн тонн различных химических соединений. Основным источником химического загрязнения воздуха считается металлургия , в первую очередь, коксохимическое производство. В атмосферу выбрасывается большое количество дыма, содержащего сажу и газы, вызывающие у людей астму, хронический бронхит и др.

Для уменьшения выбросов необходимо устанавливать очистные сооружения. Снижать потребление металлов за счет производства изделий с меньшими затратами материалов, защиты металлических конструкций от коррозии, переработки металлолома. Металлургические цеха не должны располагаться на территории населенных пунктов.

Перспективным направлением считается разработка способов получения металлов с использованием биотехнологии.

2) Во многих регионах основным источником загрязнений является транспорт , главным образом, автомобильный. Выхлопы содержат оксиды азота, угарный газ CO, продукты неполного сгорания топлива. В городах это приводит к образованию смога, вызывает у людей заболевания дыхательных путей. Плоды, растущие около автомобильных дорог, нельзя употреблять в пищу.

Для уменьшения загрязнения воздуха вводятся новые экологические стандарты для двигателей, они оснащаются каталитическими дожигателями выхлопных газов. Запрещено производство этилúрованного бензина, содержащего свинец, который выбрасывается в атмосферу.

Очистке воздуха растениями от вредных газов способствует озеленение городов.

3) Значительное количество сернúстого газа SO 2 в атмосферу выбрасывают тепловые электростанции и котельные , работающие на каменном угле, который обычно содержит примеси серы. Оксид серы (IV) взаимодействует с водяными парами с образованием сернúстой кислоты. Выпадают кислотные дожди, разрушающие постройки из мрамора и известняка, ускоряющие коррозию металлов. Гибнут леса, в первую очередь хвойные.

Для сокращения выбросов необходимо производить очистку дымовых газов, а улавливаемые соединения серы могут быть использованы для производства серной кислоты.

4) Сжигание ископаемого топлива повышает содержание в атмосфере углекислого газа CO 2 , вызывающего парниковый эффект, что может привести к глобальному потеплению климата.

Так как зеленые растения связывают углекислый газ в процессе фотосинтеза, необходимо сохранять существующие леса и засаживать деревьями новые площади.

5) Загрязнение воздуха происходит в результате утечек и аварий на предприятиях химической промышленности (производство аммиака, кислот, полимеров и пр.).

Необходимо добиваться снижения аварийности и установки современных очистных сооружений.

6) Серьезную проблему в последние годы представляют свалки и сжигание мусора . При этом в атмосферу попадают продукты неполного сгорания полимеров (пластмасс), способные разрушать озоновый слой в атмосфере.

Необходимо производить сортировку бытовых отходов с последующим сжиганием в специальных печах, где за счет более высокой температуры достигается полное сгорание. Категорически запрещается сжигание бытового мусора на территории населенных пунктов. Особенно опасна резина и пластмассы, дым от сжигания которых является канцерогеном (вызывает развитие злокачественных опухолей). Дым от сжигания опавшей листвы содержит соединения тяжелых металлов, поглощенных зелеными насаждениями, поэтому листья не должны сжигаться в городе.

Из растительных остатков, ботвы на приусадебных участках целесообразно готовить компост, что уменьшает задымление территории и повышает плодородие почвы.

В биосфере, как и в каждой экосистеме, постоянно осуществляется круговорот углерода, азота, водорода, кислорода, фосфора, серы и других химических элементов.

Углекислый газ поглощается растениями-продуцентами и в процессе фотосинтеза преобразуется в углеводы, белки, липиды и другие органические соединения. Эти вещества с пищей используют животные-консументы. Одновременно с этим в природе происходит обратный процесс. Все живые организмы дышат, выделяя углекислый газ, который поступает в атмосферу. Мертвые растительные и животные остатки и экскременты животных разлагаются (минерализуются) микроорганизмами-редуцентами. Конечный продукт минерализации - углекислый газ - выделяется из почвы или водоемов в атмосферу. Часть углерода накапливается в почве в виде органических соединений (рис. 107).

Рис. 107. Круговорот углерода

В морской воде углерод содержится в виде угольной кислоты и ее растворимых солей, но накапливается он в форме карбоната кальция СаС0 3 (мел, известняки, кораллы). Часть углерода в виде карбонатов надолго исключается из круговорота, образуя осадки на дне водоемов. Однако с течением времени в процессах горообразования осадочные массы поднимаются на поверхность в виде горных пород. В результате химических преобразований этих пород углерод карбонатов вновь вовлекается в круговорот. Углерод поступает в атмосферу также с выхлопными газами автомашин, с дымовыми выбросами заводов и фабрик.

В процессе круговорота углерода в биосфере образуются энергетические ресурсы - нефть, каменный уголь, горючие газы, торф и древесина, которые широко используются человеком. Все эти вещества произведены фотосинтезирующими растениями за разное время. Возраст лесов - десятки и сотни лет; торфяников - тысячи лет; угля, нефти, газов - сотни миллионов лет. Следует учитывать, что древесина и торф - восполнимые ресурсы, т. е. воспроизводящиеся за относительно короткие промежутки времени, а нефть, горючий газ и уголь - ресурсы невосполнимые. Ограниченность и невосполнимость органического топлива ставят перед человеком сложную задачу овладения новыми источниками энергии - тепловой энергией земных недр, энергией ветра и океанических приливов и, разумеется, энергией Солнца.

Азот - незаменимый элемент. Он входит в состав белков и нуклеиновых кислот. Круговорот азота тесно связан с круговоротом углерода. Частично азот поступает из атмосферы благодаря образованию оксида азота (IV) из азота и кислорода под действием электрических разрядов во время гроз. Однако основная масса азота поступает в воду и почву благодаря фиксации азота воздуха свободноживущими бактериями и бактериями-симбионтами растений.

В почве и воде живут фиксаторы азота - цианобактерии. Они обогащают почву азотом, когда их отмершие клетки минерализуются. Благодаря этому в почву ежегодно поступает около 25 кг азота на гектар. Самые эффективные фиксаторы азота - клубеньковые бактерии, живущие в корнях бобовых растений (рис. 108). Азот из разнообразных источников поступает к корням растений, поглощается ими и транспортируется в стебли и листья, где в процессе биосинтеза строятся белки.

Рис. 108. Круговорот азота

Белки растений служат основой азотного питания животных. После отмирания организмов белки под действием бактерий и грибов разлагаются с выделением аммиака. Аммиак частично потребляется растениями, а частично используется бактериями-редуцентами. В результате процессов жизнедеятельности некоторых бактерий аммиак превращается в нитраты. Нитраты, как и аммонийные ионы, потребляются растениями и микроорганизмами. Часть нитратов под действием особой группы бактерий восстанавливается до элементарного азота, выделяющегося в атмосферу. Так замыкается круговорот азота в природе.

  1. Какова роль продуцентов, консументов и редуцентов в круговороте углерода?
  2. Почему перед человечеством стоит проблема овладения новыми источниками энергии?
  3. Как связаны организмы со средой в процессах круговорота азота?
  4. Что произойдет, если в круговоротах углерода и азота редуценты перестанут функционировать?