Закономерности наследования признаков опыты менделя. Закономерности наследования

Основные закономерности наследования были открыты Г. Менделем на горохе. Он осуществлял внутривидовые скрещивания форм, отличающихся по единичному числу признаков, имеющих альтернативные (контрастные) их проявления. В числе признаков, которые он использовал, были окраска семян, цветков и бобов, форма семян и бобов, расположение цветков, высота растений. Первоначально проводился гибридологический анализ форм гороха, отличавшихся по одному признаку. Скрещивания, в которые вовлекаются родительские формы, имеющие отличия по проявлениям одного признака, называются моногибридными.

При скрещивании двух исходных форм, относящихся к чистым линиям, в первом дочернем поколении, как правило, наблюдается появление потомков одинакового фенотипа. Эта закономерность известна под названием закона единообразия гибридов первого поколения. Гибриды F 1 могут иметь проявление признака как одного из родителей, так и промежуточное между исходными формами выражение. При этом, если различия родительских форм определяются одним геном (моногенно), запись скрещивания выглядит следующим образом: Р АА х аа → F 1 Аа. Это означает, что за проявление данного признака ответствен ген А, который существует в двух разных состояниях - А и а. Такие альтернативные состояния гена называются аллелями.

Анализируя результаты моногибридных скрещиваний, Г. Мендель установил правило (иногда именуемое законом) чистоты гамет. Оно подразумевает, что любая гамета любого организма несет по одному аллелю каждого гена, аллели в них не перемешиваются. Это означает, что у особей генотипа АА формируются гаметы одного вида - А, у особей генотипа аа - также одного типа - а. Такие особи, образующие гаметы только одного сорта (по крайней мере по тому гену, который находится в центре внимания), являются гомозиготными (или гомозиготами). Таким образом, нетрудно убедиться, что чистые линии состоят из гомозиготных особей. Гибриды Рх генотипа Аа формируют гаметы двух сортов - А и а, каждый из которых «чист» в отношении аллеля А или а. Такие особи (или генотипы), образующие гаметы нескольких видов, называются гетерозиготными (или гетерозиготами). В основе закона единообразия гибридов первого поколения лежит механизм расхождения хромосом в мейозе. Каждый из аллелей лежит в своей хромосоме (или хроматиде), и при расхождении хромосом (в первом делении мейоза), а затем и хроматид (во втором делении мейоза) вместе с ними в гаплоидные клетки отходит по одному из соответствующих аллелей. Таким образом, закон единообразия гибридов первого поколения является следствием основополагающего правила чистоты гамет, которое определяет и другие законы наследования.

Аллели одного гена взаимодействуют друг с другом разными способами. Если у гетерозиготы Аа проявляется фенотипическое выражение признака, одинаковое с особями генотипа АА, то аллель А полностью доминирует над а, тогда особи АА несут доминантное проявление признака, а гомозиготы по а - рецессивное. В этом заключается еще одно правило менделизма.- правило доминирования. Если же гетерозигота имеет проявление признака, промежуточное между двумя родительскими формами (например, при скрещивании растений ночной красавицы с красными и белыми цветками образуются гибриды с розовой окраской венчика), то речь идет о неполном доминировании.

Иногда у гетерозигот проявляются признаки обоих родителей - это отсутствие доминирования, или ко доминирование.

Закон расщепления в моногибридном скрещивании

Моногибридным называется скрещивание, в котором исходные формы отличаются по одному признаку. При скрещивании гибридов первого поколения, полученных от скрещивания гомозиготных форм, обнаруживается расщепление на 3/4 особей с доминантным проявлением признака и 1/4 - с рецессивным проявлением признака.

Во втором поколении, получаемом в результате скрещивания гибридов Р1 между собой, появляется два фенотипических класса в строго определенном соотношении. Это и есть расщепление, под которым понимают наличие в потомстве нескольких фенотипов в конкретных численных соотношениях.

Гибриды первого поколения могут скрещиваться не только с себе подобными. Если гетерозиготная особь Р1 скрещивается с организмом, гомозиготным по рецессивному аллелю рассматриваемого гена, то получается расщепление: Аа х аа → 1/2 Аа: 1/2 аа.

Такое скрещивание носит название анализирующего. В анализирующем скрещивании не составляет труда установить типы образуемых гетерозиготной особью гамет и их численное соотношение, легко определить, какие организмы гетерозиготны, а какие гомозиготны по интересующему нас признаку.

Закон расщепления в моногибридном скрещивании читается и в обратном порядке: если при скрещивании двух особей получается одно из рассмотренных выше расщеплений (в Р2 - 3:1, 1:2:1, 2:1, а в анализирующем скрещивании - 1:1), то исходные родительские формы отличаются по аллелям одного гена, то есть между ними существует различие по одному гену (моногенное различие исходных форм).

Закон независимого наследования в дигибридном скрещивании

Дигибридным называется такое скрещивание, в котором исходные формы отличаются по двум признакам. По каждому из признаков родительские формы отличаются по одному гену (по признаку А - по гену А, по признаку В - по гену В). При скрещивании гибридов F 1 , полученных от дигибридного скрещивания, наблюдается расщепление по фенотипу: 9/16 А-В- : 3/16 А-bb: 3/ 16 ааВ- : 3/16 ааbb.

При этом признаки наследуются независимо друг от друга, и по каждому из них наблюдается расщепление 3/4: 1/4.

Это расщепление легко получается как комбинированное, сочетающее два моногибридных (во втором поколении каждого из которых наблюдается расщепление 3:1), при этом за каждый признак отвечает один ген:

(3/4 А- + 1/4 аа) х (3/4 В- + 1/4 bb) = 9/16 А-В- + 3/16 А-bb + 3/16 ааВ- + 1/16 ааbb.

В анализирующем скрещивании аналогично получается расщепление 1:1:1:1.

Выполнение этого закона определяется независимым характером расхождения хромосом негомологичных пар в мейозе, а также тем, что гены А и В расположены в разных (негомологичных) хромосомах. Независимое расхождение хромосом в мейозе приводит к возникновению новых сочетаний генов и признаков, которых не было у родительских организмов, - в потомстве появляются рекомбинанты (особи, несущие перекомбинированные сочетания признаков).

Так же получаются и расщепления в полигибридных скрещиваниях (скрещивания, в которых родительские формы отличаются по нескольким или многим признакам).

Все законы наследования Г. Менделя иллюстрируют постулированную им точку зрения о дискретном характере наследования: наследуется не сам признак, а определяющие его материальные факторы. Этими факторами являются гены.

Взаимодействие генов

Некоторые признаки определяются не одним геном, а одновременным действием нескольких. В таких случаях, безусловно, наблюдается изменение и усложнение формул расщеплений и методов анализа. Гены, влияющие на развитие одного признака, называются взаимодействующими. Известно несколько видов такого взаимодействия генов: комплементарное, эпистатическое, полимерное.

Доминантные аллели обоих генов приводят к формированию нового проявления признака, взаимно дополняя друг друга (комплементируя). Если же в генотипе присутствуют лишь рецессивные аллели обоих генов, то признак не проявляется. Биохимический анализ позволяет дополнить эту схему. Окраска глаз у дрозофилы обуславливается двумя пигментами (ярко-красным и коричневым), каждый из которых образуется в отдельной цепи биосинтеза. Рецессивный аллель «b» у гомозигот прерывает синтез ярко-красного пигмента - у таких особей глаза имеют коричневую окраску, аллель «а» нарушает синтез коричневого пигмента - у гомозигот аа глаза имеют ярко-красную окраску, у особей «А-В-» имеется оба пигмента, обуславливая темно-красную окраску глаз, а у гомозигот по обоим генам «ааbb» красящих веществ в глазах нет вообще - глаза бесцветные (белые).

Взаимодействие генов (или взаимодействие неаллельных генов) приводит к расщеплениям дигенного типа. Помимо случая, рассмотренного выше, во втором поколении могут наблюдаться расщепления: 9:7, 9:6:1, 9:3:4, 12:3:1, 13:3, 15:1.

Условия выполнения законов наследования

Рассмотренные выше закономерности наследования признаков выполняются лишь при соблюдении определенных условий. Необходимо, чтобы все типы гамет образовывались с равной вероятностью, обладали одинаковой жизнеспособностью и участвовали в оплодотворении с одинаковой эффективностью, формируя все типы зигот с одинаковой частотой, зиготы же должны характеризоваться равной жизнеспособностью. Степень выраженности признака также должна быть неизменной. Невыполнение хотя бы одного из таких условий приводит к искажению расщеплений.

Например, если в моногибридном скрещивании, в котором наблюдается расщепление в F 2 1/4 АА: 2/4 Аа: 1/4 аа, наблюдается избирательная гибель зигот генотипа АА, то фенотипическое расщепление будет выглядеть как 2/3 Аа: 1/3 аа.

Следует отметить, что даже если выполняются перечисленные выше условия, фактическое расщепление не всегда точно соответствует теоретически рассчитанному. Дело в том, что законы наследования, открытые Менделем, проявляются на довольно большом статистическом материале. Для их точного выполнения необходимо проанализировать выборку определенного размера. Таким образом, закономерности наследования являются биологическими по сути, но имеют статистический характер проявления.

Основные закономерности наследования признаков в поколениях были открыты чешским исследователем Г. Менделем, опубликовавшим в 1866 году «Опыты над растительными гибридами». Статья не привлекла внимания современников. Только через 35 лет законы наследования были вновь «открыты» сразу тремя ботаниками – К. Корренсом, Э. Чермаком и Г. де Фризом, быстро завоевав всеобщее признание. С 1900года, когда были переоткрыты законы Г. Менделя, начался научный период генетики.

Наследственность – это свойство организма воспроизводить себе подобное, преемственность в поколениях.

Наследование – процесс передачи генетической информации от одного поколения к другому.

В первых опытах Г. Мендель принимал во внимание только одну пару признаков. Такое скрещивание носит название моногибридного. После анализа результатов скрещивания гороха, Г. Мендель сформулировал основные закономерности наследования признаков:

  1. Закон доминирования или закон единообразия гибридов первого поколения. При скрещивании особей отличающихся друг от друга одному признаку, в первом поколении гибридов получаются потомки, схожие только с одним из родителей. Соответствующий признак другого родителя не проявляется. Проявившийся в первом поколении гибридов признак называется доминантным, а непроявившийся – рецессивным.
  2. Закон расщепления гибридов 2-го поколения описывает появление во втором поколении гибридов особей с доминантными и рецессивными признаками в соотношении 3:1. Введены буквенные символы: Р – родительские организмы, F 1 – первое поколение гибридов, F 2 – второе поколение, полученное от скрещивания особей первого поколения между собой. А – доминантный признак, а - рецессивный признак, или ген. Соответствующие друг другу гены называются аллельными. Аллель – одна из двух и более альтернативных форм гена, имеющая определенную локализацию в хромосоме и уникальную последовательность нуклеотидов. Организмы, имеющие либо два доминантных (АА), либо два рецессивных (аа) аллеля, называются гомозиготными. Всё их потомство (F 1) будет нести как ген доминантного, так и ген рецессивного признака, т.е. будет гетерозиготным.

Генотипом называют совокупность генов, характеризующую данный организм.

Фенотип – это совокупность признаков, проявляющихся в результате действия генов в определенных условиях среды.

Дигибридным называется скрещивание, отличающееся по двум (или нескольким) разным признакам.

  1. Закон независимого наследования признаков : при дигибридных и полигибридных скрещиваниях гибридов каждая пара признаков наследуется независимо друг от друга и может независимо комбинироваться с другими признаками.

Менделирование – наследование определенного признака (болезни) в соответствии с законами Г. Менделя. Менделирующими признаками называют те, наследование которых происходит по закономерностям, установленным Г. Менделем. Менделевские законы справедливы для аутосомных генов. Если гены локализованы в половых хромосомах, или в одной хромосоме сцепленно, то результаты скрещивания не будут следовать законам Г. Менделя.

Типы наследования менделирующих признаков человека.

  1. Аутосомно-доминантный тип наследования. Критерии:
  2. заболевание проявляется в каждом поколении без пропусков («вертикальный» тип);
  3. каждый ребёнок больного родителя имеет 50% риск унаследовать это заболевание;
  4. непораженные дети больных родителей свободны от мутантного гена и имеют здоровых детей;
  5. заболевание наследуется лицами мужского и женского пола одинаково часто и со сходной клинической картиной.
  6. Аутосомно-рецессивный тип наследования. Критерии:
  7. заболевания с этим типом наследования проявляются только у гомозигот, которые получили по одному рецессивному гену от каждого из родителей;
  8. родители больного ребенка, как правило, здоровы и являются гетерозиготными носителями патологического аллеля;
  9. мальчики и девочки заболевают одинаково часто;
  10. отмечается «горизонтальное» распределение больных, т.е. пациенты чаще встречаются в пределах одной родительской пары;
  11. в браке двух пораженных родителей все дети будут больны.
  12. Менделирующие признаки, сцепленные с полом (неполно).

Гены, локализованные в половых хромосомах, по-разному распределяются у мужчин и женщин. В клинической практике значение имеют Х-сцепленные заболевания, т.е. такие, когда патологический ген расположен на Х-хромосоме. Учитывая то, что у женщин имеются две Х-хромосомы, а мужчин одна, женщина, унаследовав патологический аллель, будет гетерозиготой, а мужчина – гемизиготой. Этим определяется разновидности Х-сцепленного наследования: доминантное и рецессивное.

Основные признаки Х-сцепленного доминантного типа наследования:

  1. болезнь встречается у мужчин и женщин, но у женщин примерно в 2 раза чаще;
  2. больной мужчина передаёт мутантный аллель всем своим дочерям и не передаёт сыновьям, поскольку последние получают от отца У-хромосому;
  3. больные женщины передают мутантный аллель 50% своих детей независимо от пола;
  4. женщины в случае болезни страдают менее тяжело (они гетерозиготны), чем мужчины, являющиеся гемизиготами.

Основные признаки Х-сцепленного рецессивного типа наследования

  1. заболевание встречается в основном у лиц мужского пола;
  2. признак (заболевание) передаётся от больного отца через его фенотипически здоровых дочерей половине его внуков;
  3. заболевание никогда не передаётся от отца к сыну;
  4. у женщин-носителей иногда выявляются субклинические признаки патологии;
  5. в браке женщины-носительницы с больным мужчиной 50% дочерей будут больны, 50% дочерей будут носителями; 50% сыновей также будут больны, а 50% сыновей – здоровые.

У-сцепленное, или голандрическое, наследование.

В настоящее время в У-хромосоме выявлена локализация около 20 генов, отвечающих за сперматогенез, интенсивность роста и другие признаки. Признак, гены которого локализованы в У-хромосоме, передаётся от отца всем мальчикам и только мальчикам.

Если два разных гена находятся в одной и той же хромосоме, наблюдается сцепление генов, что и обуславливает совместную передачу этих генов потомству. Сцепление генов является следствием физической целостности структуры, несущей гены. Такой структурой является хромосомы. Правильное объяснение явлению сцепления генов дали американские исследователи Т. Морган и его сотрудники в 1910 году.

Основные положения хромосомной теории наследственности (Т. Морган и его сотрудники).

  1. Гены располагаются в хромосомах, различные хромосомы содержат неодинаковое число генов, набор генов в каждой из негомологичных хромосом уникален.
  2. Гены в хромосоме расположены линейно, каждый ген занимает в хромосоме определенный локус (место).
  3. Гены, расположенные в одной хромосоме, образуют группу сцепления и вместе (сцепленно) передаются потомкам, число групп сцепления равно гаплоидному набору хромосом.
  4. Сцепление не абсолютно, т.к. в профазе мейоза может происходить кроссинговер. Дело в том, что во время мейоза при конъюгации хромосом происходит их перекрест, и гомологичные хромосомы обмениваются гомологичными участками. Это явление и есть кроссинговер. Он может произойти в любом участке гомологичных хромосом. Сила сцепления зависит от расстояния между генами в хромосоме: чем больше расстояние, тем меньше сила сцепления, и наоборот. Расстояние между хромосомами измеряется в % кроссинговера. 1% кроссинговера, или сантиморганида, - это расстояние между двумя локусами, равная длине участка хромосомы, в пределах которого вероятность кроссинговера составляет 1%.

Одной из основных целей исследования генома человека является построение точной и подробной карты каждой хромосомы.

Принцип построения генетических карт хромосом разработала школа

Т. Моргана в 1911-1914 г.г.

Генетическая карта хромосомы – это отрезок прямой, на котором обозначен порядок расположения генов и указано расстояние между ними в процентах кроссинговера.

Генетическим маркером для составления карты может быть любой наследуемый признак – цвет глаз или длина отрезков ДНК. Карты хромосом подобно географическим картам можно строить в разном масштабе, т.е. с разным уровнем разрешения. Самой крупномасштабной картой какой-либо хромосомы является полная последовательность нуклеотидов.

Генетика пола.

У женщин 22 пары аутосом и две одинаковые половые хромосомы ХХ.

У мужчин 22 пары аутосом и половые хромосомы Х и У (неодинаковые). В процессе мейоза каждая из пары гомологичных хромосом уходит в разные гаметы. Так как у женщин 23 пары гомологичных хромосом, то во все гаметы попадает 22 аутосомы и одна Х-хромосома (гаметы одинаковы), поэтому женский пол гомогаметный.

У мужчин образуется два типа гамет: 22+Х и 22+У, поэтому мужской пол гетерогаметный. Вероятность рождения девочек так же, как и мальчиков, составляет 50%.

Пол будущего ребёнка определяется сочетанием половых хромосом в момент оплодотворения. Если яйцеклетку оплодотворяет сперматозоид с Х-хромосомой, то рождается девочка, а если яйцеклетку оплодотворяет сперматозоид с У-хромосомой, то рождается мальчик.

Лекция 4

при половом размножении (менделизм)

Г.Мендель в 1865 г. сформулировал идею о существовании наследственных факторов. Гибридологический метод, связанный с изучением характера наследования отдельных признаков и свойств позволил Менделю выявить и сформулировать основные правила наследственности.

К основным особенностям гибридологического метода изучения наследственности относят:

Использование в качестве исходных форм для скрещивания растений, отличающихся друг от друга сравнительно небольшим количеством (одна, две или три пары) контрастных признаков, и тщательный учет характера наследования каждого из них;

Точный количественный учет гибридных растений, различающийся по отдельным признакам, в ряде последовательных поколений;

Индивидуальный анализ потомства от каждого растения в ряде последовательных поколений;

Недопустимость влияния чужеродного генетического материала и родительские расы и гибриды;

Сохранение способности к размножению у гибридов и их потомков.

Одной из главных причин, обеспечивших успех в работе Менделя, был удачный выбор объекта исследования. Работа была проведена на однолетнем растении - горохе, который имеет много сортов с четко различающимися признаками. Горох легко культивируется, является строгим самоопылителем, строение его цветков таково, что почти невозможен занос чужой пыльцы, но при необходимости, можно производить искусственное опыление.

При изучении наследования признаков составляют схемы скрещивания. Скрещивание обозначают знаком умножения (х), который ставится между родителями. При написании схем женский пол обозначают знаком ♀ (символ планеты Венеры), мужской - ♂ (символ планеты Марс), родительские формы - буквой Р (от англ. родители). В строке ниже родителей записывают все типы производимых ими гамет (половых клеток). Полученное в результате скрещивания потомство называют гибридами и обозначают буквой F, внизу буквы ставят цифру, указывающую, к какому поколению оно относится. Например, F 1 - гибриды первого поколения, F 2 - второго поколения и т.д.

Датский ученый В.Иоганнсен в 1909 г. ввел понятия «ген», «генотип» и «фенотип». Ген - единица наследственности. Генотип - совокупность наследственных задатков (генов) организма Фенотипом называют совокупность всех признаков и свойств организма, доступных наблюдению и анализу. Фенотип формируется под влиянием генотипа и условий чреды. В 1902 г. английский зоолог В.Бэтсон ввел понятия «гомозигота» и «гетерозигота». Гомозиготными называют особей, получивших от отца и матери одинаковые наследственные задатки (гены). Гетерозиготными называют особей, получивших от отца и матери разные гены. Таким образом, по генотипу особи могут быть гомозиготными (АА или аа) или гетерозиготными (Аа).


При гибридологическом анализе довольно часто используют реципрокное скрещивание. Реципрокным называют два скрещивания, в одном из которых определенным признаком отличается отцовская форма, во втором - материнская. На основании проведенных опытов Менделем установлено три закона и правило чистоты гамет.

1 закон (правило) Менделя - закон единообразия гибридов первого поколения. Сущность его заключается в том, что при скрещивании гомозиготных родительских форм, различающихся по своим признакам, первое поколение получается единообразным.

Мендель начал изучать закономерности наследования признаков с моногибридного скрещивания , т.е. со скрещивания сортов гороха, отличающихся друг от друга только одним признаком. Он избрал для анализа семь пар четко различающихся признаков: форма зрелых семян - круглая или морщинистая, окраска семядолей зрелых семян - желтая или зеленая, окраска цветков и семенной кожуры - белая или окрашенная и др. Скрещивая между собой горох с альтернативными признаками, Мендель обнаружил, что у гибридов первого поколения появляется признак только одного из родителей (доминантный - А), в то время как признак другого родителя в гибридных формах остается скрытым (рецессивный - а). У гороха доминировала округлая форма семян над морщинистой, желтая окраска семядолей над зеленой. Полученные гибриды были одинаковы независимо от того, отцовскому или материнскому растению принадлежали доминирующие признаки. Например, наследственный задаток доминантной желтой окраски семядолей будет А, рецессивный задаток зеленой окраски - а.

2 закон Менделя - закон расщепления гибридов второго поколения при скрещивании гибридов первого поколения между собой. Суть правила расщепления заключается в следующем: во втором поколении моногибридного скрещивания наблюдается расщепление по фенотипу в соотношении 3:1, по генотипу в соотношении 1:2:1 (одна часть особей, гомозиготных по доминантному признаку, две части гетерозиготных и одна часть гомозиготных по рецессивному признаку).

Дигибридное скрещивание - это скрещивание особей, которые отличаются между собой по двум парам альтернативных признаков.

3 закон Менделя - закон независимого наследования генов (признаков А и В), которые находятся в разных парах хромосом. Генетически обусловленные признаки наследуются независимо друг от друга, сочетаясь во всех возможных комбинациях. Каждая пара аллельных генов наследуется по типу моногибридного скрещивания (3А+1а) х (3В+1в)=9АВ:3Ав:3аВ:1ав, то есть расщепление по фенотипу будет 9:3:3:1. По генотипу расщепление 1:2:1:2:4:2:1:2:1 = (1АА+2Аа+1аа)х(1ВВ+2Вв+1вв). Аллельными называют гены, которые располагаются в одном локусе (месте) гомологичных хромосом.

Вывод формулы расщепления по генотипу при дигибридном скрещивании

наследственность мутация генная болезнь

Наслемдственность -- способность организмов передавать свои признаки и особенности развития потомству. Благодаря этой способности все живые существа (растения, грибы, или бактерии) сохраняют в своих потомках характерные черты вида. Такая преемственность наследственных свойств обеспечивается передачей их генетической информации. Носителями наследственной информации у организмов являются гены.

Методы изучения наследственности человека

· Генеалогический метод -- составление родословного дерева многих поколений и изучение типа наследования (доминантный или рецессивный, сцепленный с полом или аутосомный), частоты и интенсивности проявления наследственных свойств. Результатом изучения обычно является определение типа наследования, а также риска проявления наследственных нарушений у потомков;

· Цитогенетический метод -- изучение хромосомных наборов здоровых и больных людей. Результат изучения -- определение количества, формы, строения хромосом, особенности хромосомных наборов обоих полов, а также хромосомных нарушений;

· Биохимический метод -- изучение изменений в биологических параметрах организма, связанных с изменением генотипа. Результат изучения -- определение нарушений в составе крови, в околоплодной жидкости и т. д.;

· Близнецовый метод -- изучение генотипических и фенотипических особенностей однояйцевых и разнояйцевых близнецов. Результат изучения -- определение относительного значения наследственности и окружающей среды в формировании и развитии человеческого организма;

· Популяционный метод -- изучение частоты встречаемости аллелей и хромосомных нарушений в популяциях человека. Результат изучения -- определение распространения мутаций и естественного отбора в популяциях человека.

ь Моногибридное скрещивание

М оногибридным называется скрещивание, при котором родители различаются по проявлению лишь одного из признаков. В одном из опытов Г. Мендель в качестве родителей выбрал особей чистых линий (то есть особей, которые при скрещивании друг с другом на протяжении многих поколений давали потомство с набором тех же самых признаков). Он исследовал наследование окраски семян гороха -- она может быть желтой или зеленой. Г. Мендель ставил опыт таким образом, что в одном эксперименте материнские растения имели желтые семена, а отцовские -- зеленые, а в другом -- наоборот. Такая система из двух скрещиваний носит название реципрокного скрещивания. При этом одно из скрещиваний (любое) называется ПРЯМЫМ, а другое -- ОБРАТНЫМ. (в данном случае результаты прямого и обратного скрещивания были одинаковыми.) Из гибридов первого поколения Г. Мендель путем самоопыления получал гибриды второго поколения и т. д. В нашем случае схема скрещивания будет выглядеть так.

зеленые семена х желтые семена

Из схемы видно, что у всех особей F1 проявился признак только одного родителя, а именно -- желтая окраска семян. Проявляющийся в первом поколении гибридов признак Г. Мендель назвал доминантным (а само явление -- доминированием), а исчезающий -- редессивным . Описанная закономерность известна под названием закона-(или правила) единообразия первого поколения. Иногда ее также называют первым законом Менделя, что не совсем верно. Сам ученый формулировал лишь «закон комбинации различающихся признаков», включающий в себя, по сути, правило расщепления и правило независимого наследования. Кроме того, важно заметить, что правило единообразия гибридов первого поколения отражает не закономерности наследования признаков, а особенности их реализации в организме. При размножении гибридов F1 во втором поколении, наряду с доминантным, у части особей проявился отсутствовавший в фенотипе гибридов" первого поколения рецессивный признак. Г. Мендель обнаружил, что особей с доминантным признаком примерно втрое больше, чем с рецессивным (то есть произошло расщепление в соотношении 3: 1). Эти результаты легли в основу закона расщепления. Дальнейшее размножение гибридов F2 показало, что особи с рецессивным признаком давали в ряду поколений только особей, у которых- также проявлялся лишь рецессивный признак; а группа с доминантным признаком оказалась разнородной. Одна ее часть в ряду поколений давала только особей с проявлением доминантного признака, а другая при размножении расщеплялась в соотношении по фенотипу 3:1. Рассматриваемые организмы диплоидны, то есть состоят из клеток, содержащих двойной набор хромосом. Гомологичные хромосомы имеют идентичные участки -- гены, в которых содержится информация о том или ином признаке, например, цвете семян. Однако признак этот может проявляться в фенотипе различным образом -- семена могут быть зелеными, а могут быть и желтыми. Собственно цвет (желтый или зеленый) определяется тем или иным состоянием гена (последовательностью нуклеотидов в цепи ДНК). В рассматриваемом случае ген окраски семян имеет две альтернативные формы (аллеля). Аллели -- формы (их может быть не только две, но и больше -- явление множественного аллелизма) одного и того же гена, располагающиеся в одинаковых участках (локусах) гомологичных хромосом. Таким образом, соматические клетки содержат два аллеля одного гена. При этом, несмотря на то, что аллели могут быть разными (гетерозиготное состояние), в фенотипе проявляется только один из них -- он называется доминантным. Рецессивный же аллель влияет на фенотип только в том случае, если он, находится в обоих гомологичных хромосомах (гомозиготное состояние). Образующиеся в результате мейоза гаплоидные гаметы содержат всего лишь один аллель того или иного гена. На схеме доминантные аллели обозначаются латинской заглавной буквой, а рецессивные -- прописной (буква при этом используется одна и та же, что подчеркивает, что оба аллеля ответственны за проявление одного и того же признака). Схема нашего скрещивания с учетом сказанного будет выглядеть так:

В скрещивании участвуют и особи чистых линий. Это означает, что они гомозиготны по выбранному признаку. При оплодотворении материнская и отцовская гаметы сливаются. Поскольку доминантный аллель подавляет работу рецессивного, а все гибриды F1 имеют одинаковый гетерозиготный генотип Аа, у них проявляется желтая окраска семян. Гибриды F1 способны образовывать 2 типа гамет: А и а, каждая из которых с равной вероятностью может слиться с любой другой. В результате в F2 образуются следующие генотипы: АА, аа, Аа и Аа (или: АА, 2Аа, аа). Как видно, генотипов с двумя рецессивными генами втрое меньше. Этим объясняется расщепление по фенотипу 3:1. Расщепление по генотипу составляет 1: 2: 1, то есть 1АА: 2Аа: 1аа. Гомозиготы АА и аа могут образовывать гаметы только одного типа, поэтому при самоопылении у их потомков расщепления не происходит. Гетерозиготы же Аа размножаются аналогично гибридам F1.

ь Дигибридное скрещивание

Г. Мендель продолжил свои исследования, но для экспериментов выбрал растения, отличающиеся друг от друга двумя признаками, то есть по двум парам аллелей. Скрещивание таких организмов называется дигибридным . В одном из экспериментов семена гороха отличались не только окраской, но и формой (часть из них была гладкой, а часть -- морщинистой):

Р желтые гладкие семена х зеленые морщинистые семена

Все потомки первого поколения имели гладкие семена желтого цвета. Во втором поколении гибридов проявилось уже четыре фенотипа: желтые гладкие, зеленые гладкие, желтые морщинистые и зеленые морщинистые семена. Причем расщепление по фенотипу каждого признака в отдельности было таким же, как и при моногибридном скрещивании -- количество желтых семян было втрое больше, чем зеленых, а количество гладких -- втрое больше, чем морщинистых. На основании этого был сформулирован еще один принцип, который известен под названием закон независимого наследования (распределения) признаков, суть которого состоит в том, что альтернативные проявления одного признака могут сочетаться с любыми альтернативными проявлениями другого признака. Попробуем объяснить этот закон на основании хромосомной теории наследственности. Согласно этой теории аллели локализуются в гомологических хромосомах. В опытах Г. Менделя гены, кодирующие цвет и форму семян, располагались в разных хромосомах (обозначим ген окраски как А -- желтая и а -- зеленая, а ген формы как В -- гладкая и b -- морщинистая). В протекании процесса мейоза, приводящего к образованию гамет, есть одно непреложное правило: гомологичные хромосомы должны разойтись к разным полюсам и «уйти» в разные гаметы. А вот какая именно из гомологических хромосом (с доминантным или рецессивным геном -- это, разумеется, относится только к гете-розиготам) отойдет к какому полюсу, дело случая. В нашем примере:

Различные варианты генотипов (и соответствующих им фенотипов), образующиеся при слиянии гамет в результате скрещивания, удобно рассчитывать по решетке Пеннета, располагая их в ячейках, на которые она поделена.

ь Сцепление генов

Как выяснилось закон независимого распределения генов справедлив лигаь для генов, расположенных в разных хромосомах. На самом деле в любом организме число генов очень велико (десятки тысяч), а число их носителей -- хромосом -- ограничено: так, у человека 23 пары хромосом, у кукурузы -- 10, а у дрозофилы -- всего 4. Соответственно, в каждой хромосоме должно быть по несколько сотен или тысяч генов. Из того факта, что при образовании гамет к полюсам клетки в мейозе отходят хромосомы, а не гены, следует, что гены, локализованные в одной хромосоме, должны наследоваться вместе. Это подтверждают опыты Томаса Ханта Моргана, проведенные на плодовой мушке дрозофиле. Он исследовал дигибридное скрещивание для двух признаков: цвета тела (серое и черное) и длины крыла (длинные и зачаточные).

· Р серое тело, длинные крылья (GGLL) Х черное тело, зачаточеные крылья (ggll)

· гаметы: GL gl

· F1 серое тело, длинные крылья GgLl

· Поскольку оба гена лежат в одной хромосоме, образуется только 2 типа гамет: GL и gl

Таким образом, в F2 наблюдается расщепление по фенотипу 3: 1 вместо ожидаемого в соответствии с генетикой Менделя 9:3:3:1. Закономерность, суть которой сводится к тому, что гены, локализованные в одной хромосоме, наследуются преимущественно вместе, известна под названием закона Моргана. Слово преимущественно не случайно, ибо сам Морган обнаружил и объяснил отклонения от этого правила. Так как гены, лежащие в одной хромосоме, наследуются вместе, их называют сцепленными. Все гены одной хромосомы образуют ГРУППУ сцепления. Введем еще одно понятие. Анализирующим называется скрещивание изучаемого организма с формой, имеющей рецессивный гомозиготный генотип и соответственно образующей только один тип гамет с рецессивными аллелями. При анализирующем скрещивании (в данном случае оно является также и возвратным) серой длиннокрылой гетерозиготы из F1 с черной короткокрылой гомозиготой из родительского поколения Р у Т. X. Моргана помимо форм с ожидаемыми фенотипами -- серое тело, длинные крылья и черное тело, зачаточные крылья -- в соотношении 1: 1 появились особи со смешанными признаками:

Р серое тело, длинные крылья (GgLl) Х черное тело, зачаточеные крылья (ggll)

Fа(анализир.) 41,5 % серое тело, длинные крылья 41,5 % черное тело, зачаточные крылья 8,5 % серое тело, зачаточные крылья 8,5 % черное тело, длинные крылья

Т. X. Морган, объясняя полученные результаты, предположил, что гомологичные хромосомы, образующие на первой стадии мейоза хиазмы (перекресты), способны обмениваться отдельными участками в результате возникающих разрывов и последующих рекомбинаций. Это явление было названо кроссинговером. Оно приводит к тому, что аллели из гомологичных хромосом меняются друг с другом местами. Таким образом, в данном случае, кроме «нормальных» гамет GL и gl, образуются (в гораздо меньшем количестве) гаметы GI и gL. Именно они и определяют появление «неожиданных» особей. Процесс обмена участками между гомологичными хромосомами приводит к генетической рекомбинации. Особей, образующихся из гамет с новым сочетанием аллелей, называют рекомбинантными. Чем дальше друг от друга на хромосоме расположены гены, тем чаще между ними происходит кроссинговер и тем выше процент появляющихся рекомбинантных особей. На этом явлении основано построение генетических карт -- определение последовательности расположения генов в хромосоме и примерного расстояния между ними.

ь Взаимодействие генов

Более поздними исследованиями было показано, что, кроме сцепления, отклонения от менделевского наследования вызываются еще рядом причин, одной из которых являются эффекты, связанные с взаимодействием генов. Оказалось, что как аллельные, так и неаллельные гены способны взаимодействовать друг с другом, вызывая появление новых признаков. Взаимодействие аллельных генов Неполное доминирование -- явление, при котором доминантный ген не полностью подавляет работу рецессивного, в результате развивается промежуточный признак. Примером может служить окраска цветка у растения ночная красавица с расщеплением по фенотипу в F2 1:2:1. Р красный цветок (АА) Х белый цветок (аа)

· F1 фенотип: розовый цветок генотип: Аа гаметы: А А Х а а

· F2 фенотип: 1/4 красный цветок 2/4 розовый цветок 1/4 белый цветок генотип: АА Аа аа

Множественный аллелизм -- явление существования более двух альтернативных аллельных генов, имеющих различные проявления в фенотипе. Например, четыре группы крови у человека определяются сочетанием в генотипе аллелей А, В и О одного и того же гена I. Взаимодействие неаллельных генов Комплементарное взаимодействие -- (взаимодополнительное действие генов) -- явление, когда признак развивается только при взаимном действии двух доминантных неаллельных генов, каждый из которых в отдельности не вызывает развитие признака. Комбинативное взаимодействие -- явление, когда два неаллельных гена, взаимодействуя между собой обусловливают развитие нового признака, при этом каждый ген имеет собственное фенотипическое проявление. Эпистаз -- тип взаимодействия генов, при котором один ген подавляет действие другого (неаллельного) гена. Полимерия -- явление, когда несколько неаллель-ных генов отвечают за сходное воздействие на развитие одного и того же признака. Чем больше таких генов присутствует в генотипе, тем ярче проявляется признак. Часто явление полимерии наблюдается при наследовании количественных признаков -- удойность коров, яй-ценосность, вес тела и т. д. Плейотролия -- множественное действие гена. В этом случае один ген отвечает за развитие нескольких признаков.


Основные закономерности передачи наследственных признаков от родителей к потомкам были установлены Г. Менделем во второй половине XIX в. Он скрещивал растения гороха, различающиеся по отдельным признакам, и на основе полученных результатов обосновал идею о существовании наследственных задатков, ответственных за проявление признаков. В своих работах Мендель применил метод гибридологического анализа, ставшего универсальным в изучении закономерностей наследования признаков у растений, животных и человека.

В отличие от своих предшественников, пытавшихся проследить наследование многих признаков организма в совокупности, Мендель исследовал это сложное явление аналитически. Он наблюдал наследование всего лишь одной пары или небольшого числа альтернативных (взаимоисключающих) пар признаков у сортов садового гороха, а именно: белые и красные цветки; низкий и высокий рост; желтые и зеленые, гладкие и морщинистые семена гороха и т. п. Такие контрастные признаки называются аллелями, а термин “аллель” и “ген” употребляют как синонимы.

Закон единообразия гибридов первого поколения

Проявление у гибридов признака только одного из родителей Мендель назвал доминированием.

Рис. 1. Цитологические основы моногибридного расщепления

Моногибридным называется скрещивание, при котором родительские формы отличаются друг от друга по одной паре контрастных, альтернативных признаков.

Признак -любая особенность организма, т. е. любое отдельное его качество или свойство, по которому можно различить две особи. У растений это форма венчика (например, симметричный-асимметричный) или его окраска (пурпурный-белый), скорость созревания растений (скороспелость-позднеспелость), устойчивость или восприимчивость к заболеванию и т. д.

Совокупность всех признаков организма, начиная с внешних и кончая особенностями строения и функционирования клеток, тканей и органов, называется фенотипом. Этот термин может употребляться и по отношению к одному из альтернативных признаков. Признаки и свойства организма проявляются под контролем наследственных факторов, т. е. генов. Совокупность всех генов организма называют генотипом. Мендель установил также, что все гибриды F1 оказались единообразными (однородными) по каждому из семи исследуемых им признаков.

При скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных признаков, всё первое поколение гибридов (F1) окажется единообразным и будет нести признак одного из родителей. При скрещивании организмов, различающихся по одной паре контрастных признаков, за которые отвечают аллели одного гена, первое поколение гибридов единообразно по фенотипу и генотипу. По фенотипу все гибриды первого поколения характеризуются доминантным признаком, по генотипу всё первое поколение гибридов гетерозиготное

Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака - на современном языке это означает гомозиготность особей по этому признаку. Мендель же формулировал чистоту признака как отсутствие проявлений противоположных признаков у всех потомков в нескольких поколениях данной особи при самоопылении.

При скрещивании чистых линий гороха с пурпурными цветками и гороха с белыми цветками Мендель заметил, что взошедшие потомки растений были все с пурпурными цветками, среди них не было ни одного белого. Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с желтыми и зелеными семенами, у всех потомков семена были желтыми. Если он скрещивал горох с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким. Итак, гибриды первого поколения всегда единообразны по данному признаку и приобретают признак одного из родителей. Этот признак (более сильный, доминантный), всегда подавлял другой (рецессивный).

Кодоминирование и неполное доминирование

Некоторые противоположные признаки находятся не в отношении полного доминирования (когда один всегда подавляет другой у гетерозиготных особей), а в отношении неполного доминирования. Например, при скрещивании чистых линий львиного зева с пурпурными и белыми цветками особи первого поколения имеют розовые цветки. При скрещивании чистых линий андалузских кур чёрной и белой окраски в первом поколении рождаются куры серой окраски. При неполном доминировании гетерозиготы имеют признаки, промежуточные между признаками рецессивной и доминантной гомозигот.

При кодоминировании, в отличие от неполного доминирования, у гетерозигот признаки проявляются одновременно (смешанно). Типичный пример кодоминирования - наследование групп крови системы АВ0 у человека, где А и В - доминантные гены, а 0 - рецессивный. По этой системе генотип 00 определяет первую группу крови, АА и А0 - вторую, ВВ и В0 - третью, а АВ будет определять четвёртую группу крови. Т.о. всё потомство людей с генотипами АА (вторая группа) и ВВ (третья группа) будет иметь генотип АВ (четвёртая группа). Их фенотип не является промежуточным между фенотипами родителей, так как на поверхности эритроцитов присутствуют оба агглютиногена (А и В).

Явления кодоминирования и неполного доминирования признаков слегка видоизменяет первый закон Менделя: «Гибриды первого поколения от скрещивания чистых линий особей с противоположными признаками всегда одинаковы по этому признаку: проявляют доминирующий признак, если признаки находятся в отношении доминирования, или смешанный (промежуточный) признак, если они находятся в отношении кодоминирования (неполного доминирования)».

Закон расщепления признаков

При скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1. Скрещиванием организмов двух чистых линий, различающихся по проявлениям одного изучаемого признака, за которые отвечают аллели одного гена, называется моногибридное скрещивание.

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть - рецессивный, называется расщеплением. Следовательно, расщепление - это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении.

Закон независимого наследования признаков

При скрещивании двух гомозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании). Когда скрещивались растения, отличающиеся по нескольким признакам, таким как белые и пурпурные цветы и желтые или зелёные горошины, наследование каждого из признаков следовало первым двум законам и в потомстве они комбинировались таким образом, как будто их наследование происходило независимо друг от друга. Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1, то есть 9:16 были с пурпурными цветами и желтыми горошинами, 3:16 с белыми цветами и желтыми горошинами, 3:16 с пурпурными цветами и зелёными горошинами, 1:16 с белыми цветами и зелёными горошинами.

Условия выполнения законов Менделя

Для совпадения теоретически ожидаемого соотношения особей определенных фенотипов с реально наблюдаемым, необходимо соблюдение следующих условий:

гомозиготность исходных форм;

альтернативное проявление признаков в каждой паре; равная вероятность образования у гибрида гамет с разными аллелями;

одинаковая жизнеспособность разных гамет;

случайный характер сочетания гамет при оплодотворении;

одинаковая жизнеспособность зигот с разными комбинациями генов;

достаточная для получения достоверных результатов численность особей во втором поколении;

независимость проявления признаков от внешних условий и от остальных генов генотипа в целом.

На практике эти условия, как правило, соблюдаются у большинства организмов, включая человека. Одним из главных достижений Менделя является его экспериментальное доказательство дискретности наследственных факторов, когда каждому признаку соответствует отдельный наследственный фактор (ген). Такой тип наследования позднее был назван моногенным, в отличие от полигенного, обусловленного совместным действием n-числа генов. Дискретность проявляется в расхождении двух аллелей одного гена, локализованных в гомологичных хромосомах, в разные гаметы (принцип чистоты гамет). Дискретная локализация генов в разных хромосомах обусловливает их комбинаторику в мейозе, которая выявляется на фенотипическом уровне в соотношении 9:3:3:1 в дитибридном скрещивании.

В начале XX века были построены первые генетические карты у дрозофилы и кукурузы, подтверждающие дискретность генов в хромосомах. Менделевские законы наследования после переоткрытия были подтверждены на множестве различных объектов и, в частности, на классическом генетическом объекте - Drosophila melanogaster, который используется как в научных исследованиях, так и на практических занятиях студентов, изучающих генетику. Общее, что объели -няет все объекты, на которых можно убедиться в правильности менделевских законов, - диплоидный набор хромосом в соматических клетках, наличие мейоза с образованием гаплоидных гамет и равновероятными комбинациями негомологичных хромосом, взаимодействие аллельных генов по типу доминантности/рецессивности. По законам Менделя наследуются не только нормальные, но и мутантные признаки, в том числе и некоторые болезни у человека.

Оценивая значение работы Г. Менделя для развития науки, выдающийся отечественный генетик Н.В. Тимофеев-Ресовский писал: «Его (Менделя) величие в том, что, зная и учитывая все явления, открытые (его предшественниками), но точно не проанализированные, он так поставил свои опыты и обработал их результаты, что смог дать точный, количественный анализ наследования и перекомбинирования элементарных наследственных признаков в чреде поколений. Из таким образом полученных экспериментальных данных он смог сформулировать вероятностно-статистические и комбинаторные закономерности наследования. В этом Г. Мендель опередил свое время, став пионером истинного внедрения строгого математического мышления в биологию и создал основу быстрого и прекрасного по своей стройности развития генетики в нашем веке».

Условия выполнения закона чистоты гамет

Нормальный ход мейоза. В результате нерасхождения хромосом в одну гамету могут попасть обе гомологичные хромосомы из пары. В этом случае гамета будет нести по паре аллелей всех генов, которые содержатся в данной паре хромосом.