Структура воды: новые экспериментальные данные. Структура воды

Самое важное, уникальное по свойствам и составу вещество нашей планеты - это, конечно, вода. Ведь именно благодаря ей на Земле жизнь есть, в то время как на других известных сегодня объектах Солнечной системы ее нет. Твердая, жидкая, в виде пара - она нужна и важна любая. Вода и ее свойства составляют предмет изучения целой научной дисциплины - гидрологии.

Количество воды на планете

Если рассматривать показатель количества данного оксида во всех агрегатных состояниях, то его на планете около 75% от общей массы. При этом следует учитывать связанную воду в органических соединениях, живых существах, минералах и прочих элементах.

Если учитывать только жидкое и твердое состояние воды, показатель падет до 70,8%. Рассмотрим, как распределяются эти проценты, где содержится рассматриваемое вещество.

  1. Соленой воды в океанах и морях, солончаковых озерах на Земле 360 млн км 2 .
  2. Пресная вода распределена неравномерно: ее в ледниках Гренландии, Арктики, Антарктиды заковано во льды 16,3 млн км 2 .
  3. В пресных реках, болотах и озерах сосредоточено 5,3 млн км 2 оксида водорода.
  4. Подземные воды составляют 100 млн м 3 .

Именно поэтому космонавтам из далекого космического пространства видно Землю в форме шара голубого цвета с редкими вкраплениями суши. Вода и ее свойства, знание особенностей строения являются важными элементами науки. К тому же, в последнее время человечество начинает испытывать явную нехватку пресной воды. Может быть, такие знания помогут в решении данной проблемы.

Состав воды и строение молекулы

Если рассмотреть эти показатели, то сразу станут понятны и свойства, которые проявляет это удивительное вещество. Так, молекула воды состоит из двух атомов водорода и одного атома кислорода, поэтому имеет эмпирическую формулу Н 2 О. Кроме того, при построении самой молекулы большую роль играют электроны обоих элементов. Посмотрим, что собой представляют структура воды и ее свойства.

Очевидно, что каждая молекула ориентирована вокруг другой, и все вместе они формируют общую кристаллическую решетку. Интересно то, что оксид построен в форме тетраэдра - атом кислорода в центре, а две пары электронов его и два атома водорода вокруг асимметрично. Если провести через центры ядер атомов линии и соединить их, то получится именно тетраэдрическая геометрическая форма.

Угол между центром атома кислорода и ядрами водородов составляет 104,5 0 С. Длина связи О-Н = 0,0957 нм. Наличие электронных пар кислорода, а также его большее в сравнении с водородами сродство к электрону обеспечивают формирование в молекуле отрицательно заряженного поля. В противовес ему ядра водородов образуют положительно заряженную часть соединения. Таким образом, выходит, что молекула воды - диполь. Это определяет то, какой может быть вода, и ее физические свойства также зависят от строения молекулы. Для живых существ эти особенности играют жизненно важную роль.

Основные физические свойства

К таковым принято относить кристаллическую решетку, температуры кипения и плавления, особенные индивидуальные характеристики. Все их и рассмотрим.

  1. Строение кристаллической решетки оксида водорода зависит от агрегатного состояния. Оно может быть твердым - лед, жидким - основная вода при обычных условиях, газообразным - пар при повышении температуры воды свыше 100 0 С. Красивые узорные кристаллы формирует лед. Решетка в целом рыхлая, но соединение очень прочное, плотность низкая. Видеть ее можно на примере снежинок или морозных узоров на стеклах. У обычной воды решетка не имеет постоянной формы, она изменяется и переходит из одного состояния в другое.
  2. Молекула воды в космическом пространстве имеет правильную форму шара. Однако под действием земной силы тяжести она искажается и в жидком состоянии принимает форму сосуда.
  3. То, что по структуре оксид водорода - диполь, обуславливает следующие свойства: высокая теплопроводность и теплоемкость, которая прослеживается в быстром нагревании и долгом остывании вещества, способность ориентировать вокруг себя как ионы, так и отдельные электроны, соединения. Это делает воду универсальным растворителем (как полярным, так и нейтральным).
  4. Состав воды и строение молекулы объясняют способность этого соединения образовывать множественные водородные связи, в том числе с другими соединениями, имеющими неподеленные электронные пары (аммиак, спирт и прочие).
  5. Температура кипения жидкой воды - 100 0 С, кристаллизация наступает при +4 0 С. Ниже этого показателя - лед. Если же увеличивать давление, то температура кипения воды резко возрастет. Так, при высоких атмосферах в ней можно растопить свинец, но она при этом даже не закипит (свыше 300 0 С).
  6. Свойства воды весьма значимы для живых существ. Например, одно из самых важных - поверхностное натяжение. Это формирование тончайшей защитной пленки на поверхности оксида водорода. Речь идет о воде в жидком состоянии. Эту пленку разорвать механическим воздействием очень сложно. Учеными установлено, что понадобится сила, равная весу в 100 тонн. Как ее заметить? Пленка очевидна, когда вода капает из крана медленно. Видно, что она словно в какой-то оболочке, которая растягивается до определенного предела и веса и отрывается в виде круглой капельки, слегка искаженной силой тяжести. Благодаря поверхностному натяжению многие предметы могут находиться на поверхности воды. Насекомые, имеющие особые приспособления, могут свободно передвигаться по ней.
  7. Вода и ее свойства аномальны и уникальны. По органолептическим показателям данное соединение - бесцветная жидкость без вкуса и запаха. То, что мы называем вкусом воды, - это растворенные в ней минералы и другие компоненты.
  8. Электропроводность оксида водорода в жидком состоянии зависит от того, сколько и каких солей в нем растворены. Дистиллированная вода, не содержащая никаких примесей, электрический ток не проводит.

Лед - это особое состояние воды. В структуре этого ее состояния молекулы связаны друг с другом водородными связями и формируют красивую кристаллическую решетку. Но она достаточно неустойчива и легко может расколоться, растаять, то есть деформироваться. Между молекулами сохраняется множество пустот, размеры которых превышают размеры самих частиц. Благодаря этому плотность льда меньше, чем жидкого оксида водорода.

Это имеет большое значение для рек, озер и прочих пресных водоемов. Ведь в зимний период вода в них не замерзает полностью, а лишь покрывается плотной коркой более легкого льда, всплывающего наверх. Если бы данное свойство не было характерно для твердого состояния оксида водорода, то водоемы промерзали бы насквозь. Жизнь под водой была бы невозможна.

Кроме того, твердое состояние воды имеет большое значение как источник огромного количества питьевых пресных запасов. Это ледники.

Особенным свойством воды можно назвать явление тройной точки. Это такое состояние, при котором лед, пар и жидкость могут существовать одновременно. Для этого требуются такие условия, как:

  • высокое давление - 610 Па;
  • температура 0,01 0 С.

Показатель прозрачности воды варьируется в зависимости от посторонних примесей. Жидкость может быть полностью прозрачной, опалесцентной, мутной. Поглощаются волны желтого и красного цветов, глубоко проникают лучи фиолетовые.

Химические свойства

Вода и ее свойства - важный инструмент в понимании многих процессов жизнедеятельности. Поэтому они изучены очень хорошо. Так, гидрохимию интересуют вода и ее химические свойства. Среди них можно назвать следующие:

  1. Жесткость. Это такое свойство, которое объясняется наличием солей кальция и магния, их ионов в растворе. Подразделяется на постоянную (соли названных металлов: хлоридов, сульфатов, сульфитов, нитратов), временную (гидрокарбонаты), которая устраняется кипячением. В России воду перед использованием смягчают химическим путем для лучшего качества.
  2. Минерализация. Свойство, основанное на дипольном моменте оксида водорода. Благодаря его наличию молекулы способны присоединять к себе множество других веществ, ионов и удерживать их. Так формируются ассоциаты, клатраты и прочие объединения.
  3. Окислительно-восстановительные свойства. Как универсальный растворитель, катализатор, ассоциат, вода способна взаимодействовать с множеством простых и сложных соединений. С одними она выступает в роли окислителя, с другими - наоборот. Как восстановитель реагирует с галогенами, солями, некоторыми менее активными металлами, с многими органическими веществами. Последние превращения изучает органическая химия. Вода и ее свойства, в частности, химические, показывают, насколько она универсальна и уникальна. Как окислитель она вступает в реакции с активными металлами, некоторыми бинарными солями, многими органическими соединениями, углеродом, метаном. Вообще химические реакции с участием данного вещества нуждаются в подборе определенных условий. Именно от них и будет зависеть исход реакции.
  4. Биохимические свойства. Вода является неотъемлемой частью всех биохимических процессов организма, являясь растворителем, катализатором и средой.
  5. Взаимодействие с газами с образованием клатратов. Обычная жидкая вода может поглощать даже неактивные химически газы и располагать их внутри полостей между молекулами внутренней структуры. Такие соединения принято называть клатратами.
  6. Со многими металлами оксид водорода формирует кристаллогидраты, в которые он включен в неизменном виде. Например, медный купорос (CuSO 4 *5H 2 O), а также обычные гидраты (NaOH*H 2 O и другие).
  7. Для воды характерны реакции соединения, при которых происходит образование новых классов веществ (кислот, щелочей, оснований). Они не являются окислительно-восстановительными.
  8. Электролиз. Под действием электрического тока молекула разлагается на составные газы - водород и кислород. Один из способов получения их в лаборатории и промышленности.

С точки зрения теории Льюиса вода - это слабая кислота и слабое основание одновременно (амфолит). То есть можно сказать о некоей амфотерности в химических свойствах.

Вода и ее полезные свойства для живых существ

Сложно переоценить то значение, которое имеет оксид водорода для всего живого. Ведь вода и есть сам источник жизни. Известно, что без нее человек не смог бы прожить и недели. Вода, ее свойства и значение просто колоссальны.

  1. Это универсальный, то есть способный растворять и органические, и неорганические соединения, растворитель, действующий в живых системах. Именно поэтому вода - источник и среда для протекания всех каталитических биохимических преобразований, с формированием сложных жизненно важных комплексных соединений.
  2. Способность образовывать водородные связи делает данное вещество универсальным в выдерживании температур без изменения агрегатного состояния. Если бы это было не так, то при малейшем снижении градусов она превращалась бы в лед внутри живых существ, вызывая гибель клеток.
  3. Для человека вода - источник всех основных бытовых благ и нужд: приготовление пищи, стирка, уборка, принятие ванны, купание и плавание и прочее.
  4. Промышленные заводы (химические, текстильные, машиностроительные, пищевые, нефтеперерабатывающие и другие) не сумели бы осуществлять свою работу без участия оксида водорода.
  5. Издревле считалось, что вода - это источник здоровья. Она применялась и применяется сегодня как лечебное вещество.
  6. Растения используют ее как основной источник питания, за счет чего они продуцируют кислород - газ, благодаря которому существует жизнь на нашей планете.

Можно назвать еще десятки причин того, почему вода - это самое широко распространенное, важное и необходимое вещество для всех живых и искусственно созданных человеком объектов. Мы привели только самые очевидные, главные.

Гидрологический цикл воды

Иными словами, это ее круговорот в природе. Очень важный процесс, позволяющий постоянно пополнять исчезающие запасы воды. Как он происходит?

Основных участников трое: подземные (или грунтовые) воды, поверхностные воды и Мировой океан. Важна также и атмосфера, конденсирующая и выдающая осадки. Также активными участниками процесса являются растения (в основном деревья), способные поглощать огромное количество воды в сутки.

Итак, процесс происходит следующим образом. Грунтовые воды заполняют подземные капилляры и стекаются к поверхности и Мировому океану. Затем поверхностные воды поглощаются растениями и транспирируются в окружающую среду. Также происходит испарение с огромных площадей океанов, морей, рек, озер и прочих водоемов. Попав в атмосферу, вода что делает? Конденсируется и проливается обратно в виде осадков (дождь, снег, град).

Если бы не происходили эти процессы, то запасы воды, особенно пресной, давно бы уже закончились. Именно поэтому охране и нормальному гидрологическому циклу уделяется людьми большое внимание.

Понятие о тяжелой воде

В природе оксид водорода существует в виде смеси изотопологов. Это связано с тем, что водород формирует три вида изотопа: протий 1 Н, дейтерий 2 Н, тритий 3 Н. Кислород, в свою очередь, также не отстает и образует три устойчивые формы: 16 О, 17 О, 18 О. Именно благодаря этому существует не просто обычная протиевая вода состава Н 2 О (1 Н и 16 О), но еще и дейтериевая, и тритиевая.

При этом устойчива по структуре и форме именно дейтериевая (2 Н), которая включается в состав практически всех природных вод, но в малом количестве. Именно ее называют тяжелой. Она несколько отличается от обычной или легкой по всем показателям.

Тяжелая вода и ее свойства характеризуются несколькими пунктами.

  1. Кристаллизуется при температуре 3,82 0 С.
  2. Кипение наблюдается при 101,42 0 С.
  3. Плотность составляет 1,1059 г/см 3 .
  4. Как растворитель в несколько раз хуже легкой воды.
  5. Имеет химическую формулу D 2 O.

При проведении опытов, показывающих влияние подобной воды на живые системы, было установлено, что жить в ней способны лишь некоторые виды бактерий. Для приспособления и акклиматизации колониям потребовалось время. Но, приспособившись, они полностью восстановили все жизненно важные функции (размножение, питание). Кроме того, стали очень устойчивы к воздействию радиоактивного излучения. Опыты на лягушках и рыбах положительного результата не дали.

Современные области применения дейтерия и образованной им тяжелой воды - атомная и ядерная энергетика. Получить в лабораторных условиях такую воду можно при помощи электролиза обычной - она образуется как побочный продукт. Сам дейтерий формируется при многократных перегонках водорода в специальных устройствах. Применение его основано на способности замедлять нейтронные синтезы и протонные реакции. Именно тяжелая вода и изотопы водорода - основа для создания ядерной и водородной бомбы.

Опыты на применении дейтериевой воды людьми в небольших количествах показали, что задерживается она недолго - полный вывод наблюдается через две недели. Употреблять ее в качестве источника влаги для жизни нельзя, однако техническое значение просто огромно.

Талая вода и ее применение

Свойства такой воды издревле были определены людьми как целебные. Давно было замечено, что при таянии снега животные стараются напиться водой из образовавшихся лужиц. Позже были тщательно исследованы ее структура и биологическое воздействие на организм человека.

Талая вода, ее признаки и свойства находятся посередине между обычной легкой и льдом. Изнутри она образована не просто молекулами, а набором кластеров, сформированных кристаллами и газом. То есть внутри пустот между структурными частями кристалла находятся водород и кислород. По общему виду строение талой воды сходно со строением льда - сохраняется структурность. Физические свойства такого оксида водорода незначительно меняются в сравнении с обычным. Однако биологическое воздействие на организм отличное.

При замораживании воды первой фракцией превращается в лед более тяжелая часть - это дейтериевые изотопы, соли и примеси. Поэтому эту сердцевину следует удалять. А вот остальная часть - чистая, структурированная и полезная вода. Каково воздействие на организм? Учеными Донецкого НИИ были названы следующие виды улучшений:

  1. Ускорение восстановительных процессов.
  2. Укрепление иммунитета.
  3. У детей после ингаляций такой водой происходит восстановление и излечение простудных заболеваний, проходит кашель, насморк и прочее.
  4. Улучшается дыхание, состояние гортани и слизистых оболочек.
  5. Общее самочувствие человека, активность повышаются.

Сегодня существует ряд сторонников лечения именно талой водой, которые пишут свои положительные отзывы. Однако есть ученые, в том числе медики, которые эти взгляды не поддерживают. Они считают, что вреда от такой воды не будет, но и пользы мало.

Энергетика

Почему свойства воды могут изменяться и восстанавливаться при переходе в разные агрегатные состояния? Ответ на этот вопрос следующий: у данного соединения существует своя информационная память, которая записывает все изменения и приводит к восстановлению структуры и свойств в нужное время. Биоэнергетическое поле, через которое проходит часть воды (та, что поступает из космоса), несет в себе мощный заряд энергии. Эту закономерность часто используют при лечении. Однако с медицинской точки зрения не каждая вода способна оказать благоприятный эффект, в том числе и информационный.

Структурированная вода - что это?

Это такая вода, которая имеет несколько иное строение молекул, расположение кристаллических решеток (такое, которое наблюдается у льда), но это все же жидкость (талая также относится к этому типу). В этом случае состав воды и ее свойства с научной точки зрения не отличаются от тех, что характерны для обычного оксида водорода. Поэтому структурированная вода не может иметь такого широкого лечебного эффекта, который ей приписывают эзотерики и сторонники нетрадиционной медицины.

Вода может находиться в трех агрегатных состояниях -- газообразном, жидком и твердом. В каждом из этих состояний структура воды неодинакова. В зависимости от состава находящихся в ней веществ вода приобретает новые свойства. Твердое состояние воды также бывает, по крайней мере, двух типов: кристаллическое -- лед и некристаллическое -- стеклообразное, аморфное (состояние витрификации). При мгновенном замораживании с помощью, например, жидкого азота молекулы не успевают построиться в кристаллическую решетку, и вода приобретает твердое стеклообразное состояние. Именно это свойство воды позволяет замораживать без повреждения живые организмы, такие, как одноклеточные водоросли, листочки мха Мпіuт, состоящие из двух слоев клеток. Замораживание же с образованием кристаллической воды приводит к повреждению клеток.

Для кристаллического состояния воды характерно большое разнообразие форм. Давно замечено, что кристаллические структуры воды напоминают радиолярии, листья папоротника, цисты. По этому поводу А. А. Любищев высказал предположение, что законы кристаллизации в чем-то сходны с законами образования живых структур.

Физические свойства воды. Вода -- самое аномальное вещество, хотя принята за эталон меры плотности и объема для других веществ.

Плотность. Все вещества увеличивают объём при нагревании, уменьшая при этом плотность. Однако при давлении 0,1013 МПа (1 атм.) у воды в интервале от 0 до 4 0 С при увеличении температуры объём уменьшается и максимальная плотность наблюдается (при этой температуре 1 см 3 воды имеем массу 1г). При замерзании объем воды резко возрастает на 11%, а при таянии льда при 0°С так же резко уменьшается. С увеличением давления температура замерзания воды понижается через каждые 13,17 МПа (130 атм.) на 1 0 С. Поэтому на больших глубинах при минусовых температурах вода в океане не замерзает. С увеличением температуры до 100 0 С плотность жидкой воды понижается на 4% (при 4°С плотность ее равна 1).

Точки кипения и замерзания (плавления). При давлении 0,1013 МПа (1 атм.) точки замерзания и кипения воды находятся при 0°С и 100°С, что резко отличает Н20 от соединений водорода с элементами VI группы периодической системы Менделеева. В ряду Н2Те, H2Se, H2S и т.д. с увеличением относительной молекулярной массы точки кипения и замерзания этих веществ повышаются. При соблюдении этого правила вода должна была бы иметь точки замерзания между -- 90 и -- 120°С, а кипения -- между 75 и 100 °С. Температура кипения воды возрастает с увеличением давления, а температура замерзания (плавления) -- падает (прил.1).

Теплота плавления. Скрытая теплота плавления льда очень высока -- около 335 Дж/г (для железа -- 25, для серы -- 40). Это свойство выражается, например, в том, что лед при нормальном давлении может иметь температуру от -- 1 до -- 7°С. Скрытая теплота парообразования воды (2,3 кДж/г) почти в 7 раз выше скрытой теплоты плавления.

Теплоемкость. Величина теплоемкости воды (т.е. количество теплоты, необходимое для повышения температуры на 1 °С) в 5 --30 раз выше, чем у других веществ. Лишь водород и аммиак обладают большей теплоемкостью. Кроме того, лишь у жидкой воды и ртути удельная теплоемкость с повышением температуры от 0 до 35°С падает (затем начинает возрастать). Удельная теплоемкость воды при 16°С условно принята за единицу, служа эталоном для других веществ. Поскольку теплоемкость песка в 5 раз меньше, чем у жидкой воды, то при одинаковом нагреве солнцем вода в водоеме нагревается в 5 раз слабее, чем песок на берегу, но во столько же раз дольше сохраняет теплоту. Высокая теплоемкость воды защищает растения от резкого повышения температуры при высокой температуре воздуха, а высокая теплота парообразования участвует в терморегуляции у растений.

Высокие температуры плавления и кипения, высокая теплоемкость свидетельствуют о сильном притяжении между соседними молекулами, вследствие чего жидкая вода обладает большим внутренним сцеплением.

Вода как растворитель. Полярность молекулы воды обусловливает ее свойство растворять вещества лучше, чем другие жидкости. Растворение кристаллов неорганических солей осуществляется благодаря гидратации входящих в их состав ионов. Хорошо растворяются в воде органические вещества, с карбоксильными, гидроксильными. Карбонильными и с другими группами, которых вода образует водородные связи. (прил. 1)

Вода в растении находится как в свободном, так и в связанном состоянии (прил.2). Свободная вода - подвижна, она имеет практически все физико-химические свойства чистой воды, хорошо проникает через клеточные мембраны. Существуют специальные мембранные белки, образующие внутри мембраны каналы, проницаемые для воды (аквапорины). Свободная вода вступает в различные биохимические реакции, испаряется в процессе транспирации, замерзает при низких температурах.

Связанная вода - имеет измененные физические свойства главным образом в результате взаимодействия с неводными компонентами. Условно принимают под связанной водой ту, которая не замерзает при понижении температуры до - 10°С.

Связанная вода в растениях бывает:

1) Осмотически - связанная

2) Коллоидно-связанная

3) Капиллярно-связанная

Осмотически-связанная вода - связана с ионами или низкомолекулярными веществами. Вода гидратирует растворенные вещества - ионы, молекулы. Вода электростатически связывается и образует мономолекулярный слой первичной гидратации. Вакуолярный сок содержит сахара, органические кислоты и их соли, неорганические катионы и анионы. Эти вещества удерживают воду осмотически.

Коллоидно-связанная вода - включает воду, которая находится внутри коллоидной системы и воду, которая находится на поверхности коллоидов и между ними, а также иммобилизованную воду. Иммобилизация представляет собой механический захват воды при конформационных изменениях макромолекул или их комплексов, при этом вода оказывается заключенной в замкнутом пространстве макромолекулы. Значительное количество коллоидно-связанной воды находится на поверхности фибрилл клеточной стенки, а также в биоколлоидах цитоплазмы и матриксе мембранных структур клетки.

Воду, гидратирующую коллоидные частицы (прежде всего белки), называют коллоидно-связанной, а растворенные вещества (минеральные соли, сахара, органические кислоты и др.) - осмотически-связанной. Некоторые исследователи считают, что вся вода в клетке в той или иной степени связана. Физиологи условно понимают под связанной водой ту, которая не замерзает при понижении температуры до-10 °С. Важно отметить, что всякое связывание молекул воды (добавление растворенных веществ, гидрофобные взаимодействия и др.) уменьшает их энергию. Именно это лежит в основе снижения водного потенциала клетки по сравнению с чистой водой.

Содержание воды в различных органах растений колеблется в довольно широких пределах. Оно изменяется в зависимости от условий внешней среды, возраста и вида растений. Так, содержание воды в листьях салата составляет 93-95%, кукурузы -- 75-77%. Количество воды неодинаково в разных органах растений: в листьях подсолнечника воды содержится 80-83%, в стеблях - 87-89%, в корнях -- 73-75%. Содержание воды, равное 6-11%, характерно главным образом для воздушно-сухих семян, в которых процессы жизнедеятельности заторможены. Вода содержится в живых клетках, в мертвых элементах ксилемы и в межклетниках. В межклетниках вода находится в парообразном состоянии. Основными испаряющими органами растения являются листья. В связи с этим естественно, что наибольшее количество воды заполняет межклетники листьев. В жидком состоянии вода находится в различных частях клетки: клеточной оболочке, вакуоли, протоплазме. Вакуоли -- наиболее богатая водой часть клетки, где содержание ее достигает 98%. При наибольшей оводненности содержание воды в протоплазме составляет 95%. Наименьшее содержание воды характерно для клеточных оболочек. Количественное определение содержания воды в клеточных оболочках затруднено; по-видимому, оно колеблется от 30 до 50%.

Формы воды в разных частях растительной клетки также различны. В вакуолярном клеточном соке преобладает вода, удерживаемая сравнительно низкомолекулярными соединениями (осмотически-связанная) и свободная вода. В оболочке растительной клетки вода связана главным образом высокополимерными соединениями (целлюлозой, гемицеллюлозой, пектиновыми веществами), т. е. коллоидно-связанная вода. В самой цитоплазме имеется вода свободная, коллоидно- и осмотически-связанная. Вода, находящаяся на расстоянии до 1 нм от поверхности белковой молекулы, связана прочно и не имеет правильной гексагональной структуры (коллоидно-связанная вода). Кроме того, в протоплазме имеется определенное количество ионов, а, следовательно, часть воды осмотически связана.

Физиологическое значение свободной и связанной воды различно. Большинство исследователей полагает, что интенсивность физиологических процессов, в том числе и темпов роста, зависит в первую очередь от содержания свободной воды. Имеется прямая корреляция между содержанием связанной воды и устойчивостью растений против неблагоприятных внешних условий. Указанные физиологические корреляции наблюдаются не всегда.

Вода - неорганическое вещество, молекулы которого состоят из двух атомов водорода и одного атома кислорода. Количество воды неодинакова в разных организмах. Больше всего воды содержит тело медуз (95-98%), водоросли (более 80%), меньше всего ее у насекомых (40-50%), слоевища лишайников (5-7%). В теле млекопитающих в среднем 75% воды, в том числе у человека - 60-65% массы тела. Количество воды неодинакова и в различных тканях и органах одного и того же организма. Например, у человека содержание воды в тканях и органах таков: кровь (83,0%), почки (82,7%), сердце (79,2%), легкие (79,0%), мышцы (75 6%), мозг (74,8%), кожа (72,0%), скелет (22,0%), жировая ткань (10,0%).

Большая часть воды (70% объема) находится в клетках тела в свободном и связанном виде, меньшая часть (30% объема) - перемещается во внеклеточном пространстве организма и находится в свободном состоянии. Связанная вода (4 5%) бывает осмотически связанной (вода в связях с ионами и низкомолекулярными соединениями), коллоидно связанной (вода в связях как с внутренними, так и с расположенными на поверхности химическими группами высокомолекулярных соединений) и структурно свя связанной (вода в замкнутом пространстве высокомолекулярных биополимеров сложной структуры). Свободная вода (95-96%) является универсальным растворителем.

Значение воды . Количественно вода занимает первое место среди химических соединений любой которой клетки. Наличие воды является обязательным условием жизнедеятельности организмов. Какие же функции выполняет в биосистемах эта самая распространенная на Земле вещество?

Вода - универсальный растворитель для ионных и многих ковалентных соединений, обеспечивает протекание химических реакций, транспорт веществ в клетку и из клетки.

Вода - реагент, при участии которого в клетках происходят реакции гидролиза и гидратации, окислительно-восстановительные и кислотно-основные реакции.

Вода - теплорегулятор, поддерживает оптимальный тепловой режим организмов и обеспечивает равномерное распределение тепла в живых системах.

Вода - осморегулятора, что обеспечивает форму клеток, транспорт неорганических веществ.

Вода - опора, обеспечивает упругий состояние клеток (тургор), выступает амортизатором от механических воздействий на организм, выполняет функцию гидроскелет у многих животных.

Вода - средство транспорта, осуществляет связь в клетках, между клетками, тканями, органами и обеспечивает гомеостаз и функционирование организма как единого целого.

Вода - среда обитания для водных организмов, в нем осуществляются пассивное движение, внешнее оплодотворение, распространение семян, гамет и личиночных стадий наземных организмов.

Вода - конформатор, имеет большое значение в организации пространственной структуры (конформации) биополимеров.

Свойства воды. Роль воды в биосистемах определяется ее физико-химическими свойствами.

■ Для чистой воды характерны прозрачность, отсутствие вкуса, цвета, запаха. Природная вода всегда содержит различные примеси: растворенные вещества в виде ионов, нерастворенные вещества - в виде суспензии. Вода - единственное вещество на Земле, которая одновременно и в большом количестве встречается в жидком, твердом и газообразном состояниях.

■ Плотность воды при температуре 4 ° С является максимальной и составляет 1 г / см3. С понижением температуры плотность уменьшается, поэтому лед плавает на поверхности воды.

■ Вода имеет аномально высокие удельную теплоемкость (4,17 Дж / ГК), теплоту испарения (при температуре 100 ° С - 2253 Дж / г), теплоту таяния (при температуре 0 ° С - 333,98 Дж / г).

■ Воде свойственный исключительно большое поверхностное натяжение за счет мощных сил сцепления (когезии), связанных с образованием водородных связей между молекулами.

■ Для воды характерное свойство прилипания (адгезии), которая проявляется в случае поднятия ее против гравитационных сил.

■ Воде в жидком состоянии свойственна текучись, нестискуванисть, чем обусловлены явления осмоса и тургора.

■ Вода обладает амфотерными свойствами, то есть проявляет свойства как кислоты так и основы и участвует в кислотно-основных реакциях.

■ Вода способна выступать и как восстановитель, и как окислитель, осуществляя биологически важные окислительно-восстановительные реакции обмена веществ.

■ Молекулы воды полярны, благодаря чему участвуют в реакциях гидратации, обеспечивая растворения многих химических соединений.

■ Вода участвует в биологически важных реакциях разложения - реакциях гидролиза.

■ Молекулы воды способны диссоциировать на ионы: Н2О = Н + + ОН.

Особенности строения молекул воды. Уникальные свойства воды определяются структурой ее молекул.

В молекуле воды каждый атом водорода содержится у атома кислорода ковалентной связью, энергия которого почти 110 ккал / моль. Благодаря этому вода является очень стойкой химическим соединением. Водяной пар начинает разлагаться на О, и Н, при температуре, выше 1000 ° С.

В молекуле воды две пары электронов из четырех образованные ковалентной связью и смещены к одной из сторон молекулы с формированием двух положительно заряженных полюсов. А две другие пары остаются неразделенными и смещены относительно ядра атома кислорода к противоположной стороне, где образуют два отрицательно заряженные полюса.

Итак, молекулы воды являются полярными.

Благодаря полярности соседние молекулы воды могут взаимодействовать между собой и с молекулами полярных веществ с образованием водородных связей, обуславливающих уникальные физические свойства и биологические функции воды. Энергия этой связи, по сравнению с энергией ковалентной связи, невелика. Она составляет всего 4,5 ккал / моль, и благодаря тепловому движению эти связи между молекулами воды постоянно возникают и разрываются. Водородные связи - это связи между двумя ковалентно связанными атомами с большим значением электроотрицательности (О, N , F ) посредством атома водорода Н. Обычно водородная связь обозначают тремя точками и этим отмечают , что он намного слабее ; чем ковалентная связь (примерно в 15-20 раз ).

Водородные связи играют определяющую роль в образовании специфической квази и кристаллической структуры воды. Согласно современным представлениям, основой строения воды является кристаллическая решетка с размытой тепловым движением частью молекул свободной воды. Для воды в твердом состоянии характерные молекулярные кристаллические решетки, поскольку кристаллы строятся из молекул, связанных друг с другом водородными связями. Именно наличием элементов кристаллической решетки, а также дипольнистю молекул воды и обусловлено очень большое значение относительной диэлектрической проницаемости воды.

Молекулы жидкой воды способны к полимеризации или ассоциации с образованием ассоциатов (Н2О) n. Образование плотных ассоциатов происходит +4 С, чем и объясняется большое плотность воды при этой температуре. При нагревании водородные связи разрушаются и ассоциаты начинают расщепляться, поскольку энергия теплового движения становится больше от энергии этих связей. Разрыва связей требует много энергии, откуда и высокие температура кипения и удельная теплоемкость воды. Это имеет существенное значение для организмов во время колебаний температуры среды обитания.

Рентгеноструктурный анализ воды установлено, что и в жидкой воде остаются фрагменты структуры льда. При температуре 20 ° С около 70% молекул находится в воде в виде агрегатов, содержащих в среднем по 57 молекул в каждом. Такие агрегаты называют кластерами. Молекулы воды, входящих в состав кластера, скованные и метаболически инертные. Активная роль в реакциях обмена веществ принадлежит только свободным молекулам воды. Если кластеров много, то это приводит к иммобилизации воды, то есть к исключению свободной воды, ограничения ферментативных процессов и к снижению функциональной активности клетки.

БИОЛОГИЯ + При диссоциации определенных электролитов, в том числе и воды, образуются ионы Н + и ОН - , от концентрации которых зависит кислотность или основность растворов и, соответственно, структурные особенности и активность многих биомолекул и жизненных процессов. Эту концентрацию измеряют с использованием водородного показателя - рН . pH - отрицательный десятинный логарифм концентрации

ионов Н + . В чистой воде эта концентрация составляет 1-10 -7 моль / л (-log 10 -7 = 7 ) . Поэтому нейтральной реакции воды соответствует pH 7, кислой-pH <7 и основной -pH> 7. Протяженность шкалы pH - от 0 до 14. Значение pH в клетках слабощелочная. Изменение его на одну-две единицы губительна для клетки. Постоянство pH в клетках поддерживается за счет буферных систем, которые содержат смесь электролитов. Они состоят из слабой кислоты (донора Н +) и сопряженной с ней основы (акцептора Н +) , которые в соответствии связывают ионы H + и боны ОН - , благодаря чему реакция pH внутри клетки почти не меняется.

Гидрофильные и гидрофобные соединения. В молекул воды две пары совместных электронов смещены к кислорода, поэтому электрический заряд внутри молекул распределен неравномерно: протоны Н + обусловливают положительный заряд на одном полюсе, а пары электронов кислорода - отрицательный заряд на противоположном полюсе. Эти заряды равны по величине и расположены на определенном расстоянии друг от друга. Итак, молекула воды - это постоянный диполь, который может взаимодействовать с носителями положительных и отрицательных зарядов. Наличием полюсов в молекулах воды объясняется способность воды к химическим реакциям гидратации.

Благодаря своей полярности молекулы воды могут присоединяться к молекулам или ионов растворимых в воде веществ с образованием гидратов (соединений воды с растворенным веществом). Эти реакции являются экзотермическими и, в отличие от реакций гидролиза, гидратация не сопровождается образованием водородных или гидроксильных ионов.

При взаимодействии молекул воды с молекулами полярных веществ притяжения молекул воды к розчинюванои вещества превышать энергию притяжения между молекулами воды. Поэтому молекулы или ионы таких соединений встраиваются в общую систему водородных связей воды. Гидрофильные вещества - это полярные вещества, которые способны хорошо растворяться в воде. Это растворимые кристаллические соли, моносахариды, определенные аминокислоты, нулеинови кислоты и др.

В случае взаимодействия молекул воды с молекулами неполярных веществ энергия притяжения молекул воды в них будет меньше, чем энергия водородных связей. Неполярные молекулы пытаются изолироваться от молекул воды, они группируются между собой и вытесняются из водного раствора. Гидрофобные вещества - это неполярные вещества, которые не растворяются в воде. Это нерастворимые минеральные соли, липиды, полисахариды, определенные белки и др. Некоторые органические молекулы имеют двойные свойства: на одних их участках сосредоточены полярные группы, на других - неполярные. Таковы многие белки, фосфолипиды. их называют амфифильных веществами.

Где Карбон, там разнообразие органических веществ, где Карбон, там самые разнообразные по молекулярной архитектурой конструкции.

Энциклопедия юного химика

Самое важное, уникальное по свойствам и составу вещество нашей планеты - это, конечно, вода. Ведь именно благодаря ей на Земле жизнь есть, в то время как на других известных сегодня объектах Солнечной системы ее нет. Твердая, жидкая, в виде пара - она нужна и важна любая. Вода и ее свойства составляют предмет изучения целой научной дисциплины - гидрологии.

Количество воды на планете

Если рассматривать показатель количества данного оксида во всех агрегатных состояниях, то его на планете около 75% от общей массы. При этом следует учитывать связанную воду в органических соединениях, живых существах, минералах и прочих элементах.

Если учитывать только жидкое и твердое состояние воды, показатель падет до 70,8%. Рассмотрим, как распределяются эти проценты, где содержится рассматриваемое вещество.

  1. Соленой воды в океанах и морях, солончаковых озерах на Земле 360 млн км 2 .
  2. Пресная вода распределена неравномерно: ее в ледниках Гренландии, Арктики, Антарктиды заковано во льды 16,3 млн км 2 .
  3. В пресных реках, болотах и озерах сосредоточено 5,3 млн км 2 оксида водорода.
  4. Подземные воды составляют 100 млн м 3 .

Именно поэтому космонавтам из далекого космического пространства видно Землю в форме шара голубого цвета с редкими вкраплениями суши. Вода и ее свойства, знание особенностей строения являются важными элементами науки. К тому же, в последнее время человечество начинает испытывать явную нехватку пресной воды. Может быть, такие знания помогут в решении данной проблемы.

Состав воды и строение молекулы

Если рассмотреть эти показатели, то сразу станут понятны и свойства, которые проявляет это удивительное вещество. Так, молекула воды состоит из двух атомов водорода и одного атома кислорода, поэтому имеет эмпирическую формулу Н 2 О. Кроме того, при построении самой молекулы большую роль играют электроны обоих элементов. Посмотрим, что собой представляют структура воды и ее свойства.

Очевидно, что каждая молекула ориентирована вокруг другой, и все вместе они формируют общую кристаллическую решетку. Интересно то, что оксид построен в форме тетраэдра - атом кислорода в центре, а две пары электронов его и два атома водорода вокруг асимметрично. Если провести через центры ядер атомов линии и соединить их, то получится именно тетраэдрическая геометрическая форма.

Угол между центром атома кислорода и ядрами водородов составляет 104,5 0 С. Длина связи О-Н = 0,0957 нм. Наличие электронных пар кислорода, а также его большее в сравнении с водородами сродство к электрону обеспечивают формирование в молекуле отрицательно заряженного поля. В противовес ему ядра водородов образуют положительно заряженную часть соединения. Таким образом, выходит, что молекула воды - диполь. Это определяет то, какой может быть вода, и ее физические свойства также зависят от строения молекулы. Для живых существ эти особенности играют жизненно важную роль.

Основные физические свойства

К таковым принято относить кристаллическую решетку, температуры кипения и плавления, особенные индивидуальные характеристики. Все их и рассмотрим.

  1. Строение кристаллической решетки оксида водорода зависит от агрегатного состояния. Оно может быть твердым - лед, жидким - основная вода при обычных условиях, газообразным - пар при повышении температуры воды свыше 100 0 С. Красивые узорные кристаллы формирует лед. Решетка в целом рыхлая, но соединение очень прочное, плотность низкая. Видеть ее можно на примере снежинок или морозных узоров на стеклах. У обычной воды решетка не имеет постоянной формы, она изменяется и переходит из одного состояния в другое.
  2. Молекула воды в космическом пространстве имеет правильную форму шара. Однако под действием земной силы тяжести она искажается и в жидком состоянии принимает форму сосуда.
  3. То, что по структуре оксид водорода - диполь, обуславливает следующие свойства: высокая теплопроводность и теплоемкость, которая прослеживается в быстром нагревании и долгом остывании вещества, способность ориентировать вокруг себя как ионы, так и отдельные электроны, соединения. Это делает воду универсальным растворителем (как полярным, так и нейтральным).
  4. Состав воды и строение молекулы объясняют способность этого соединения образовывать множественные водородные связи, в том числе с другими соединениями, имеющими неподеленные электронные пары (аммиак, спирт и прочие).
  5. Температура кипения жидкой воды - 100 0 С, кристаллизация наступает при +4 0 С. Ниже этого показателя - лед. Если же увеличивать давление, то температура кипения воды резко возрастет. Так, при высоких атмосферах в ней можно растопить свинец, но она при этом даже не закипит (свыше 300 0 С).
  6. Свойства воды весьма значимы для живых существ. Например, одно из самых важных - поверхностное натяжение. Это формирование тончайшей защитной пленки на поверхности оксида водорода. Речь идет о воде в жидком состоянии. Эту пленку разорвать механическим воздействием очень сложно. Учеными установлено, что понадобится сила, равная весу в 100 тонн. Как ее заметить? Пленка очевидна, когда вода капает из крана медленно. Видно, что она словно в какой-то оболочке, которая растягивается до определенного предела и веса и отрывается в виде круглой капельки, слегка искаженной силой тяжести. Благодаря поверхностному натяжению многие предметы могут находиться на поверхности воды. Насекомые, имеющие особые приспособления, могут свободно передвигаться по ней.
  7. Вода и ее свойства аномальны и уникальны. По органолептическим показателям данное соединение - бесцветная жидкость без вкуса и запаха. То, что мы называем вкусом воды, - это растворенные в ней минералы и другие компоненты.
  8. Электропроводность оксида водорода в жидком состоянии зависит от того, сколько и каких солей в нем растворены. Дистиллированная вода, не содержащая никаких примесей, электрический ток не проводит.

Лед - это особое состояние воды. В структуре этого ее состояния молекулы связаны друг с другом водородными связями и формируют красивую кристаллическую решетку. Но она достаточно неустойчива и легко может расколоться, растаять, то есть деформироваться. Между молекулами сохраняется множество пустот, размеры которых превышают размеры самих частиц. Благодаря этому плотность льда меньше, чем жидкого оксида водорода.

Это имеет большое значение для рек, озер и прочих пресных водоемов. Ведь в зимний период вода в них не замерзает полностью, а лишь покрывается плотной коркой более легкого льда, всплывающего наверх. Если бы данное свойство не было характерно для твердого состояния оксида водорода, то водоемы промерзали бы насквозь. Жизнь под водой была бы невозможна.

Кроме того, твердое состояние воды имеет большое значение как источник огромного количества питьевых пресных запасов. Это ледники.

Особенным свойством воды можно назвать явление тройной точки. Это такое состояние, при котором лед, пар и жидкость могут существовать одновременно. Для этого требуются такие условия, как:

  • высокое давление - 610 Па;
  • температура 0,01 0 С.

Показатель прозрачности воды варьируется в зависимости от посторонних примесей. Жидкость может быть полностью прозрачной, опалесцентной, мутной. Поглощаются волны желтого и красного цветов, глубоко проникают лучи фиолетовые.

Химические свойства

Вода и ее свойства - важный инструмент в понимании многих процессов жизнедеятельности. Поэтому они изучены очень хорошо. Так, гидрохимию интересуют вода и ее химические свойства. Среди них можно назвать следующие:

  1. Жесткость. Это такое свойство, которое объясняется наличием солей кальция и магния, их ионов в растворе. Подразделяется на постоянную (соли названных металлов: хлоридов, сульфатов, сульфитов, нитратов), временную (гидрокарбонаты), которая устраняется кипячением. В России воду перед использованием смягчают химическим путем для лучшего качества.
  2. Минерализация. Свойство, основанное на дипольном моменте оксида водорода. Благодаря его наличию молекулы способны присоединять к себе множество других веществ, ионов и удерживать их. Так формируются ассоциаты, клатраты и прочие объединения.
  3. Окислительно-восстановительные свойства. Как универсальный растворитель, катализатор, ассоциат, вода способна взаимодействовать с множеством простых и сложных соединений. С одними она выступает в роли окислителя, с другими - наоборот. Как восстановитель реагирует с галогенами, солями, некоторыми менее активными металлами, с многими органическими веществами. Последние превращения изучает органическая химия. Вода и ее свойства, в частности, химические, показывают, насколько она универсальна и уникальна. Как окислитель она вступает в реакции с активными металлами, некоторыми бинарными солями, многими органическими соединениями, углеродом, метаном. Вообще химические реакции с участием данного вещества нуждаются в подборе определенных условий. Именно от них и будет зависеть исход реакции.
  4. Биохимические свойства. Вода является неотъемлемой частью всех биохимических процессов организма, являясь растворителем, катализатором и средой.
  5. Взаимодействие с газами с образованием клатратов. Обычная жидкая вода может поглощать даже неактивные химически газы и располагать их внутри полостей между молекулами внутренней структуры. Такие соединения принято называть клатратами.
  6. Со многими металлами оксид водорода формирует кристаллогидраты, в которые он включен в неизменном виде. Например, медный купорос (CuSO 4 *5H 2 O), а также обычные гидраты (NaOH*H 2 O и другие).
  7. Для воды характерны реакции соединения, при которых происходит образование новых классов веществ (кислот, щелочей, оснований). Они не являются окислительно-восстановительными.
  8. Электролиз. Под действием электрического тока молекула разлагается на составные газы - водород и кислород. Один из способов получения их в лаборатории и промышленности.

С точки зрения теории Льюиса вода - это слабая кислота и слабое основание одновременно (амфолит). То есть можно сказать о некоей амфотерности в химических свойствах.

Вода и ее полезные свойства для живых существ

Сложно переоценить то значение, которое имеет оксид водорода для всего живого. Ведь вода и есть сам источник жизни. Известно, что без нее человек не смог бы прожить и недели. Вода, ее свойства и значение просто колоссальны.

  1. Это универсальный, то есть способный растворять и органические, и неорганические соединения, растворитель, действующий в живых системах. Именно поэтому вода - источник и среда для протекания всех каталитических биохимических преобразований, с формированием сложных жизненно важных комплексных соединений.
  2. Способность образовывать водородные связи делает данное вещество универсальным в выдерживании температур без изменения агрегатного состояния. Если бы это было не так, то при малейшем снижении градусов она превращалась бы в лед внутри живых существ, вызывая гибель клеток.
  3. Для человека вода - источник всех основных бытовых благ и нужд: приготовление пищи, стирка, уборка, принятие ванны, купание и плавание и прочее.
  4. Промышленные заводы (химические, текстильные, машиностроительные, пищевые, нефтеперерабатывающие и другие) не сумели бы осуществлять свою работу без участия оксида водорода.
  5. Издревле считалось, что вода - это источник здоровья. Она применялась и применяется сегодня как лечебное вещество.
  6. Растения используют ее как основной источник питания, за счет чего они продуцируют кислород - газ, благодаря которому существует жизнь на нашей планете.

Можно назвать еще десятки причин того, почему вода - это самое широко распространенное, важное и необходимое вещество для всех живых и искусственно созданных человеком объектов. Мы привели только самые очевидные, главные.

Гидрологический цикл воды

Иными словами, это ее круговорот в природе. Очень важный процесс, позволяющий постоянно пополнять исчезающие запасы воды. Как он происходит?

Основных участников трое: подземные (или грунтовые) воды, поверхностные воды и Мировой океан. Важна также и атмосфера, конденсирующая и выдающая осадки. Также активными участниками процесса являются растения (в основном деревья), способные поглощать огромное количество воды в сутки.

Итак, процесс происходит следующим образом. Грунтовые воды заполняют подземные капилляры и стекаются к поверхности и Мировому океану. Затем поверхностные воды поглощаются растениями и транспирируются в окружающую среду. Также происходит испарение с огромных площадей океанов, морей, рек, озер и прочих водоемов. Попав в атмосферу, вода что делает? Конденсируется и проливается обратно в виде осадков (дождь, снег, град).

Если бы не происходили эти процессы, то запасы воды, особенно пресной, давно бы уже закончились. Именно поэтому охране и нормальному гидрологическому циклу уделяется людьми большое внимание.

Понятие о тяжелой воде

В природе оксид водорода существует в виде смеси изотопологов. Это связано с тем, что водород формирует три вида изотопа: протий 1 Н, дейтерий 2 Н, тритий 3 Н. Кислород, в свою очередь, также не отстает и образует три устойчивые формы: 16 О, 17 О, 18 О. Именно благодаря этому существует не просто обычная протиевая вода состава Н 2 О (1 Н и 16 О), но еще и дейтериевая, и тритиевая.

При этом устойчива по структуре и форме именно дейтериевая (2 Н), которая включается в состав практически всех природных вод, но в малом количестве. Именно ее называют тяжелой. Она несколько отличается от обычной или легкой по всем показателям.

Тяжелая вода и ее свойства характеризуются несколькими пунктами.

  1. Кристаллизуется при температуре 3,82 0 С.
  2. Кипение наблюдается при 101,42 0 С.
  3. Плотность составляет 1,1059 г/см 3 .
  4. Как растворитель в несколько раз хуже легкой воды.
  5. Имеет химическую формулу D 2 O.

При проведении опытов, показывающих влияние подобной воды на живые системы, было установлено, что жить в ней способны лишь некоторые виды бактерий. Для приспособления и акклиматизации колониям потребовалось время. Но, приспособившись, они полностью восстановили все жизненно важные функции (размножение, питание). Кроме того, стали очень устойчивы к воздействию радиоактивного излучения. Опыты на лягушках и рыбах положительного результата не дали.

Современные области применения дейтерия и образованной им тяжелой воды - атомная и ядерная энергетика. Получить в лабораторных условиях такую воду можно при помощи электролиза обычной - она образуется как побочный продукт. Сам дейтерий формируется при многократных перегонках водорода в специальных устройствах. Применение его основано на способности замедлять нейтронные синтезы и протонные реакции. Именно тяжелая вода и изотопы водорода - основа для создания ядерной и водородной бомбы.

Опыты на применении дейтериевой воды людьми в небольших количествах показали, что задерживается она недолго - полный вывод наблюдается через две недели. Употреблять ее в качестве источника влаги для жизни нельзя, однако техническое значение просто огромно.

Талая вода и ее применение

Свойства такой воды издревле были определены людьми как целебные. Давно было замечено, что при таянии снега животные стараются напиться водой из образовавшихся лужиц. Позже были тщательно исследованы ее структура и биологическое воздействие на организм человека.

Талая вода, ее признаки и свойства находятся посередине между обычной легкой и льдом. Изнутри она образована не просто молекулами, а набором кластеров, сформированных кристаллами и газом. То есть внутри пустот между структурными частями кристалла находятся водород и кислород. По общему виду строение талой воды сходно со строением льда - сохраняется структурность. Физические свойства такого оксида водорода незначительно меняются в сравнении с обычным. Однако биологическое воздействие на организм отличное.

При замораживании воды первой фракцией превращается в лед более тяжелая часть - это дейтериевые изотопы, соли и примеси. Поэтому эту сердцевину следует удалять. А вот остальная часть - чистая, структурированная и полезная вода. Каково воздействие на организм? Учеными Донецкого НИИ были названы следующие виды улучшений:

  1. Ускорение восстановительных процессов.
  2. Укрепление иммунитета.
  3. У детей после ингаляций такой водой происходит восстановление и излечение простудных заболеваний, проходит кашель, насморк и прочее.
  4. Улучшается дыхание, состояние гортани и слизистых оболочек.
  5. Общее самочувствие человека, активность повышаются.

Сегодня существует ряд сторонников лечения именно талой водой, которые пишут свои положительные отзывы. Однако есть ученые, в том числе медики, которые эти взгляды не поддерживают. Они считают, что вреда от такой воды не будет, но и пользы мало.

Энергетика

Почему свойства воды могут изменяться и восстанавливаться при переходе в разные агрегатные состояния? Ответ на этот вопрос следующий: у данного соединения существует своя информационная память, которая записывает все изменения и приводит к восстановлению структуры и свойств в нужное время. Биоэнергетическое поле, через которое проходит часть воды (та, что поступает из космоса), несет в себе мощный заряд энергии. Эту закономерность часто используют при лечении. Однако с медицинской точки зрения не каждая вода способна оказать благоприятный эффект, в том числе и информационный.

Структурированная вода - что это?

Это такая вода, которая имеет несколько иное строение молекул, расположение кристаллических решеток (такое, которое наблюдается у льда), но это все же жидкость (талая также относится к этому типу). В этом случае состав воды и ее свойства с научной точки зрения не отличаются от тех, что характерны для обычного оксида водорода. Поэтому структурированная вода не может иметь такого широкого лечебного эффекта, который ей приписывают эзотерики и сторонники нетрадиционной медицины.

Выясним сначала структуру термодинамического предшественника воды - льда. Тем самым мы повторим путь всех исследователей воды. Каждый из них, пытаясь понять структуру воды, рано или поздно приходил к необходимости разобраться в структуре льда.

В 1910 г. американский физик П. Бриджмен и немецкий исследователь Г. Тамман обнаружили, что лед может образовывать несколько полиморфных кристаллических модификации. Сейчас известно 9 модификаций льда, у них различные кристаллические решетки, различные плотности и температуры плавления. Всем нам хорошо знакомым лед называется "льдом I", другие модификации льда существуют при давлениях, превышающих 2000 ат. Например, лед Ш, образующийся при давлении 2115 ат, тяжелее воды, а лед VI (при давлении около 20 000 ат) плавится при температуре, превышающей 80 °C. В обычных условиях мы можем наблюдать лишь лед I, он и изучен наиболее полно. Ниже речь идет именно о нем.

Каждая молекула воды может образовывать до четырех водородных связей, если вблизи окажется достаточное количество подходящих соседей, причем благодаря свойству кооперативности каждая последующая связь требует для своего образования меньше энергии, поэтому она будет образовываться с большей вероятностью, чем предыдущая.

Во льду все молекулы связаны между собой водородными связями. При этом четыре связи каждой молекулы локально организованы в тетраэдрическую структуру, т.е. четыре близлежащие молекулы располагаются в вершинах трехгранной пирамиды, в центре которой находится пятая молекула воды.

Таким образом, тетраэдрическая форма отдельной молекулы повторяется в кристаллической структуре льда. Возможно, определенную роль здесь играет то, что угол H-O-H молекулы H 2 O почти равен идеальному тетраэдрическому углу 109°, а молекулы воды, как мы знаем, объединяются с помощью водородных связен, которые они образуют именно в направлении O-H. Эти трехгранные пирамиды могут также объединятся в некую сверхструктуру. Во льду такая сложная трехмерная сверхструктура из тетраэдров простирается на весь объем.

Начиная с любого атома кислорода, переходя от соседа к соседу по водородным связям, можно строить бесконечное число различных замкнутых фигур. Все такие фигуры представляют собой некие "гофрированные" многоугольники причем число сторон всегда кратно шести, а самый короткий путь от молекулы "к себе самой" проходит по сторонам обычного шестиугольника. Поэтому структуру льда называют шестиугольной, или гексагональной.

Если забыть о тетраэдрах, то можно увидеть, что молекулярная структура льда состоит из зигзагообразных слоев, причем каждая молекула H 2 O связана с тремя молекулами своего слоя и одной молекулой соседнего слоя. Количество соседей одной молекулы (в данном случае равное четырем) называется координационным числом и легко измеряется рентгеноструктурным методом. Как видим, ажурная сеть водородных связей превращает молекулярную структуру льда в рыхлую конструкцию с большим количеством пустот.

Если очень сдавить лед I, то он перейдет в другие кристаллические формы, и хотя структура его несколько изменится, но основные элементы тетраэдрической конструкции сохранятся. При умеренных давлениях (лед II, VI и IX) часть водородных связей выходит из тетраэдрической структуры (благодаря чему лед становится несколько плотнее), но любые четыре ближайшие атома кислорода по-прежнему объединяются водородными связями. Даже при очень больших давлениях (лед VIII и VII) локально сохраняется тетраэдрическая структура.

Впервые молекулярную структуру льда установил в начале нашего века английский ученый Уильям Брэгг, разработавший рентгеноструктурный метод анализа кристаллов. Он обнаружил, что каждая молекула H 2 O во льду окружена четырьмя другими молекулами. Но он смог исследовать именно молекулярную структуру льда, установить же, как в этой структуре располагаются атомы кислорода и водорода, ни Брэгг да и никто другой в то время не могли. Брэгг пользовался рентгеноструктурным методом, который в то время позволял наблюдать лишь сравнительно крупные атомы, такие, как кислород или кремний. Небольшие атомы вроде водорода не видны при рентгеноструктурном анализе. Лишь в конце 40-х годов XX века, когда появились новые, более чувствительные спектроскопические методы, удалось установить расположение атомов водорода в структуре льда.

Однако еще в 1932 г. ученик Брэгга профессор Бернал смог чисто умозрительно понять, как должны располагаться в молекулярной структуре льда атомы кислорода и водорода.

Бернал шел от конфигурации молекулы H 2 O. Он понял, что именно молекула воды определяет всю структуру льда. Рассуждал Бернал следующим образом: каждый атом водорода может "зацепиться" только за один "чужой" атомом кислорода, связывая тем самым два атома кислорода ("свой" и "чужой" атомы) одной водородной связью, следовательно, каждая молекула H 2 O может соединиться с помощью водородных связей с четырьмя соседними молекулами, две из которых образуют свои атомы водорода и две - атомы соседних молекул, а так как молекула H 2 O "однобока", то такая конфигурация должна быстро заполнить пространство, образуя тетраэдрическую структуру.

Эти гипотезы были позднее подтверждены спектроскопическими исследованиями и сейчас известны как "правила Бернала-Фаулера". Действительно, оказалось, что каждый атом кислорода связан с четырьмя атомами водорода, находящимися на линии O-O. С двумя "своими" атомами он связан ковалентной связью, а с двумя "чужими" - с помощью водородной связи. Вообще говоря, определения "свой", "чужой" не совсем точно описывают молекулярную жизнь льда. Как было установлено, ни один водород не фиксирован на своем месте. Каждый водород точно знает только свою связь O-O, но на этой линии у него есть два возможных положения - около "своего" и около "чужого" атомов кислорода. В каждом из этих положений он проводит в среднем половину своего жизненного времени. Если обозначить, как это принято в химии, черточкой валентную связь, а точками - водородную, то можно сказать, что во льду непрерывно идет реакция:

O-H....O ↔ O....H-O

Как видим, молекулярная жизнь льда довольно динамична. Но это касается только атомов водорода атомы кислорода прочно сидят на своих местах и расстояние в каждой паре O-O сохраняется неизменным и равным 2,76 A.

Очевидно, что непоседливость атомов водорода безусловно должна влиять на электрические и диэлектрические свойства льда. Лед обладает довольно высокой электропроводностью. Возможно, эта особенность льда объясняется тем, что в присутствии внешнего электрического поля перескоки атомов водорода становятся более направленными.

Структура реального льда не является абсолютно идеальной, в ней, как и в любом другом кристалле, встречают дефекты. Датский исследователь И. Бьеррум установил, что дефекты льда могут быть двух видов: 1) на линии O-O нет ни одного атома водорода (бьеррумовский Л-дефект); 2) на линии O-O находится два атома водорода (Д-дефект). Разумеется энергия дефекта больше энергии бездефектной связи, поэтому дефекты не сидят на одной и той же связи все время, а довольно интенсивно мигрируют по всей структуре льда. При этом они ведут себя так, как будто они являются некими частицами разных знаков. Два одинаковых дефекта (например, Д-дефекты) будут отталкиваться - ведь один дефект приводит к увеличению локальной энергии, а уж два дефекта иметь рядом тем более энергетически невыгодно. Интуитивно также ясно, что два различных дефекта будут притягиваться и при встрече аннигилировать - уничтожать друг друга.

Во льду концентрация дефектов невелика - всего один на 2,5 миллиона молекул. Так что бьеррумовские дефекты для льда - это тонкости, почти незаметные для структуры льда. Иное дело в воде, где концентрация таких дефектов возрастает в 25 тысяч раз и составляет величину один дефект на 100 молекул. Величина эта настолько значительна, что становится ясно - в воде бьеррумовские дефекты играют существенную роль. Была предпринята даже попытка описывать воду как лед с большой концентрацией дефектов, которая, в общем-то, оказалась не очень состоятельной, но тем не менее построенная таким образом теория смогла объяснить некоторые явления.

Теперь перейдем к воде в жидком состоянии. Современное понимание молекулярной структуры воды ведет свою историю со статьи английских ученых Бернала и Фаулера, которая появилась в 1933 г. в августовском номере только что созданного международного журнала по химической физике Journal of Chemical Physics. Эта статья остается одной из самых замечательных вех на тернистом пути познания природы.

В то время существовало довольно простое - скорее филологическое, чем естественнонаучное - объяснение аномальных свойств воды. Считалось, что вода, ассоциированная жидкость, т.е. ее молекулы объединяются в большие дегидрольные супермолекулы (H 2 O) 2 , (H 2 O) 3 , . . . (H 2 O) n , благодаря которым вода и обладает аномальными свойствами. Было совершенно не ясно, почему и как именно молекулы H 2 O объединяются, как распределяются различные ассоциаты по объему воды. И самое главное, такой подход, вообще говоря, не объяснял природу особых свойств воды.

Пытаясь найти собственное понимание молекулярной структуры воды, Бернал начал с анализа экспериментальных фактов. Нельзя сказать, чтобы в то время, в 30-е годы XX века, этих фактов было достаточно, но все-таки они были. Благодаря блестящим исследованиям создателя рентгеноструктурного анализа кристаллов Уильяма Брэгга прояснилась молекулярная структура льда. Кроме данных о структуре льда, в распоряжении Бернала были рентгенограммы жидкой воды, а также полученные с помощью таких рентгенограмм так называемые функции радиального распределения, т.е. относительное содержание молекул, находящихся на тех или иных расстояниях друг от друга. Помимо чисто экспериментальных фактов, Бернал имел возможность, разумеется, пользоваться идеями, гипотезами и предположениями, которых к началу 30-х годов накопилось уже довольно много. Однако обилие этих идей могло скорее помешать, чем помочь разработке теории воды. За исключением, пожалуй, одной старой идеи, восходящей еще к знаменитому Вильгельму Рентгену, который высказал предположение, что молекулярная структура льда каким-то образом должна повторяться и в структуре жидкой воды. Одно время эта идея пользовалась большой популярностью среди ученых, но все попытки применить ее к описанию природы аномальных свойств воды оканчивались неудачей. Даже самое простое свойство воды - то, что она тяжелее льда, - не удавалось объяснить с помощью этой идеи. Более того, казалось, что эта особенность воды просто противоречит ей. В самом деле, если допустить существование в воде какой-то сильно искаженной структуры льда, то вода должна быть легче. Любое нарушение четкой структуры, любой беспорядок только увеличивает объем, занимаемый структурой. Следовательно, такая вода должна быть легче льда.

В общем, несмотря на красоту и заманчивость рентгеновской идеи, воспользоваться ею до 30-х годов никто не смог. Она так и оставалась в "банке идей" скорее как эстетическая, чем логическая категория, как общее утверждение, что "вода - это жидкость, еще сохранившая воспоминание о кристаллической структуре, из которой она произошла" (формулировка французского физика Клемена Дюваля).

Анализируя природу воды, Бернал много времени потратил на изучение льда. Он был уже близок к той теории льда, о которой мы говорили выше. Но сама по себе теория льда, не способная перейти в теорию воды, особой ценности не представляет. А вот с водой все по-прежнему оставалось неясно.

И тут вмешался случай, которому было угодно, чтобы дождливой осенью 1932 г. профессор Бернал поехал с группой английских ученых в Советский Союз. Случаю было также угодно, чтобы в день отлета английской делегации на Москву опустился густой осенний туман. Аэрофлот в то время не баловал своих клиентов роскошными залами, поэтому Берналу не оставалось ничего другого, как бродить в тумане вокруг аэродрома. Совершенно случайно его спутником в этих прогулках оказался очень любознательный человек, профессор Р. Фаулер. "Больше всего прочего, - вспоминал позднее Бернал, - нас занимал туман, нас окружавший, и естественно, что о нем и пошла речь. Туман состоит из воды... и профессор Фаулер, большой знаток термодинамики, но не очень сведующий в структурных вопросах, попросил меня объяснить структуру воды, как я эти проблему понимаю. И тут я задумался над ней заново - в свете наших московских дискуссий". Прогулка двух профессоров продолжалась более двенадцати часов и оказалась очень плодотворной, им удалось найти простое и красивое решение проблемы воды. Через несколько месяцев совместная работа Бернала и Фаулера появилась в печати и стала основой современного понимания молекулярной природы воды.

Рассказывая Фаулеру о воде, профессор Бернал упомянул и старую идею Рентгена, в которую уже мало кто верил. Совершенно неожиданно они нашли чрезвычайно важный аргумент в пользу этой идеи. Он был получен методом "от простого". "А что было бы с водой, - спросил Фаулер, если бы оно не обладала молекулярной структурой? Например, какова была бы плотность такой воды?" В такой воде каждая молекула H 2 O должна быть окружена не менее чем шестью соседями, как при любой плотной упаковке. Можно рассчитать, что плотность такой воды была бы не 1 г/см 3 , а 1,8 г/см 3 . Так как ни при каких температурах плотность реальной воды и близко не приближается к этой цифре, то отсюда следует, что в жидкой воде при любой температуре существует какая-то молекулярная структура, скорее всего похожая на молекулярную структуру льда. Именно эта структура удерживает молекулы воды от плотной упаковки.

Позднее это предположение было подтверждено рентгеноструктурным анализом, с помощью которого удалось установить, что так называемое "координационное число" воды (т.е. среднее число соседей любой молекулы) равно 4,4. Так как координационное число льда равно 4, то число соседей "среднестатистической" молекулы H 2 O при переходе из твердого в жидкое состояние возрастает лишь на 0,4 соседа. Следовательно, из каждых 10 молекул воды 8 по-прежнему окружены четырьмя соседями, а около двух других появятся две новые молекулы.

Да но как теперь быть с аномальным поведением льда при плавлении? Ведь выше мы как будто пришли к выводу, что искажение структуры должно приводить к снижению плотности любой субстанции. Обсуждая это противоречие, Бернал и Фаулер пришли в конце концов к выводу, что при плавлении льда происходит не искажение, а перестройка структуры, при этом дальний порядок льда разрушается, но внутри небольших областей молекулярная кристаллоподобная конструкция сохраняется. В то время уже было известно, что подобная перестройка может привести к увеличению плотности. Бернал и Фаулер в своей статье сослались на данные рентгеноструктурного анализа тридимита и кварца, которые очень близки к соответствующим данным для льда и воды. Тридимит и кварц - это два различных кристаллических состояния кремнезема SiO 2 . Химический состав кварца и тридимита одинаков, молекулярные структуры также одинаковы - как в кварце, так и в тридимите молекулы образуют тетраэдрические конструкции. Но плотность кварца приблизительно на 10% больше плотности тридимнта. Почему же одна и та же структура, одни и те же молекулы, а плотность разная? Ответ на этот вопрос Берналу и Фаулеру был известен. Так как и кислород и кремний являются достаточно крупными атомами, то они хорошо видны на рентгенограммах, поэтому все тонкости структур этих кристаллов в 30-е годы уже были выяснены. Эти тонкости состоят в том, что расстояние между ближайшими молекулами в этих кристаллах одинаковы, а вот расстояние до следующих (не ближайших) соседей у них различно, т.е. первые координационные сферы у них одинаковы, а размер второй сферы у кварца 4,2 A, а у тридимита - 4,5 A. Это и объясняет различия плотности кварца и тридимита.

Если же вспомнить, что, во-первых, лед также имеет тетраэдрическую структуру и, во-вторых, что плотность льда и воды отличаются на 9%, то легко понять уверенность Бернала и Фаулера в том, что структура льда подобна структуре тридимита, а структура воды подобна структуре кварца. Далеко не все детали их теории выдержали испытание временем, позднее появились более изощренные теории, но их статья в Journal of Chemical Physics остается одной из наиболее важных вех на теоретическом пути познания воды.

Как это часто бывает, теория Бернала-Фаулера оказалась верной лишь в своей методологической части, а многие ее детали не подтвердились дальнейшими экспериментами. В частности, никаких кварцеподобных структур обнаружить в жидкой воде не удалось. А вот представление о воде как о жидкости с сильно развитым ажурным каркасом находило все больше и больше подтверждений.

Бесспорным достижением XX века явилось ясное понимание того, что структура льда как-то сохраняется и в воде, или, пользуясь формулировкой Клемена Дюваля, - вода помнит свое происхождение. Но почему она помнит, а другие жидкости лишены этой способности? Ведь лед (если забыть, что он существует не в "своем" температурном диапазоне), в общем-то, довольно обычный кристалл. Наличие у него особой молекулярной структуры не так уж и странно. Все кристаллы образуют какие-нибудь (подчас удивительные) структуры. Но при плавлении они порождают вполне тривиальные, обычные жидкости. Лед тоже плавится и тоже порождает жидкость, но она необычна. Почему? Чтобы ответить на этот вопрос, вспомним, что молекулы большинства веществ удерживаются в узлах своих кристаллических структур довольно слабыми вандерваальсовыми или электрическими силами. Молекулы же H 2 O удерживаются в гексагональной структуре льда водородными связями, отличие которых от вандерваальсова и электростатического взаимодействий весьма существенно. Водородные связи значительно сильнее и, самое главное, их действие строго направлено в пространстве. Последнее свойство приводит к тому, что водородная связь при плавлении льда разрушается только "сразу", она не может постепенно "ухудшаться", прежде чем окончательно разорваться . Это очень важное отличие льда от других кристаллов. Ведь при нагревании кристалла в первую очередь усиливается тепловое движение отдельных молекул которые постепенно все дальше и дальше отклоняются от всего узла идеальной кристаллической структуры. И вот здесь проявляется эффект направленности водородных связей. Предположим, что все молекулы кристалла сидят в узлах идеальной структуры. И вдруг одна молекула выскакивает из своего узла и удаляется от него на некоторое расстояние. В обычном веществе эта молекула все равно сохраняет связь со своими соседями по кристаллической решетке. Конечно, сцепление между ними ухудшается, энергия взаимодействия увеличивается, но связь остается. Если же подобное событие происходит во льду, то непоседливая молекула обязательно разорвет все свои водородные связи, она не может "чуть-чуть" отклониться от узла кристаллической решетки, сохранив при этом все свои водородные связи. Ведь водородные связи ее соседей протянуты в совершенно определенную точку пространства, и если молекула уходит из этой точки, то тем самым она теряет возможность "замкнуть" свои два протона и два неподеленных электрона. На первый взгляд, может показаться, что как раз вода должна быстро забыть свое кристаллическое прошлое. Получается, что молекулы H 2 O "порывают" со своим прошлым сразу и бесповоротно. Строго говоря, так и должно быть, если бы сразу большое количество молекул во льду могло разорвать все свои водородные связи. Но чтобы такое событие произошло в молекулярной жизни льда, нужно сконцентрировать в одном месте сразу довольно большую (по молекулярным масштабам) энергию.

Отдельная молекула воды не может постепенно накапливать энергию, чтобы по достижении определенного энергетического уровня оторваться от соседей. Воспользовавшись известным физическим лексиконом, можно сказать, что каждая молекула льда сидит в глубокой энергетической яме с совершенно отвесными краями. Выскочить из такой ямы очень трудно, а если выскочившая молекула "оступится", она сразу окажется внизу, в структуре идеального льда. Поэтому, во-первых, вероятность разрыва водородных связей мала, а во-вторых освободив из кристаллической структуры всего одну молекулу H 2 O, лед отдаст сразу довольно большую энергетическую дань кинетическим процессам плавления и тем самым может сохранять значительное число молекул в кристаллической структуре.

Энергетические ямы, в которых находятся другие вещества, имеют иной вид. Между состояниями, соответствующими кристаллу и жидкости, находится целый ряд промежуточных состояний. Поэтому молекулы обычных веществ могут постепенно накапливать энергию, переходя из одной промежуточной ямы в другую. Если же какая-либо молекула потеряет часть энергии, то она окажется не в самом низу ямы, а может задержаться в каком-либо промежуточном состоянии. В результате этого довольно быстро в процесс плавления вовлекаются все молекулы кристалла. Средняя энергия молекул постепенно растет, при этом индивидуальные колебания энергии молекул не слишком велики. Если изобразить плавление обычного кристалла в некоем фазово-энергетическом пространстве, то можно будет увидеть, что при плавлении все молекулы держатся довольно компактной группой. В самом деле, каждая точка такого пространства обозначает энергетический уровень молекул. В начале плавления все точки сольются в одну сплошную точку, соответствующую кристаллическому состоянию. В процессе плавления обычного вещества эта точка поползет вверх, постепенно размываясь и распадаясь на отдельные точки. Потом центральная точка распадется на более мелкие точки, которые, в свою очередь, будут также распадаться, и завершится этот процесс образованием большого, относительно плотного роя точек с центром, соответствующим жидкому состоянию. Картина плавления льда в такой интерпретации будет выглядеть совершенно иначе. Своеобразие энергетического профиля молекул льда позволяет достаточно большому числу молекул H 2 O во время плавления сохранять кристаллическую гексагональную структуру из водородных связей, в каждый момент времени в процессе плавления фактически участвует лишь небольшое количество молекул воды. В начале плавления все молекулы "сидят" на энергетическом уровне, соответствующем состоянию льда. По мере нагревания льда отдельные молекулы вырываются из кристаллической структуры и сразу оказываются на энергетическом уровне молекул без водородных связей. Между этими двумя уровнями идет непрерывный обмен, часть "жидких" молекул встраивается в гексагональную структуру, из которой за это же время какая-то часть молекул освобождается. По мере нагревания льда число уходящих из ледяной структуры молекул растет, а число возвращающихся падает. Но даже после полного завершения плавления достаточно большая часть водородных связей, существовавших во льду, сохраняется и в воде.

Описанная выше картина плавления льда - это идеализация, соответствующая так называемой двухструктурной модели воды, т.е. модели, в которой допускаются только два состояния молекул H 2 O - либо совершенно свободные мономеры, либо полностью включенные в гексагональную структуру. В этой связи может возникнуть вопрос: а допустима ли такая смесь мономеров и гексагональной решетки? Вспомним: структура льда рыхлая, в ней много пустот, атомы расположены довольно просторно. Каждая полость окружена шестью молекулами H 2 O, а каждая молекула - шестью полостями, которые образуют сплошные микроскопические каналы. Автор одной из первых физических теорий воды советский ученый О. Самойлов вычислил размер полостей и установил, что в них вполне может разместиться одна молекула воды, не задевая и не разрушая основного каркаса водородных связей. Самойлов высказал еще в 40-х годах XX века предположение, что в процессе плавления льда часть водородных связей разрывается, появляются свободные мономеры H 2 O, которые и заполняют частично полости водородного каркаса.

В 1952 г. американским ученым Хеггсу, Хастеду и Буханану удалось по данным зависимости диэлектрических свойств воды от температуры установить, что при 25 °C в жидкой воде 67% всех молекул H 2 O сохраняют все четыре водородные связи, 23,2% по три водородные связи, 7,6% - по две водородные связи и лишь 0,2% - полностью свободных молекул. Несомненно, реальная структура воды сложнее той, которую предполагают двухструктурные модели, однако благодаря своей простоте они довольно наглядны и в качестве "нулевого" приближения подходят.

Были предложены и другие теории молекулярного состояния воды. Например, английский физик Д.Ж. Попл предполагал, что при плавлении льда водородные связи вообще не рвутся, а как-то "изгибаются". Профессор Бернал, развивая его идею, построил новую теорию воды, согласно которой молекулы H 2 O образуют небольшие замкнутые кольца из четырех, пяти и более молекул. Но подавляющее большинство этих колец, считал Бернал, состоит только из пяти молекул, так как угол H-O-H в молекуле воды близок к 108° - углу правильного пятиугольника.

Л. Полинг в 1952 г. высказал предположение, что структура воды подобна структуре клатратных гидратов типа Cl 2 10H 2 O. Эйринг выдвинул теорию значащих структур, которая предполагает, что в воде существует две кристаллоподобные структуры: лед I и лед III. Водородные связи в структуре льда III несколько сжаты и слегка изогнуты, поэтому лед этот на 20% плотнее льда I.

Г. Намети и X. Шерага предположили, что каждая молекула воды может находиться в одном из пяти допустимых энергетических состояний, определяемых тем, сколько водородных связей она образует (0, 1, 2, 3 или 4). Предполагается, что молекулы собираются в льдоподобные "рои". Проделав обычный для статистической механики анализ, Намети и Шерага нашли количество молекул воды в отдельных роях, образующих 4, 3 и 2 водородные связи. Полученный таким образом молярный объем системы имеет минимум при 4 °C, другие параметры также неплохо соответствуют экспериментальным результатам. Однако теория Намет и Шерага, как и двухструктурная модель, противоречит целому ряду спектроскопических данных. Это общий недостаток всех теории, предполагающих существование четко различающихся структур в воде. В реальной воде, по-видимому существует широкий и непрерывный спектр различных молекулярных структур.

Все теории (здесь мы упомянули лишь некоторые) более или менее согласуются с наблюдаемыми экспериментальными данными, но для каждой из них рано или поздно обнаруживались факты, которые они не могли объяснить. Это, разумеется, не означает, что теории неверны. Каждая из них представляла определенную степень приближения к истинной реальной картине физического состояния воды и работала на будущую окончательную теорию.

С появлением компьютеров и возможностей моделировать на них самые разные процессы удалось резко сократить число достоверных теорий. С помощью таких экспериментов удалось точно определить, какая доля молекул воды сохраняет все четыре водородные связи, какая - три, две, одну и сколько в воде совершенно свободных молекул-мономеров. На рисунке показана полученная с помощью машинного эксперимента гистограмма распределения водородных связей в воде при 10 °C.

Как видим, в воде существует довольно значительная часть всех видов молекул - от полностью свободных до полночью связанных. Гистограммы для других температур похожи но в случае более высоких температур максимум гистограммы (который в случае 10 °C приходится на значение 2,3 водородные связи на молекулу) смещается в область меньших значений числа водородных связей.

Оказалось, что в воде с равным успехом образуются как пяти-, так и шестиугольники, без какого-либо предпочтения одних другим. Это, кстати, означает, что водородные связи могут растягиваться и искривляться. Полученный таким образом результат перечеркнул все модели "айсбергов", которые постулировали, что вода - это море полностью свободных молекул, в котором плавают более или менее крупные фрагменты ледяных структур. Хотя кластеры с 1, 2, 3 ... числом водородных связей и присутствуют, но доля их мала. Так как ледяные структуры образуют только шестиугольники, то такой поход, разумеется, совершенно исключает возможность появления в воде пятиугольных структур.

Обобщая результаты многочисленных компьютерных экспериментов, можно сказать, что топологию молекулярной структуры воды нельзя трактовать в виде какой-либо гексагональной структуры льда со случайно разорванными водородными связями. Более того, эта структура представляет собой единое целое в любом объеме воды. Машинные эксперименты показали, что сеть водородных связей находится выше "порога критической перколяции". Это означает, что в любом объеме воды всегда найдется по крайней мере одна сплошная цепочка из водородных связей, пронизывающая весь объем воды.

Как же теперь, в свете результатов компьютерных экспериментов, можно представить физическую природу воды? На молекулярном уровне вода, по-видимому, представляет собой случайным образом организованную трехмерную сеть водородных связей. Локально эта сеть стремится к тетраэдрической конфигурации. Это означает, что ближайшие соседи среднестатистической молекулы воды в основном располагаются в вершинах четырехгранной пирамиды, окружающей молекулу воды. Сеть содержит значительное число сильно напряженных водородных связей, причем именно эти связи играют фундаментальную роль в возникновении особых аномальных свойств воды. Любая молекула воды, связи которой достаточно напряжены, может быстро изменить все свое ближайшее окружение, переключив свои напряженные связи на новых соседей. Все это приводит к тому, что общая топология всей сети водородных связей воды чрезвычайно изменчива и разнообразна. В процессе плавления льда четкая, но рыхлая тетраэдрическая структура заменяется менее определенной, но более компактной сетью водородных связей. Увеличение плотности происходит за счет образования более компактных локальных структур (например, переход к пятиугольникам из водородных связей) и за счет искривления водородных связей. При нагревании талой воды переход к более компактным структурам доминирует до 4 °C, после которого превалируют процессы, связанные с обычным термическим расширением.

Структура жидкости

Применение термина "структура" для описания льда понятно, лед кристалл и, разумеется, обладает внутренней структурой. Но что такое структура жидкости? "Разве отсутствие структуры - текучесть - не является определяющим качеством жидкости?" - писал Бернал. Оказывается, жидкость обладает структурой, и не одной, а несколькими. Все дело во временном масштабе.

Если с какой-либо фиксированной молекулой воды связать систему координат, то для наблюдателя, находящегося в этой системе, структура воды будет зависеть от характерного масштаба времени, с которым он будет наблюдать молекулярную жизнь воды. У воды существуют два характерных временных параметра. Как и у всякого вещества, будь то жидкость или твердое тело, существует период колебаний отдельной молекулы τ υ . Для воды эта величина составляет значение 10 -13 с. В жидкости, кроме периода колебаний молекул около своего положения равновесия τ υ , имеется еще одно характерное время - время "оседлой жизни" τ D , т.е. среднее время существования данного локального окружения одной молекулы. Для воды τ D ~ 10 -11 с, т.е. прежде чем перескочить на новое место, молекула воды совершает 100 колебаний на одном месте.

Два эти параметра разбивают временную шкалу на три области, каждой из которых соответствует своя структура жидкости. Если наблюдатель будет пользоваться достаточно малым временным масштабом, т.е. будет смотреть в течение времени, много меньшего τ υ , то он увидит хаотически разбросанные молекулы, среди которых трудно усмотреть какой-либо порядок. Тем не менее это беспорядочное расположение молекул называют мгновенной, или М-структурой.

Чтобы понять, почему все-таки этот беспорядок называют структурой, наблюдателю необходимо перейти к более длительному временному масштабу. Но не слишком, точнее, больше чем τ υ , но меньше чем τ D . На этом временном интервале реальные молекулы уже не будут видны, наблюдатель сможет увидеть лишь точки, вокруг которых они совершают свои колебания. Оказывается, что эти точки в воде расположены довольно регулярно и образуют четкую структуру, называемую К-структурой, что означает "колебательно усредненная".

М- и К-структуры воды подобны таким же структурам льда. Чтобы увидеть различия этих структур у воды и льда, нужно понаблюдать за ними несколько дольше, т.е. с характерным временем, много большим чем τ D . Наблюдаемую в этом случае картину называют Д-структурой - диффузионно усредненной. В отличие от льда Д-структура воды полностью размыта из-за частых перескоков молекул воды на большие расстояния (эти перескоки составляют процесс самодиффузии молекул воды). Д-структура образуется диффузионным усреднением К-структур и не может быть описана каким-либо особым расположением точек в пространстве. Сторонний наблюдатель видит, что, по сути дела, никакой Д-структуры жидкости и не существует (заметим, что именно Д-структура как полное статистическое усреднение ансамбля молекул определяет термодинамические свойства воды.).

И тем не менее Д-структура существует, и ее можно увидеть. Наблюдатель, находящийся на некоторой молекуле воды, увидит, что его собственная молекула, перемещается хаотически по всему объему воды, каждый раз оказывается в более или менее упорядоченном окружении. Он увидит, что чаще всего "его" молекулу будут окружать четыре других молекулы H 2 O, иногда соседей окажется пять, иногда шесть, в среднем как мы знаем, их будет 4,4. Таким образом, Д-структурой воды можно считать картину, видимую наблюдателем.

Такой подход к описанию структуры воды чаще всего используется при интерпретации спектроскопических данных, потому что различные спектроскопические методы - рентгеновский, ЯМР, диэлектрическая релаксация, комбинационное рассеяние нейтронов - способны "считывать" молекулярные данные с различным характерным временем разрешения.

Перемещение молекул доказывается обычно броуновским движением. Каплю воды, в которой плавают очень легкие частицы твердого нерастворимого вещества, рассматривают под микроскопом и наблюдают, что частицы беспорядочно перемещаются в массе воды. Каждая такая частица состоит из множества молекул и не облачает самопроизвольным движением. Частицы испытывают удары со стороны движущихся молекул воды, которые заставляют их всё время менять направление движения, а это означает, что сами молекулы воды движутся беспорядочно.