Школьная энциклопедия. Второе начало термодинамики

Второе начало термодинамики определяет направленность реальных тепловых процессов, протекающих с конечной скоростью.

Второе начало (второй закон) термодинамики имеет несколько формулировок . Например, любое действие , связанное с преобразованием энергии (то есть с переходом энергии из одной формы в другую), не может происходить без ее потери в виде тепла, рассеянного в окружающей среде . В более общем виде это означает, что процессы трансформации (превращения) энергии могут происходить самопроизвольно только при условии, что энергия переходит из концентрированной (упорядоченной) формы в рассеянную (неупорядоченную) форму.

Еще одно определение второго закона термодинамики непосредственно связано с принципом Клаузиуса : процесс, при котором не происходит никаких изменений, кроме передачи тепла от горячего тела к холодному, необратим, то есть теплота не может переходить самопроизвольно от более холодного тела к более горячему. При этом такое перераспределение энергии в системе характеризуется величиной , получившей название энтропии , которая как функция состояния термодинамической системы (функция, имеющая полный дифференциал), была впервые введена в 1865 году именно Клаузиусом. Энтропия – это мера необратимого рассеяния энергии. Энтропия тем больше, чем большее количество энергии необратимо рассеивается в виде тепла.

Таким образом, уже из этих формулировок второго закона термодинамики можно сделать вывод, что любая система , свойства которой изменяются во времени, стремится к равновесному состоянию, в котором энтропия системы принимает максимальное значение . В связи с этим второй закон термодинамики часто называют законом возрастания энтропии , а саму энтропию (как физическую величину или как физическое понятие) рассматривают в качестве меры внутренней неупорядоченности физико-химической системы .

Другими словами, энтропия функция состояния, характеризующая направление протекания самопроизвольных процессов в замкнутой термодинамической системе. В состоянии равновесия энтропия замкнутой системы достигает максимума и никакие макроскопические процессы в такой системе невозможны. Максимальная энтропия соответствует полному хаосу .

Чаще всего переход системы из одного состояния в другое характеризуют не абсолютной величиной энтропии S , а ее изменением ∆S , которое равно отношению изменения количества теплоты (сообщенного системе или отведенного от нее) к абсолютной температуре системы: ∆S = Q/T, Дж/град. Это – так называемая термодинамическая энтропия .

Кроме того, энтропия имеет и статистический смысл. При переходе из одного макросостояния в другое статистическая энтропия также возрастает, так как такой переход всегда сопровождается большим числом микросостояний, а равновесное состояние (к которому стремится система) характеризуется максимальным числом микросостояний.

В связи с понятием энтропии в термодинамике новый смысл приобретает понятие времени. В классической механике направление времени не учитывается и состояние механической системы можно определить как в прошлом, так и в будущем. В термодинамике время выступает в форме необратимого процесса возрастания энтропии в системе. То есть чем больше энтропия, тем больший временной отрезок прошла система в своем развитии.

Кроме того, для понимания физического смысла энтропии необходимо иметь в виду, что в природе существует четыре класса термодинамических систем :

а) изолированные системы или замкнутые (при переходе таких систем из одного состояния в другое не происходит переноса энергии, вещества и информации через границы системы);

б) адиабатические системы (отсутствует только теплообмен с окружающей средой);

в) закрытые системы (обмениваются с соседними системами энергией, но не веществом) (например, космический корабль);

г) открытые системы (обмениваются с окружающей средой веществом, энергией и информацией). В этих системах за счет прихода энергии извне могут возникать диссипативные структуры с гораздо меньшей энтропией.

Для открытых систем энтропия уменьшается . Последнее прежде всего касается биологических систем , то есть живых организмов, которые представляют собой открытые неравновесные системы . Такие системы характеризуются градиентами концентрации химических веществ, температуры, давлений и других физико-химических величин. Использование концепций современной, то есть неравновесной термодинамики, позволяет описать поведение открытых, то есть реальных систем. Такие системы всегда обмениваются с окружающей их средой энергией, веществом и информацией. Причем такие обменные процессы характерны не только для физических или биологических систем, но и для социально-экономических, культурно-исторических и гуманитарных систем, так как происходящие в них процессы, как правило, необратимы.

Третье начало термодинамики (третий закон термодинамики) связано с понятием«абсолютный нуль». Физический смысл этого закона, показанный в тепловой теореме В. Нернста (немецкого физика), состоит в принципиальной невозможности достижения абсолютного нуля (-273,16ºС), при котором должно прекратиться поступательное тепловое движение молекул, а энтропия перестанет зависеть от параметров физического состояния системы (в частности, от изменения тепловой энергии). Теорема Нернста относится только к термодинамически равновесным состояниям систем.

Другими словами, теореме Нернста можно дать следующую формулировку : при приближении к абсолютному нулю приращение энтропии S стремится к вполне определенному конечному пределу, не зависящему от значений, которые принимают все параметры, характеризующие состояние системы (например, от объема, давления, агрегатного состояния и пр.).

Понять суть теоремы Нернста можно на следующем примере. При уменьшении температуры газа будет происходить его конденсация и энтропия системы будет убывать, так как молекулы размещаются более упорядоченно. При дальнейшем уменьшении температуры будет происходить кристаллизация жидкости, сопровождающаяся большей упорядоченностью расположения молекул и, следовательно, еще большим убыванием энтропии. При абсолютном нуле температуры всякое тепловое движение прекращается, неупорядоченность исчезает, число возможных микросостояний уменьшается до одного и энтропия приближается к нулю.

4.Понятие самоорганизации. Самоорганизация в открытых системах.

Понятие “синергетика” было предложено в 1973 году немецким физиком Германом Хакеном для обозначения направления , призванного исследовать общие законы самоорганизации – феномена согласованного действия элементов сложной системы без управляющего действия извне. Синергетика (в переводе с греч. – совместный, согласованный, содействующий) – научное направление изучающее связи между элементами структуры (подсистемами), которые образуются в открытых системах (биологических, физико-химических, геолого-географических и др.) благодаря интенсивному (потоковому) обмену веществом, энергией и информацией с окружающей средой в неравновесных условиях . В таких системах наблюдается согласованное поведение подсистем, в результате чего возрастает степень упорядоченности (уменьшается энтропия), то есть развивается процесс самоорганизации.

Равновесие есть состояние покоя и симметрии , а асимметрия приводит к движению и неравновесному состоянию .

Значительный вклад в теорию самоорганизации систем внес бельгийский физик российского происхождения И.Р. Пригожин (1917-2003). Он показал, что в диссипативных системах (системах, в которых имеет место рассеяние энтропии) в ходе необратимых неравновесных процессов возникают упорядоченные образования, которые были названы им диссипативными структурами.

Самоорганизация – это процесс спонтанного возникновения порядка и организации из беспорядка (хаоса) в открытых неравновесных системах. Случайные отклонения параметров системы от равновесия (флуктуации) играют очень важную роль в функционировании и существовании системы. За счет роста флуктуаций при поглощении энергии из окружающей среды система достигает некоторого критического состояния и переходит в новое устойчивое состояние с более высоким уровнем сложности и порядка по сравнению с предыдущим. Система, самоорганизуясь в новом стационарном состоянии, уменьшает свою энтропию, она как бы “сбрасывает” ее избыток, возрастающий за счет внутренних процессов, в окружающую среду.

Возникающая из хаоса упорядоченная структура (аттрактор , или диссипативная структура) является результатом конкуренции множества всевозможных состояний, заложенных в системе. В резльтате конкуренции идет самопроизвольный отбор наиболее адаптивной в сложившихся условиях структуры.

Синергетика опирается на термодинамику неравновесных процессов, теорию случайных процессов, теорию нелинейных колебаний и волн.

Синергетика рассматривает возникновение и развитие систем . Различают три вида систем : 1) замкнутые, которые не обмениваются с соседними системами (или с окружающей средой) ни веществом, ни энергией, ни информацией; 2) закрытые , которые обмениваются с соседними системами энергией, но не веществом (например, космический корабль); 3) открытые, которые обмениваются с соседними системами и веществом, и энергией. Практически все природные (экологические) системы относятся к типу открытых.

Существование систем немыслимо без связей. Последние делят на прямы и обратные. Прямой называют такую связь , при которой один элемент (А ) действует на другой (В ) без ответной реакции. При обратной связи элемент В отвечает на действие элемента А. Обратные связи бывают положительными и отрицательными.

Обратная положительная связь ведет к усилению процесса в одном направлении. Пример ее действия – заболачивание территории (например, после вырубки леса). Процесс начинает действовать в одном направлении : увеличение увлажнения – обеднение кислородом – замедление разложения растительных остатков – накопление торфа – дальнейшее усиление заболачивания.

Обратная отрицательная связь действует таким образом, что в ответ на усиление действия элемента А увеличивается противоположная по направлению сила действия элемента В. Такая связь позволяет сохраняться системе в состоянии устойчивого динамического равновесия. Это наиболее распространенный и важный вид связей в природных системах. На них прежде всего базируется устойчивость и стабильность экосистем.

Важным свойством систем является эмерджентность (в переводе с англ. - возникновение, появление нового). Это свойство заключается в том, что свойства системы как целого не являются простой суммой свойств слагающих ее частей или элементов, а взаимосвязи различных звеньев системы обусловливают ее новое качество.

В основе синенергетического подхода к рассмотрению систем лежат три понятия : неравновесность, открытость и нелинейность .

Неравновесность (неустойчивость) состояние системы , при котором происходит изменение ее макроскопических параметров, то есть состава, структуры, поведения.

Открытость – способность системы постоянно обмениваться веществом, энергией, информацией с окружающей средой и обладать как “источниками” - зонами подпитки энергией из окружающей среды, так и зонами рассеяния, “стока”.

Нелинейность – свойство системы пребывать в различных стационарных состояниях, соответствующих различным допустимым законам поведения этой системы.

В нелинейных системах развитие идет по нелинейным законам, приводящим к многовариантности путей выбора и альтернатив выхода из состояния неустойчивости. В нелинейных системах процессы могут носить резко пороговый характер , когда при постепенном изменении внешних условий наблюдается скачкообразный их переход в другое качество. При этом старые структуры разрушаются, переходя к качественно новым структурам.

Cтраница 1


Сущность второго начала термодинамики до известной степени содержится в фактах, описанных в двух предыдущих параграфах. Очевидно, что они основаны не на отвлеченных представлениях или теоретических выводах, а на результатах непосредственного опыта. Задача заключается в том, чтобы их обобщить и сделать из такого обобщения возможно далеко идущие выводы.  

Сущность второго начала термодинамики и заключается в том, что оно формулирует те условия, в которых происходят превращения энергии в механическую. Второе начало термодинамики имеет смысл только в ограниченной области. Все выводы термодинамики, так же как и все ее основные понятия (теплообмен, температура), имеют смысл только при рассмотрении определенной области явлений.  

Кратко резюмируя сущность второго начала термодинамики, можно сказать, что некомпенсированный переход тепла в работу невозможен. Из невозможности одного процесса - процесса некомпенсированного перехода тепла в работу - вытекает невозможность бесчисленного множества процессов; невозможны все те процессы, составной частью которых должен был бы явиться некомпенсированный переход тепла в работу.  

Как было выяснено выше, сущность второго начала термодинамики заключается в том, что количество равновесных состояний подавляюще велико по сравнению с числом неравновесных распределений. Однако для вселенной, состоящей из бесконечно большого числа частиц, это утверждение теряет свой смысл. Действительно, как число равновесных состояний, так и число неравновесных состояний становятся бесконечно большими.  

Как было выяснено выше, сущность второго начала термодинамики заключается в том, что количество равновесных состояний подавляюще делико по сравнению с числом неравновесных распределений. Однако для вселенной, состоящей из бесконечно большого числа частиц, это утверждение теряет свой смысл. Действительно, как число равновесных состояний, так и число неравновесных состояний становятся бесконечно большими.  

Известно, что в педагогическом отношении строгое изложение сущности второго начала термодинамики и ближайших следствий его - дело, далеко не легкое. Этих трудностей в изложении второго начала не существовало бы, если бы второе начало определяло, как это иногда думают, превращаемость одного вида энергии в другой. В действительности второе начало определенным образом ограничивает превращение одной формы передачи энергии - тепла - в другую форму передачи энергии - в работу.  

Несколько позже мы покажем, что в представлении об энтропии отражена сущность второго начала термодинамики, подобно тому как в представлении о внутренней энергии отражена сущность первого начала.  

Рассмотренными здесь представлениями о двух видах закономерности мы будем руководствоваться далее при изучении всей статистической физики, а также, в частности, при выяснении сущности второго начала термодинамики, которое, как будет показано, является статистическим законом. Соотношение между статистической физикой и обычной термодинамикой основано на принятии статистической закономерности.  

Работы Карно способствовали установлению принципа, позволившего определить наибольший возможный КПД тепловой машины. Сущность второго начала термодинамики, по Клаузиусу, заключается в том, что теплота не может сама по себе перейти от более холодного тела к более теплому.  

Процессы обратимые и необратимые. Кратко резюмируя сущность второго начала термодинамики, можно сказать, что некомпенсированный переход тепла в работу невозможен. Под компенсацией здесь надлежит разуметь изменение термодинамического состояния какого-либо тела или нескольких тел; при этом неизбежное изменение состояния (охлаждение) теплоотдающего тела не принимается в расчет.  

Полное понимание сущности второго начала термодинамики и вместе с этим решение проблемы тепловой смерти пришло на пути глубокого проникновения в сущность понятия теплоты, на пути уточнения основ и развития молекуля-рно-кинетической теории.  

Итак, если бы мы захотели отнять теплоту у более холодного тела и передать ее более нагре тому, то должны были бы затратить на это некоторую дополнительную энергию. Это положение составляет сущность второго начала термодинамики, которое формулируется так: невозможен самопроизвольный переход теплоты от более холодного тела к телу более теплому.  

Особо важную роль играет в термодинамике понятие о так называемой абсолютной температуре. Это понятие-тесно связано с сущностью второго начала термодинамики.  

Следовательно, всегда (при каком угодно числе аргументов) уравнение для элемента тепла голономно. При желании можно считать, что сущность второго начала термодинамики как раз и заключается в том, что между коэффициентами уравнения для элемента теплоты всегда имеется соотношение, обеспечивающее голономность этого уравнения.  

Лишь вслед за исследованиями и размышлениями Майера, Джоуля и Гельмгольца, установивших закон эквивалентности тепла и работы, немецкий физик Рудольф Клаузиус (1822 - 1888 гг.) пришел ко второму началу термодинамики и математически сформулировал его. Клаузиус ввел в рассмотрение энтропию и показал, что сущность второго начала термодинамики сводится к неизбежному росту энтропии во всех реальных процессах.  

Формулировка второго начала. Приведем две наиболее известные формулировки:

1. Невозможен процесс, единственным результатом которого было бы совершение работы за счет теплоты, взятой у теплового резервуара при постоянной температуре (формулировка Томсона). Эта же формулировка, но выраженная другими словами, утверждает невозможность создания вечного двигателя второго рода (т.е. производящего работу за счет внутренней энергии теплового резервуара).

2. Невозможен процесс, единственным результатом которого была бы передача энергии от более холодного тела к более горячему (формулировка Клаузиуса).

Формулировки Томсона и Клаузиуса эквивалентны.

Теорема Карно. Циклом Карно называют цикл, в котором рабочее тело получает теплоту только от резервуара при постоянной температуре (нагревателя), а отдает - только резервуару при постоянной температуре (холодильнику). Теорема Карно утверждает, что КПД произвольного цикла Карно не может превышать КПД

обратимого цикла Карно, работающего при тех же Из этого немедленно следует, что КПД обратимого цикла Карно зависит только от и и не зависит от природы рабочего тела.

Покажем в общих чертах, как можно доказать теорему Карно. Предположим, что КПД обратимой машины меньше, чем необратимой. Подберем объем рабочего тела обратимой машины так, чтобы она совершала за цикл такую же работу, как необратимая. С учетом (15) неравенство для КПД приобретает вид откуда имеем Пустим обратимую машину в обратную сторону так, чтобы работа необратимой машины потреблялась обратимой. За цикл объединенной машины ее работа будет равна нулю, а нагреватель получит энергию целиком взятую у холодильника. Мы пришли к противоречию с формулировкой Клаузиуса.

Так как нам известен КПД одной из машин Карно - газовой (16), то теорему Карно можно записать так:

причем равенство соответствует обратимому циклу Карно.

Термодинамическая шкала температур. Теорема Карно позволяет определить шкалу температур, не зависящую от свойств конкретных тел. Отношение температур двух тел определяют, присоединив к ним обратимую машину Карно; так как отношение зависит только от их температур, то его можно принять равным отношению термодинамических температур: Как видно из (17), отношение термодинамических температур равно отношению газовых температур (в той области, где газовая шкала определена).

Второе начало: вычисление внутренней энергии. Второе начало термодинамики позволяет вывести важное соотношение для внутренней энергии простой системы, которое не может быть получено в рамках первого начала:

Покажем, как можно получить (18) из теоремы Карно. Рассмотрим (бесконечно) малый обратимый цикл Карно и изобразим его в координатах . Работа системы за цикл, равная площади маленького параллелограмма (рис. 14), не изменится при замене кусочков адиабат вертикальными отрезками, длина которых равна Умножив на высоту получим Теплота, полученная на верхней изотерме, равна где для приращения при постоянной температуре использовано (8). Из теоремы Карно и уравнения (17) имеем

откуда получим (18).

Приведем несколько применений формулы (18).

1) Внутренняя энергия идеального газа. Подставим в (18) уравнение состояния . В результате получим т.е. внутренняя энергия идеального газа не зависит от объема.

2) Внутренняя энергия газа Ван-дер-Ваальса. Выразив давление из уравнения состояния (3) и подставив в (18), приходим к формуле

Кроме того, имеем

т.е. не зависит от объема. В области температур, где слабо зависит от Т, можно записать



Добавить свою цену в базу

Комментарий

Термодинамика (греч. θέρμη – «тепло», δύναμις – «сила») – раздел физики, изучающий наиболее общие свойства макроскопических систем и способы передачи и превращения энергии в таких системах.

В термодинамике изучаются состояния и процессы, для описания которых можно ввести понятие температуры. Термодинамика (Т.) – это феноменологическая наука, опирающаяся на обобщения опытных фактов. Процессы, происходящие в термодинамических системах, описываются макроскопическими величинами (температура, давление, концентрации компонентов), которые вводятся для описания систем, состоящих из большого числа частиц, и не применимы к отдельным молекулам и атомам, в отличие, например, от величин, вводимых в механике или электродинамике.

Современная феноменологическая термодинамика является строгой теорией, развиваемой на основе нескольких постулатов. Однако связь этих постулатов со свойствами и законами взаимодействия частиц, из которых построены термодинамические системы, даётся статистической физикой. Статистическая физика позволяет выяснить также и границы применимости термодинамики.

Законы термодинамики носят общий характер и не зависят от конкретных деталей строения вещества на атомарном уровне. Поэтому термодинамика успешно применяется в широком круге вопросов науки и техники, таких как энергетика, теплотехника, фазовые переходы, химические реакции, явления переноса и даже чёрные дыры. Термодинамика имеет важное значение для самых разных областей физики и химии, химической технологии, аэрокосмической техники, машиностроения, клеточной биологии, биомедицинской инженерии, материаловедения и находит своё применение даже в таких областях, как экономика.

Важные годы в истории термодинамики

  • Зарождение термодинамики как науки связано с именем Г. Галилея (G. Galilei), корый ввёл понятие температуры и сконструировал первый прибор, реагирующий на изменения температуры окружающей среды (1597).
  • Вскоре Г. Д. Фаренгейт (G. D. Fahrenheit, 1714), Р. Реомюр (R. Reaumur, 1730} и А. Цельсий (A. Celsius, 1742) создали температурные шкалы в соответствии с этим принципом.
  • Дж.Блэк (J. Black) в 1757 году уже ввёл понятия скрытой теплоты плавления и теплоемкости (1770). А Вильке (J. Wilcke, 1772) ввёл определение калории как количества тепла, необходимого для нагревания 1 г воды на 1 °С.
  • Лавуазье (A. Lavoisier) и Лаплас (P. Laplace) в 1780 сконструировали калориметр (см. Калориметрия) и впервые экспериментально определили уд. теплоёмкости ряда веществ.
  • В 1824 С. Карно (N. L, S. Carnot) опубликовал работу, посвящённую исследованию принципов работы тепловых двигателей.
  • Б. Клапейрон (В. Clapeyron) ввёл графическое представление термодинамических процессов и развил метод бесконечно малых циклов (1834).
  • Г. Хельмгольц (G. Helmholtz) отметил универсальный характер закона сохранения энергии (1847). Впоследствии Р. Клаузиус (R. Clausius) и У. Томсон (Кельвин; W. Thomson) систематически развили теоретический аппарат термодинамики, в основу которого положены первое начало термодинамики и второе начало термодинамики.
  • Развитие 2-го начала привело Клаузиуса к определению энтропии (1854) и формулировке закона возрастания энтропии (1865).
  • Начиная с работ Дж. У. Гиббса (J. W. Gibbs, 1873), предложившего метод термодинамических потенциалов, развивается теория термодинамического равновесия.
  • Во 2-й пол. 19 в. проводились исследования реальных газов. Особую роль сыграли эксперименты Т. Эндрюса (Т. Andrews), который впервые обнаружил критическую точку системы жидкость-пар (1861), её существование предсказал Д. И. Менделеев (1860).
  • К концу 19 в. были достигнуты большие успехи в получении низких температур, в результате чего были ожижены О2, N2 и Н2.
  • В 1902 Гиббс опубликовал работу, в которой все основные термодинамические соотношения были получены в рамках статистической физики.
  • Связь между кинетич. свойствами тела и его термодинамич. характеристиками была установлена Л. Онсагером (L. Onsager, 1931).
  • В 20 в. интенсивно исследовали термодинамику твёрдых тел, а также квантовых жидкостей и жидких кристаллов, в которых имеют место многообразные фазовые переходы.
  • Л. Д. Ландау (1935-37) развил общую теорию фазовых переходов, основанную на концепции спонтанного нарушения симметрии.

Разделы термодинамики

Современную феноменологическую термодинамику принято делить на равновесную (или классическую) термодинамику, изучающую равновесные термодинамические системы и процессы в таких системах, и неравновесную термодинамику, изучающую неравновесные процессы в системах, в которых отклонение от термодинамического равновесия относительно невелико и ещё допускает термодинамическое описание.

Равновесная (или классическая) термодинамика

В равновесной термодинамике вводятся такие переменные, как внутренняя энергия, температура, энтропия, химический потенциал. Все они носят название термодинамических параметров (величин). Классическая термодинамика изучает связи термодинамических параметров между собой и с физическими величинами, вводимыми в рассмотрение в других разделах физики, например, с гравитационным или электромагнитным полем, действующим на систему. Химические реакции и фазовые переходы также входят в предмет изучения классической термодинамики. Однако изучение термодинамических систем, в которых существенную роль играют химические превращения, составляет предмет химической термодинамики, а техническими приложениями занимается теплотехника.

Классическая термодинамика включает в себя следующие разделы:

  • начала термодинамики (иногда также называемые законами или аксиомами)
  • уравнения состояния и свойства простых термодинамических систем (идеальный газ, реальный газ, диэлектрики и магнетики и т. д.)
  • равновесные процессы с простыми системами, термодинамические циклы
  • неравновесные процессы и закон неубывания энтропии
  • термодинамические фазы и фазовые переходы

Кроме этого, современная термодинамика включает также следующие направления:

  • строгая математическая формулировка термодинамики на основе выпуклого анализа
  • неэкстенсивная термодинамика

В системах, не находящихся в состоянии термодинамического равновесия, например, в движущемся газе, может применяться приближение локального равновесия, в котором считается, что соотношения равновесной термодинамики выполняются локально в каждой точке системы.

Неравновесная термодинамика

В неравновесной термодинамике переменные рассматриваются как локальные не только в пространстве, но и во времени, то есть в её формулы время может входить в явном виде. Отметим, что посвящённая вопросам теплопроводности классическая работа Фурье «Аналитическая теория тепла» (1822) опередила не только появление неравновесной термодинамики, но и работу Карно «Размышления о движущей силе огня и о машинах, способных развивать эту силу» (1824), которую принято считать точкой отсчёта в истории классической термодинамики.

Основные понятия термодинамики

Термодинамическая система – тело или группа тел, находящихся во взаимодействии, мысленно или реально обособленные от окружающей среды.

Гомогенная система – система, внутри которой нет поверхностей, разделяющих отличающиеся по свойствам части системы (фазы).

Гетерогенная система – система, внутри которой присутствуют поверхности, разделяющие отличающиеся по свойствам части системы.

Фаза – совокупность гомогенных частей гетерогенной системы, одинаковых по физическим и химическим свойствам, отделённая от других частей системы видимыми поверхностями раздела.

Изолированная система – система, которая не обменивается с окружающей средой ни веществом, ни энергией.

Закрытая система – система, которая обменивается с окружающей средой энергией, но не обменивается веществом.

Открытая система – система, которая обменивается с окружающей средой и веществом, и энергией.

Совокупность всех физических и химических свойств системы характеризует её термодинамическое состояние . Все величины, характеризующие какое-либо макроскопическое свойство рассматриваемой системы – параметры состояния . Опытным путем установлено, что для однозначной характеристики данной системы необходимо использовать некоторое число параметров, называемых независимыми ; все остальные параметры рассматриваются как функции независимых параметров. В качестве независимых параметров состояния обычно выбирают параметры, поддающиеся непосредственному измерению, например температуру, давление, концентрацию и т.д. Всякое изменение термодинамического состояния системы (изменения хотя бы одного параметра состояния) есть термодинамический процесс .

Обратимый процесс – процесс, допускающий возможность возвращения системы в исходное состояние без того, чтобы в окружающей среде остались какие-либо изменения.

Равновесный процесс – процесс, при котором система проходит через непрерывный ряд равновесных состояний.

Энергия – мера способности системы совершать работу; общая качественная мера движения и взаимодействия материи. Энергия является неотъемлемым свойством материи. Различают потенциальную энергию, обусловленную положением тела в поле некоторых сил, и кинетическую энергию, обусловленную изменением положения тела в пространстве.

Внутренняя энергия системы – сумма кинетической и потенциальной энергии всех частиц, составляющих систему. Можно также определить внутреннюю энергию системы как её полную энергию за вычетом кинетической и потенциальной энергии системы как целого.

Формы перехода энергии

Формы перехода энергии от одной системы к другой могут быть разбиты на две группы.

  1. В первую группу входит только одна форма перехода движения путем хаотических столкновений молекул двух соприкасающихся тел, т.е. путём теплопроводности (и одновременно путём излучения). Мерой передаваемого таким способом движения является теплота. Теплота есть форма передачи энергии путём неупорядоченного движения молекул.
  2. Во вторую группу включаются различные формы перехода движения, общей чертой которых является перемещение масс, охватывающих очень большие числа молекул (т.е. макроскопических масс), под действием каких-либо сил. Таковы поднятие тел в поле тяготения, переход некоторого количества электричества от большего электростатического потенциала к меньшему, расширение газа, находящегося под давлением и др. Общей мерой передаваемого такими способами движения является работа – форма передачи энергии путём упорядоченного движения частиц.

Теплота и работа характеризуют качественно и количественно две различные формы передачи движения от данной части материального мира к другой. Теплота и работа не могут содержаться в теле. Теплота и работа возникают только тогда, когда возникает процесс, и характеризуют только процесс. В статических условиях теплота и работа не существуют. Различие между теплотой и работой, принимаемое термодинамикой как исходное положение, и противопоставление теплоты работе имеет смысл только для тел, состоящих из множества молекул, т.к. для одной молекулы или для совокупности немногих молекул понятия теплоты и работы теряют смысл. Поэтому термодинамика рассматривает лишь тела, состоящие из большого числа молекул, т.е. так называемые макроскопические системы.

Три начала термодинамики

Начала термодинамики – совокупность постулатов, лежащих в основе термодинамики. Эти положения были установлены в результате научных исследований и были доказаны экспериментально. В качестве постулатов они принимаются для того, чтобы термодинамику можно было построить аксиоматически.

Необходимость начал термодинамики связана с тем, что термодинамика описывает макроскопические параметры систем без конкретных предположений относительно их микроскопического устройства. Вопросами внутреннего устройства занимается статистическая физика.

Начала термодинамики независимы, то есть ни одно из них не может быть выведено из других начал. Аналогами трех законов Ньютона в механике, являются три начала в термодинамике, которые связывают понятия «тепло» и «работа»:

  • Нулевое начало термодинамики говорит о термодинамическом равновесии.
  • Первое начало термодинамики – о сохранении энергии.
  • Второе начало термодинамики – о тепловых потоках.
  • Третье начало термодинамики – о недостижимости абсолютного нуля.

Общее (нулевое) начало термодинамики

Общее (нулевое) начало термодинамики гласит, что два тела находятся в состоянии теплового равновесия, если они могут передавать друг другу теплоту, но этого не происходит.

Нетрудно догадаться, что два тела не передают друг другу теплоту в том случае, если их температуры равны. Например, если измерить температуру человеческого тела при помощи термометра (в конце измерения температура человека и температура градусника будут равны), а затем, этим же термометром измерить температуру воды в ванной, и при этом окажется, что обе температуры совпадают (наблюдается тепловое равновесие человека с термометром и термометра с водой), можно говорить о том, что человек находится в тепловом равновесии с водой в ванной.

Из сказанного выше, можно сформулировать нулевое начало термодинамики следующим образом: два тела, находящиеся в тепловом равновесии с третьим, также находятся в тепловом равновесии между собой.

С физической точки зрения нулевое начало термодинамики устанавливает точку отсчета, поскольку, между двумя телами, которые имеют одинаковую температуру, тепловой поток отсутствует. Другими словами, можно сказать, что температура есть не что иное, как индикатор теплового равновесия.

Первое начало термодинамики

Первое начало термодинамики есть закон сохранения тепловой энергии, утверждающий, что энергия никуда не девается бесследно.

Система может либо поглощать, либо выделять тепловую энергию Q, при этом система выполняет над окружающими телами работу W (или окружающие тела выполняют работу над системой), при этом внутренняя энергия системы, которая имела начальное значение Uнач, будет равна Uкон:

Uкон-Uнач = ΔU = Q-W

Тепловая энергия, работа и внутренняя энергия определяют общую энергию системы, которая является постоянной величиной. Если системе передать (забрать) некое кол-во тепловой энергии Q, при отсутствии работы кол-во внутренней энергии системы U, увеличится (уменьшится) на Q.

Второе начало термодинамики

Второе начало термодинамик гласит, что тепловая энергия может переходить только в одном направлении – от тела с более высокой температурой, к телу, с более низкой температурой, но не наоборот.

Третье начало термодинамики

Третье начало термодинамики гласит, что любой процесс, состоящий из конечного числа этапов, не позволит достичь температуры абсолютного нуля (хотя к нему можно существенно приблизиться).

  • § 5.3. Сложение гармонических колебаний
  • § 5.4. Сложное колебание и его гармонический спектр
  • § 5.5. Вынужденные колебания. Резонанс
  • § 5.6. Автоколебания
  • § 5.7. Уравнение механической волны
  • § 5.8. Поток энергии и интенсивность волны
  • § 5.9. Ударные волны
  • § 5.10. Эффект Доплера
  • Глава 6 Акустика
  • § 6.1. Природа звука и его физические характеристики
  • § 6.2. Характеристики слухового ощущения. Понятие об аудиометрии
  • § 6.3. Физические основы звуковых методов исследования в клинике
  • §6.4. Волновое сопротивление. Отражение звуковых волн. Реверберация
  • § 6.5. Физика слуха
  • § 6.6. Ультразвук и его применения в медицине
  • § 6.7. Инфразвук
  • § 6.8. Вибрации
  • § 7.1. Вязкость жидкости. Уравнение Ньютона. Ньютоновские и неньютоновские жидкости
  • § 7.2. Течение вязкой жидкости по трубам. Формула Пуазейля
  • § 7.3. Движение тел в вязкой жидкости. Закон Стокса
  • § 7.4. Методы определения вязкости жидкости. Клинический метод определения вязкости крови
  • § 7.5. Турбулентное течение. Число Рейнольдса
  • § 7.6. Особенности молекулярного строения жидкостей
  • § 7.7. Поверхностное натяжение
  • § 7.8. Смачивание и несмачивание. Капиллярные явления
  • Глава 8
  • §8.1. Кристаллические и аморфные тела. Полимеры и биополимеры
  • § 8.2. Жидкие кристаллы
  • § 8.3. Механические свойства твердых тел
  • § 8.4. Механические свойства биологических тканей
  • Глава 9 Физические вопросы гемодинамики
  • § 9.1. Модели кровообращения
  • § 9.2. Пульсовая волна
  • § 9.3. Работа и мощность сердца. Аппарат искусственного кровообращения
  • § 9.4. Физические основы клинического метода измерения давления крови
  • § 9.5. Определение скорости кровотока
  • § 10.1. Основные понятия термодинамики. Первое начало термодинамики
  • § 10.2. Второе начало термодинамики. Энтропия
  • § 10.3. Стационарное состояние. Принцип минимума производства энтропии
  • § 10.4. Организм как открытая система
  • § 10.5. Термометрия и калориметрия
  • § 10.6. Физические свойства нагретых и холодных сред, используемых для лечения. Применение низких температур в медицине
  • Глава 11
  • § 11.1. Строение и модели мембран
  • § 11.2. Некоторые физические свойства и параметры мембран
  • § 11.3. Перенос молекул (атомов) через мембраны.Уравнение Фика
  • § 11.4.Уравнение Нернста-Планка. Перенос ионов через мембраны
  • § 11.5. Разновидности пассивного переноса молекул и ионов через мембраны
  • § 11.6. Активный транспорт. Опыт Уссинга
  • § 11.7. Равновесный и стационарный мембранные потенциалы. Потенциал покоя
  • § 11.8. Потенциал действия и его распространение
  • § 11.9. Активно-возбудимые среды. Автоволновые процессы в сердечной мышце
  • Раздел4
  • § 12.1. Напряженностьи потенциал - характеристики электрического поля
  • § 12.2. Электрический диполь
  • § 12.3. Понятие о мультиполе
  • § 12.4. Дипольный электрический генератор (токовый диполь)
  • § 12.5. Физические основы электрокардиографии
  • § 12.6. Диэлектрики в электрическом поле
  • § 12.7. Пьезоэлектрический эффект
  • § 12.8. Энергия электрического поля
  • § 12.9. Электропроводимость электролитов
  • § 12.10. Электропроводимость биологических тканей и жидкостей при постоянном токе
  • § 12.11. Электрический разряд в газах. Аэроионы и их лечебно-профилактическое действие
  • Глава 13 Магнитное поле
  • § 13.1. Основные характеристики магнитного поля
  • § 13.2. Закон Ампера
  • § 13.3. Действие магнитного поля
  • § 13.4. Магнитные свойства вещества
  • § 13.5. Магнитные свойства тканей организма. Понятие о биомагнетизме и магнитобиологии
  • §14.1. Свободные электромагнитные колебания
  • § 14.2. Переменный ток
  • § 14.3. Полное сопротивление в цепи переменного тока. Резонанс напряжений
  • § 14.4. Импеданс тканей организма. Дисперсия импеданса. Физические основы реографии
  • § 14.5. Электрический импульс и импульсный ток
  • § 14.6. Электромагнитные волны
  • § 14.7. Шкала электромагнитных волн. Классификация частотных интервалов, принятая в медицине
  • § 15.1. Первичное действие постоянного тока на ткани организма. Гальванизация. Электрофорез лекарственных веществ
  • § 15.2. Воздействие переменными (импульсными) токами
  • § 15.3. Воздействие переменным магнитным полем
  • § 15.4. Воздействие переменным электрическим полем
  • § 15.5. Воздействие электромагнитными волнами
  • Раздел 5 Медицинская электроника
  • Глава 16
  • § 16.1. Общая и медицинская электроника. Основные группы медицинских электронных приборов и аппаратов
  • § 16.2. Электробезопасность медицинской аппаратуры
  • § 16.3. Надежность медицинской аппаратуры
  • Глава 17
  • § 17.1. Структурная схема съема, передачи и регистрации медико-биологической информации
  • § 17.2. Электроды для съема биоэлектрического сигнала
  • § 17.3. Датчики медико-биологической информации
  • § 17.4. Передача сигнала. Радиотелеметрия
  • § 17.5. Аналоговые регистрирующие устройства
  • § 17.6. Принцип работы медицинских приборов, регистрирующих биопотенциалы
  • Глава 18
  • § 18.1. Коэффициент усиления усилителя
  • § 18.2. Амплитудная характеристика усилителя. Нелинейные искажения
  • § 18.3. Частотная характеристика усилителя. Линейные искажения
  • § 18.4. Усиление биоэлектрических сигналов
  • § 18.5. Различные виды электронных генераторов. Генератор импульсных колебаний на неоновой лампе
  • § 18.6. Электронные стимуляторы.Низкочастотная физиотерапевтическая электронная аппаратура
  • § 18.7. Высокочастотная физиотерапевтическая электронная аппаратура. Аппараты электрохирургии
  • § 18.8. Электронный осциллограф
  • Раздел 6
  • Глава 19
  • § 19.3. Интерферометры и их применение. Понятие об интерференционном микроскопе
  • § 19.4. Принцип Гюйгенса-Френеля
  • § 19.5. Дифракция на щели в параллельных лучах
  • § 19.6. Дифракционная решетка. Дифракционный спектр
  • § 19.7. Основы рентгеноструктурного анализа
  • § 19.8. Понятие о голографии и ее возможном применении в медицине
  • Глава 20
  • § 20.1. Свет естественный и поляризованный. Закон Малюса
  • § 20.2. Поляризация света при отражении и преломлении на границе двух диэлектриков
  • § 20.3. Поляризация света при двойном лучепреломлении
  • § 20.4. Вращение плоскости поляризации. Поляриметрия
  • § 20.5. Исследование биологических тканей в поляризованном свете
  • Глава 21
  • § 21.1. Геометрическая оптика как предельный случай волновой оптики
  • § 21.2. Аберрации линз
  • § 21.3. Понятие об идеальной центрированной оптической системе
  • § 21.4. Оптическая система глаза и некоторые ее особенности
  • § 21.5. Недостатки оптической системы глаза и их компенсация
  • § 21.6. Лупа
  • § 21.7. Оптическая система и устройство микроскопа
  • § 21.8. Разрешающая способность и полезное увеличение микроскопа. Понятие о теории Аббе
  • § 21.9. Некоторые специальные приемы оптической микроскопии
  • § 21.10. Волоконная оптика и ее использование в оптических устройствах
  • Глава 22
  • § 22.1. Характеристики теплового излучения. Черное тело
  • § 22.2. Закон Кирхгофа
  • § 22.3. Законы излучения черного тела
  • § 22.5. Теплоотдача организма. Понятие о термографии
  • § 22.6. Инфракрасное излучение и его применение в медицине
  • § 22.7. Ультрафиолетовое излучение и его применение в медицине
  • Раздел 7
  • Глава 23
  • § 23.1. Гипотеза де Бройля.
  • § 23.2. Электронный микроскоп. Понятие об электронной оптике
  • § 23.3. Волновая функция и её физический смысл
  • § 23.4. Соотношения неопределенностей
  • § 23.5. Уравнение Шредингера.
  • § 23.6. Применение уравнения Шредингера к атому водорода. Квантовые числа
  • § 23.7. Понятие о теории Бора
  • § 23.8. Электронные оболочки сложных атомов
  • § 23.9. Энергетические уровни молекул
  • Глава 24
  • § 24.1. Поглощение света
  • § 24.2. Рассеяние света
  • § 24.3. Оптические атомные спектры
  • § 24.4. Молекулярные спектры
  • § 24.5. Различные виды люминесценции
  • § 24.6. Фотолюминесценция
  • § 24.7. Хемилюминесценция
  • § 24.8. Лазеры и их применение в медицине
  • § 24.9. Фотобиологические процессы. Понятия о фотобиологии и фотомедицине
  • § 24.10. Биофизические основы зрительной рецепции
  • Глава 25
  • § 25.1. Расщепление энергетических уровней атомов в магнитном поле
  • § 25.2. Электронный парамагнитный резонанс и его медико-биологические применения
  • § 25.3. Ядерный магнитный резонанс. Ямр-интроскопия (магнито-резонансная томография)
  • Раздел 8
  • Глава 26
  • § 26.1. Устройство рентгеновской трубки. Тормозное рентгеновское излучение
  • § 26.2. Характеристическое рентгеновское излучение. Атомные рентгеновские спектры
  • § 26.3. Взаимодействие рентгеновского излучения с веществом
  • § 26.4. Физические основы применения рентгеновского излучения в медицине
  • Глава 27 Радиоактивность. Взаимодействие ионизирующего излучения с веществом
  • § 27.1. Радиоактивность
  • § 27.2. Основной закон радиоактивного распада. Активность
  • § 27.3. Взаимодействие ионизирующего излучения с веществом
  • § 27.4. Физические основы действия ионизирующих излучений на организм
  • § 27.5. Детекторы ионизирующих излучений
  • § 27.6. Использование радионуклидов и нейтронов в медицине
  • § 27.7. Ускорители заряженных частиц и их использование в медицине
  • Глава 28 Элементы дозиметрии ионизирующих излучений
  • § 28.1. Доза излучения и экспозиционная доза. Мощность дозы
  • § 28.2. Количественная оценка биологического действия ионизирующего излучения. Эквивалентная доза
  • § 28.3. Дозиметрические приборы
  • § 28.4. Защита от ионизирующего излучения
  • По вопросам приобретения продукции
  • § 10.2. Второе начало термодинамики. Энтропия

    Первое начало термодинамики, являющееся, по существу, вы­ражением закона сохранения энергии, не указывает направления возможного протекания процессов. Так, например, по первому началу термодинамики, при теплообмене одинаково возможным был бы как самопроизвольный переход теплоты от тела более на­гретого к телу менее нагретому, так и, наоборот, от тела менее на­гретого к телу более нагретому. Из повседневного опыта, однако, хорошо известно, что второй процесс в природе нереален; так, на­пример, не может самопроизвольно нагреться вода в чайнике вследствие охлаждения воздуха в комнате. Другой пример: при падении камня на землю происходит его нагревание, эквивалент­ное изменению потенциальной энергии, обратный процесс - са­мопроизвольное поднятие камня только из-за его охлаждения - невозможен.

    Второе начало термодинамики, так же как и первое, является обобщением данных опыта.

    Существует несколько формулировок второго закона термоди­намики: теплота самопроизвольно не может переходить от тела с меньшей температурой к телу с большей температу­рой (формулировка Клаузиуса), или невозможен вечный двига­тель второго рода (формулировка Томсона), т. е. невозможен такой периодический процесс, единственным результатом которого было бы превращение теплоты в работу вслед­ствие охлаждения тела.

    В тепловой машине совершается работа за счет переданной теплоты, но при этом часть теплоты обязательно передается холодильнику. На рис. 10.4 схематически показаны соответственно невозможный (а) и возможный (б), по второму началу, периодиче­ские процессы.

    Рассмотрим некоторые термодинамические понятия, которые позволяют количественно выразить второе начало термодинамики.

    Процесс 1 -2 называют обратимым, если можно совершить обратный процесс 2-1 через все промежуточные состояния так, чтобы после возвращения системы в исходное состояние в окру­жающих телах не произошло каких-либо изменений.

    Обратимый процесс является физической абстракцией. Все ре­альные процессы необратимы хотя бы из-за наличия силы тре­ния, которая вызывает нагревание окружающих тел. Некоторые характерные примеры необратимых процессов: расширение газа в пустоту, диффузия, теплообмен и т. д. Для возвращения систе­мы в начальное состояние во всех этих случаях необходимо совер­шение работы внешними телами.

    Циклом или круговым процессом на­зывают процесс, при котором система возвращается в исходное состояние.

    График цикла представляет собой зам­кнутую линию. Цикл, изображенный на рис. 10.5, - прямой, он соответствует тепловой машине, т. е. устройству, кото­рое получает количество теплоты от неко­торого тела - теплоотдатчика (нагрева­теля), совершает работу и

    отдает часть этой теплоты другому телу - теплоприемнику (холодильнику) (рис. 10.4, б).

    В этом цикле рабочее вещество (газ) в целом совершает положи­тельную работу (рис. 10.5): в процессе 1-а-2 газ расширяется, ра­бота положительна и численно равна площади под кривой 1-а-2; в процессе 2-б-1 работа отрицательна (сжатие газа) и численно равна площади под соответствующей кривой. Алгебраическое сум­мирование дает в целом положительную работу, совершенную газом за цикл. Она численно равна площади, ограниченной замкнутой кривой 1-а-2-б-1.

    Коэффициентом полезного действия тепловой машины или прямого цикла называют отношение совершенной рабо­ты к количеству теплоты, полученному рабочим веществом

    от нагревателя:

    Так как работа тепловой машины совершается за счет количе­ства теплоты, а внутренняя энергия рабочего вещества за цикл не изменяется (AU = 0), то из первого закона термодинамики следу­ет, что работа в круговых процессах равна алгебраической сумме количеств теплоты: A = Q X + Q 2 .

    Следовательно,

    Количество теплоты Q v полученное рабочим веществом, положи­тельно, количество теплоты Q 2 , отданное рабочим веществом хо­лодильнику, отрицательно.

    Обратный цикл 2 соответствует работе холодильной машины, т. е. такой системе, которая отбирает теплоту от холодильника и передает большее количество теплоты нагревате­лю. Как следует из второго закона термодинамики, этот процесс (рис. 10.6) не может протекать сам собой, он происхо­дит за счет работы внешних тел. При этом газ совершает отрицательную ра­боту: работа сжатия в процессе 2-а-1 отрицательна, работа. В ре­зультате алгебраического расширения в процессе 1-6-2 положительна. В результате суммирова­ния получаем отрицательную работу га­за, численно равную площади, ограни­ченной кривой 2-а-1 -б-2.

    Рассмотрим цикл Карно (рис. 10.7), т. е. круговой процесс, со­стоящий из двух изотерм 1-2, 3-4, которым соответствуют тем­пературы Т 1 и Т 2 (Т 1 > Т 2), и двух адиабат 2-3, 4-1. В этом цик­ле рабочим веществом является идеальный газ. Передача количе­ства теплоты от нагревателя рабочему веществу происходит при температуре T 1 а от рабочего вещества к холодильнику - при температуре Т 2 . Без доказательства укажем, что КПД обратимого цикла Карно зависит только от температур Т 1 и Т 2 нагревателя и холодильника:

    Карно, исходя из второго начала термодинамики, доказал сле­дующие положения: КПД всех обратимых машин, работающих по циклу, состоящему из двух изотерм и двух адиабат, с нагрева­телем при температуре Т г и холодильником при температуре Т 2 , равны между собой и не зависят от рабочего вещества и конструк­ции машины, совершающей цикл; КПД необратимой машины меньше КПД обратимой машины.

    Эти положения на основании (10.9) и (10.10) можно записать в виде

    где знак «=» относится к обратимому циклу, а знак «<» - к необ­ратимому.

    Это выражение представляет собой количественную формули­ровку второго начала. Покажем, что ее следствием являются обе качественные формулировки, приведенные в начале параграфа.

    Допустим, что происходит теплообмен между двумя телами без совершения работы, т. е. Q l + Q 2 = 0. Тогда [см. (10.11)] Т 1 - Т 2 > 0 и T 1 > T 2 , что соответствует формулировке Клаузиуса: в самопро­извольном процессе теплота передается от тел с более высокой тем­пературой к телам с более низкой.

    В том случае, если тепловая машина полностью затрачивает всю полученную при теплообмене энергию на совершение работы и не отдает энергию холодильнику, Q 2 = 0 и из (10.11) имеем

    что невозможно, так как Т 1 и Т 2 положительны. Отсюда следует формулировка Томсона о невозможности вечного двигателя вто­рого рода. Преобразуем выражение (10.11):

    Отношение количества теплоты, полученного или отданного рабочим веществом, к температуре, при которой происходит теп­лообмен, называют приведенным количеством теплоты.

    Поэтому (10.12) можно сформулировать так алгебраическая сумма приведенных количеств теплоты за цикл не больше нуля (в обратимых циклах равна нулю, в необратимых - меньше нуля).

    Если состояние системы изменяется не по циклу Карно, а по некоторому произвольному циклу, то его можно представить в виде совокупности достаточно малых циклов Карно (рис. 10.8). Тогда выражение (10.12) преобразуется в сумму достаточно малых при­веденных количеств теплоты, что в пределе выразится интегралом

    Выражение (10.13) справедливо для любого необратимого (знак «<») или обратимого (знак «=») цикла; dQ/T - элементарная при­веденная теплота. Кружок на знаке интеграла означает, что интег­рирование проводится по замкнутому контуру, т. е. по циклу. 1 Рассмотрим обратимый цикл (см. рис. 10.5), состоящий из двух процессов аи б. Для него справедливо равенство:

    На основе (10.13) для обратимых циклов имеем

    И
    зменив пределы интегрирования по пути б, получим

    Последнее означает, что сумма приведенных количеств тепло­ты цри обратимом переходе системы из одного состояния в другое не зависит от процесса, а для данной массы газа определяется только начальным и конечным состояниями системы. На рис. 10.9 показаны графики различных обратимых процессов (а, б, в), общими для которых являются начальное 1 и конечное 2 состоя­ния. Количество теплоты и работа в этих процессах различны, но сумма приведенных количеств теплоты оказывается одинаковой.

    Физическую характеристику, не зависящую от процесса или перемещения, обычно выражают как разность двух значений не­которой функции, соответствующих конечному и начальному со­стояниям процесса или положениям системы. Так, например, не­зависимость работы силы тяжести от траектории позволяет выра­зить эту работу через разность потенциальных энергий в конечных точках траектории; независимость работы сил электро­статического поля от траекторий заряда позволяет связать эту ра­боту с разностью потенциалов точек поля, являющихся гранич­ными при его перемещении.

    Аналогично, сумму приведенных количеств теплоты для обра­тимого процесса можно представить как разность двух значений некоторой функции состояния системы, которую называют энт­ропией:

    где S 2 и S 1 - энтропия соответственно в конечном 2 и начальном 1 состояниях. Итак, энтропия есть функция состояния систе­мы, разность значений которой для двух состояний равна сумме приведенных количеств теплоты при обратимом переходе систе­мы из одного состояния в другое.

    Если процесс необратим, то равенство (10.15) не выполняется. Пусть дан цикл (рис. 10.10), состоящий из обратимого 2-б-1 и необратимого 1-а-2 процессов. Так как часть цикла необратима, то и весь цикл необратим, поэтому на основании (10.13) запишем

    Согласно (10.15), тогда вместо (10.16) получим, или

    Итак, в необратимом процессе сумма приведенных количеств теплоты меньше изменения энтропии. Объединяя правые части (10.15) и (10.17), получаем

    где знак «=» относится к обратимым, а знак «>» - к необрати­мым процессам.

    Соотношение (10.18) получено на основании (10.11) и поэтому также выражает второе начало термодинамики.

    Установим физический смысл энтропии.

    Формула (10.15) дает только разность энтропии, сама же энт­ропия определяется с точностью до произвольной постоянной:

    Если система перешла из одного состояния в другое, то независи­мо от характера процесса - обратимый он или необратимый - изме­нение энтропии вычисляется по формуле (10.15) для любого обрати­мого процесса, происходящего между этими состояниями. Это обус­ловлено тем, что энтропия является функцией состояния системы.

    Разность энтропии двух состояний легко вычисляется в обра­тимом изотермическом процессе:

    где Q - полное количество теплоты, полученное системой в про­цессе перехода из состояния 1 в состояние 2 при постоянной температуре Т. Последнюю формулу используют при вычислении изме­нения энтропии в таких процессах, как плавление, парообразова­ние и т. п. В этих случаях Q - теплота фазового превращения. Если процесс происходит в изолированной системе (dQ = 0), то [см. (10.18)] в обратимом процессе энтропия не изменяется: S 2 - S 1 = 0, S = const, а в необратимом - возрастает. Это можно проиллюстрировать на примере теплообмена между двумя тела­ми, образующими изолированную систему и имеющими темпера­туру Т 1 и Т 2 соответственно (Т 1 > Т 2). Если небольшое количество теплоты dQ переходит от первого тела ко второму, то при этом энтропия первого тела уменьшается на dS 1 = dQ/T 1 , а второго - увеличивается на dS 2 = dQ/T 2 . Так как количество теплоты неве­лико, то можно считать, что температуры первого и второго тел в процессе теплообмена не изменяются. Полное изменение энтро­пии системы положительно:

    следовательно, энтропия изолированной системы возрастает. Ес­ли бы в этой системе происходил самопроизвольный переход теп­лоты от тела с меньшей температурой к телу с большей темпера­турой, то энтропия системы при этом уменьшилась бы:

    а это противоречит (10.18). Таким образом, в изолированной сис­теме не могут протекать такие процессы, которые приво­дят к уменьшению энтропии системы (еще одна формулиров­ка второго начала термодинамики).

    Увеличение энтропии в изолированной системе не будет проис­ходить беспредельно. В рассмотренном выше примере температу­ры тел со временем выровняются, теплопередача между ними прекратится и наступит равновесное состояние (см. § 10.1). В этом состоянии параметры системы будут оставаться неизменными, а энтропия достигнет максимума.

    Согласно молекулярно-кинетической теории, энтропию наибо­лее удачно можно охарактеризовать как меру неупорядоченности расположения частиц системы. Так, например, при уменьшении объема газа его молекулы вынуждены занимать все более опреде­ленные положения одна относительно другой, что соответствует большему порядку в системе, при этом энтропия убывает. Ког­да газ конденсируется или жидкость кристаллизуется при постоянной температуре, то выделяется теплота, энтропия убывает. И в этом случае происходит увеличение порядка в расположении частиц.

    Неупорядоченность состояния системы количественно харак­теризуется термодинамической вероятностью W т ep . Для выясне­ния ее смысла рассмотрим систему, состоящую из четырех частиц газа: а, Ь, с, d (рис. 10.11). Эти частицы находятся в объеме, раз­деленном мысленно на две равные ячейки, и могут свободно в нем перемещаться.

    Состояние системы, определяемое числом частиц в первой и второй ячейках, назовем макросостоянием; состояние системы, определяемое тем, какие конкретно частицы находятся в каждой из ячеек, - микросостоянием. Тогда (рис. 10.11, а) макросостоя­ние - одна частица в первой ячейке и три частицы во второй - осуществляется четырьмя микросостояниями. Макросостояние, соответствующее размещению четырех частиц равномерно по две в каждой ячейке, осуществляется шестью микросостояниями (рис. 10.11,6).

    Термодинамической вероятностью называют число спосо­бов размещения частиц или число микросостояний, реали­зующих данное макросостояние.

    В рассмотренных примерах W т ep = 4 в первом случае и W т ep = 6 во втором. Очевидно, что равномерному распределению частиц по ячейкам (по две) соответствует большая термодинамическая веро­ятность. С другой стороны, равномерное распределение частиц от­вечает равновесному состоянию с наибольшей энтропией. Из те­ории вероятностей ясно, что система, предоставленная самой се­бе, стремится прийти к макросостоянию, которое реализуется наибольшим количеством способов, наибольшим количеством микросостояний, т. е. к состоянию с наибольшей термодинамиче­ской вероятностью.

    Заметим, что если газу предоставить возможность расширять­ся, его молекулы будут стремиться равномерно занять весь воз­можный объем, при этом процессе энтропия увеличивается. Об­ратный процесс - стремление молекул занять лишь часть объема, например половину комнаты, - не наблюдается, этому соответст­вовало бы состояние со значительно меньшей термодинамической вероятностью и меньшей энтропией.

    Отсюда можно сделать вывод о связи энтропии с термодинами­ческой вероятностью. Больцман установил, что энтропия линейно связана с логарифмом термодинамической вероятности:

    где k - постоянная Больцмана.

    Второе начало термодинамики - статистический закон, в отличие, например, от первого начала термодинамики или вто­рого закона Ньютона.

    Утверждение второго начала о невозможности некоторых процес­сов, по существу, является утверждением о чрезвычайно малой веро­ятности их, практически - невероятности, т. е. невозможности.

    В космических масштабах наблюдаются существенные откло­нения от второго начала термодинамики, а ко всей Вселенной, так же, как и к системам, состоящим из малого числа молекул, оно неприменимо.

    В заключение еще раз отметим, что если первый закон термо­динамики содержит энергетический баланс процесса, то вто­рой закон показывает его возможное направление. Аналогич­но тому, как второй закон термодинамики существенно дополня­ет первый закон, так и энтропия дополняет понятие энергии.