Атомное топливо. Термоядерный ракетный двигатель

В силу того, что ядерное топливо эффективнее всех остальных видов топлива, которым мы располагаем сегодня, огромное предпочтение отдается всему тому, что способно работать с помощью атомных установок (АЭС, подводные лодки, корабли и прочее). О том, как производят ядерное топливо для реакторов, мы поговорим далее.

Добывают уран двумя основными способами:
1) Прямая добыча в карьерах или шахтах, если позволяет глубина залегания урана. С этим методом, надеюсь, всё понятно.
2) Подземное выщелачивание. Это когда на том месте, где найден уран, бурятся скважины, в них закачивается слабый раствор серной кислоты, а уже раствор взаимодействует с ураном, соединяясь с ним. Затем получившаяся смесь откачивается наверх, на поверхность, и из неё химическими методами выделяется уран.

Представим, будто мы уже добыли на руднике уран и подготовили его для дальнейших преобразований. На фото ниже - так называемый "желтый кек", U3O8. В бочке для дальнейшей перевозки.

Всё бы хорошо, и этот уран в теории можно было бы сразу использовать для производства топлива для АЭС, но увы. Природа, как всегда, подкинула нам работы. Дело в том что природный уран состоит из смеси трех изотопов. Это U238 (99.2745%), U235 (0.72%) и U234(0.0055%). Нас интересует здесь лишь U235 - так как он отлично делится тепловыми нейтронами в реакторе, именно он позволяет нам пользоваться всеми благами цепной реакции деления. К сожалению, его природной концентрации не хватит для стабильной и долгой работы современного реактора АЭС. Хотя, насколько я знаю, аппарат РБМК спроектирован так, что запуститься на топливе из природного урана сможет, но вот стабильность, долговременность и безопасность работы на таком топливе совершенно не гарантируется.
Уран нам надо обогатить. То есть повысить концентрацию U235 от природной до той, которая используется в реакторе.
Для примера, реактор РБМК работает на уране обогащения 2.8%, ВВЭР-1000 - обогащение от 1.6 до 5.0%. Судовые и корабельные ядерные энергетические установки кушают топливо с обогащением до 20%. А некоторые исследовательские реакторы работают на топливе аж с 90% обогащением (пример - ИРТ-Т в Томске).
В России обогащение урана проводится на газовых центрифугах. Т. е. тот желтый порошок, что был на фото ранее, превращают в газ, гексафторид урана UF6. Затем этот газ поступает на целый каскад центрифуг. На выходе из каждой центрифуги, из-за разности веса ядер U235 и U238, мы получаем гексафторид урана с чуть повышенным содержанием U235. Процесс повторяется многократно и в итоге мы получаем гексафторид урана с нужным нам обогащением. На фото ниже как раз можно увидеть масштаб каскада центрифуг - их очень много и простираются они в далекие дали.

Затем газ UF6 превращают обратно в UO2, в виде порошка. Химия, всё-таки, очень полезная наука и позволяет нам творить такие чудеса.
Однако этот порошок в реактор так просто не засыпать. Вернее, засыпать-то можно, но ничего хорошего из этого не выйдет. Его (порошок) надо привести к такому виду, чтобы мы могли надолго, на годы, опустить его в реактор. При этом само горючее не должно контактировать с теплоносителем и выходить за пределы активной зоны. И еще ко всему этому топливо должно выдерживать очень и очень суровые давления и температуры, которые возникнут в нём при работе внутри реактора.
Забыл, кстати, сказать что порошок тоже не абы какой - он должен быть определенных размеров, чтобы при спрессовывании и спекании не образовывалось ненужных пустот и трещин. Сначала из порошка делают таблетки, путем спрессовывания и долгого выпекания (технология действительно непростая, если её нарушить - топливные таблетки не будут годны к использованию). Вариации таблеток покажу на фото ниже.

Отверстия и выемки на таблетках нужны для компенсации теплового расширения и радиационных формоизменений. В реакторе со временем таблетки пухнут, выгибаются, изменяют размеры, и если ничего не предусмотреть - могут разрушиться, а это плохо.

Готовые таблетки затем упаковывают в металлические трубки (из стали, циркония и его сплавов и других металлов). Трубки закрывают с обоих концов и герметизируют. Готовая трубка с топливом называется твэл - тепловыделяющий элемент.

Для разных реакторов требуются твэлы разной конструкции и обогащения. Твэл РБМК, например, длиной 3.5 метра. Твэлы, кстати, бывают не только стержневые. как на фото. Они бывают пластинчатые, кольцевые, море различных видов и модификаций.
Твэлы затем объединяют в тепловыделяющие сборки - ТВС. ТВС реактора РБМК состоит из 18 твэлов и выглядит примерно вот так:

ТВС реактора ВВЭР выглядит вот так:
Как видно, ТВС реактора ВВЭР состоит из гораздо большего количества твэлов, чем у РБМК.
Готовое специзделие (ТВС) затем с соблюдением мер предосторожности доставляется на АЭС. Зачем предосторожности? Ядерное горючее, хоть пока и нерадиоактивно, очень ценное, дорогое, и при очень неаккуратном обращении способно вызвать много проблем. Затем проводится финальный контроль состояния ТВС и - загрузка в реактор. Всё, уран прошел долгий путь от руды под землей к высокотехнологичному устройству внутри ядерного реактора. Теперь у него другая судьба - несколько лет тужиться внутри реактора и выделять драгоценное тепло, которое у него будет забирать вода (или любой другой теплоноситель).

Исследователи из Массачусетского технологического института (MIT) совместно с коллегами из США и Брюсселя разработали новый тип термоядерного топлива. С его помощью можно получить в десять раз больше энергии, чем из всех существующих образцов. Новое топливо содержит три вида ионов — частиц, заряд которых изменяется в зависимости от потери или приобретения электрона. Для изучения топлива используется токамак — тороидальная камера для магнитного удержания плазмы, создающая условия для управляемого термоядерного синтеза . Эксперименты с новинкой проводятся на базе токамака Alcator C-Mod , принадлежащего MIT, который обеспечивает наивысшее напряжение магнитного поля и давление плазмы во время испытаний.

Секрет нового топлива

Alcator C-Mod последний раз был запущен еще в сентябре 2016 года, но данные, полученные в результате проведенных экспериментов, были расшифрованы лишь недавно. Именно благодаря им ученым и удалось разработать новый, уникальный тип термоядерного топлива, значительно увеличивающего энергию ионов в плазме. Результаты были настолько обнадеживающими, что исследователи, работающие на Объединенном европейском торе (JET , еще один современный токамак) в Оксфордшире, США, провели собственный эксперимент и достигли такого же увеличения выработки энергии. Исследование, в котором подробно изложены результаты работы, было недавно опубликовано в Nature Physics .

Ключом к повышению эффективности ядерного топлива было добавление незначительного количества гелия-3 — стабильного изотопа гелия, который вместо двух нейтронов обладает лишь одним. Ядерное топливо, используемое в Alcator C-Mod, ранее содержало только два типа ионов, ионы дейтерия и водорода. Дейтерий, стабильный изотоп водорода с одним нейтроном ядре (у обычного водорода нейтронов нет совсем), занимает порядка 95% от общего состава топлива.

Исследователи из Центра плазмы и синтеза MIT (PSFC) использовали радиочастотный нагрев для того, чтобы воспламенить топливо, удерживаемое в форме суспензии промышленными магнитами. Этот метод основан на использовании антенн вне токамака, которые воздействуют на топливо с помощью радиоволн определенных частот. Они калибруются так, чтобы поражать лишь материал, количество которого в суспензии меньше всех прочих (в данном случае это водород). Водород обладает лишь малой долей от общей плотности топлива, а потому фокусировка радиочастотного нагрева на его ионах позволяет достичь экстремально высоких температур. Возбужденные ионы водорода затем взаимодействуют с ионами дейтерия, и полученные в результате из взаимодействия частицы бомбардируют наружную оболочку реактора, выделяя огромное количество тепла и электроэнергии.

А что же гелий-3 ? В новом топливе его меньше 1%, но именно его ионы играют решающую роль. Сфокусировав радиочастотный нагрев на столь незначительном количестве вещества, исследователи подняли энергию эонов до уровня мегаэлектроноволь (МэВ). Электроновольт — это количество энергии, полученное\потерянное в результате перехода электрона от одной точки электрического потенциала на уровень в 1 вольт выше. До сих пор мегаэлектронвольты в экспериментах с термоядерным топливом были лишь пределом мечтаний ученых — это на порядок больше, чем энергия всех образцов, полученных до сих пор.

Токамак: исследование термоядерных реакций

Alcatre C-Mod и JET представляют собой экспериментальные камеры термоядерного синтеза с возможностью достижения тех же плазменных давлений и температур, которые потребуются в полномасштабном реакторе синтеза. Стоит отметить, впрочем, что они меньше по размерам и не дают того, что исследователи называют «активированным синтезом» — синтеза, энергия которого напрямую преобразуется в энергию, которую можно использовать для других нужд. Тонкая настройка состава топлива, частоты радиоволн, магнитных полей и других переменных в этих экспериментах позволяют исследователям тщательно выбрать наиболее эффективный процесс синтеза, который потом можно будет воспроизвести в промышленном масштабе.

Как уже было сказано, американским ученым, работающим на JET, удалось не просто достичь тех же результатов, но и сравнить их с работой западных коллег, в результате чего научное сообщество получило уникальные данные измерений различных свойств невероятно сложных реакций, происходящих в перегретой плазме. В MIT исследователи использовали метод получения изображений реакции с помощью фазово-контрастной микроскопии , благодаря которому фазы электромагнитных волн трансформируются в контраст интенсивности. В свою очередь, ученые JET обладали возможностью более точно измерять энергию полученных частиц, и в результате картина того, что происходит во время реакций синтеза, получилась наиболее полной.

Ядерный синтез: революция в энергетике

Что это значит для нас с вами? Как минимум значительный прорыв в технологической сфере. Ядерный синтез, поставленный на нужды промышленности, может произвести революцию в производстве энергии. Его энергетический потенциал невероятно высок, а топливо состоит из самых распространенных элементов в Солнечной системе — водорода и гелия. К тому же, после сгорания термоядерного топлива не образуется опасных для экологии и человека отходов.

Как отмечает Nature , результаты этих экспериментов также помогут астрономам лучше понять роль гелия-3 в солнечной активности — ведь солнечные вспышки, несущие угрозу для земной энергетики и околоземных спутников, есть ни что иное, как результат протекания термоядерной реакции с колоссальным тепловым и электромагнитным излучением.

Принцип работы и устройство ТЯРД

В настоящее время предложены 2 варианта конструкции ТЯРД:

ТЯРД на основе термоядерного реактора с магнитным удержанием плазмы

В первом случае принцип действия и устройство ТЯРД выглядят следующим образом: основной частью двигателя является реактор, в котором происходит управляемая реакция термоядерного синтеза. Реактор представляет собой полую «камеру» цилиндрической формы, открытую с одной стороны, т. н. установку термоядерного синтеза схемы «открытая ловушка» (также именуемую «магнитная бутылка» или пробкотрон). «Камера» реактора вовсе не обязательно (и даже нежелательно) должна быть цельно-герметичной, скорее всего она будет представлять собой легкую размеростабильную ферму, несущую катушки магнитной системы. В настоящее время наиболее перспективной считается схема т. н. «амбиполярного удержания» или «магнитных зеркал» (англ. tandem mirrors ), хотя возможны и другие схемы удержания: газодинамические ловушки, центробежное удержание, обращенное магнитное поле (FRC). По современным оценкам, длина реакционной «камеры» составит от 100 до 300 м при диаметре 1-3 м. В камере реактора создаются условия, достаточные для начала термоядерного слияния компонентов выбранной топливной пары (температуры порядка сотен миллионов градусов, факторы критерия Лоусона). Термоядерное топливо - предварительно нагретая плазма из смеси топливных компонентов - подаётся в камеру реактора, где и происходит постоянная реакция синтеза. Генераторы магнитных полей (магнитные катушки той или иной конструкции), окружающие активную зону, создают в камере реактора поля большой напряжённости и сложной конфигурации, которые удерживают высокотемпературную термоядерную плазму от соприкосновения с конструкцией реактора и стабилизируют происходящие в ней процессы. Зона термоядерного «горения» (плазменный факел) формируется по продольной оси реактора. Полученная плазма, направляемая магнитными управляющими системами, истекает из реактора через сопло, создавая реактивную тягу.

Следует отметить возможность «многорежимной» работы ТЯРД. Путем впрыска в струю плазменного факела относительно холодного вещества можно резко повысить общую тягу двигателя (за счет снижения удельного импульса), что позволит кораблю с ТЯРД эффективно маневрировать в гравитационных полях массивных небесных тел, например больших планет, где зачастую требуется большая общая тяга двигателя. По общим оценкам, ТЯРД такой схемы может развивать тягу от нескольких килограммов вплоть до десятков тонн при удельном импульсе от 10 000сек до 4 млн.сек. Для сравнения, показатель удельного импульса наиболее совершенных химических ракетных двигателей - порядка 450 сек.

ТЯРД на основе систем инерционного синтеза (импульсный термоядерный реактор)

Двигатель второго типа - инерциальный импульсный термоядерный двигатель. В таком реакторе управляемая термоядерная реакция проходит в импульсном режиме (доли мкс с частотой 1-10Гц), при периодическом обжатии и разогреве микромишеней, содержащих термоядерное топливо. Первоначально предполагалось использовать лазерно-термоядерный двигатель (ЛТЯРД). Такой ЛТЯРД предлагался, в частности, для межзвёздного автоматического зонда в проекте «Дедал» . Главной его частью является реактор, работающий в импульсном режиме. В сферическую камеру реактора подаётся термоядерное топливо (например, дейтерий и тритий) в виде мишеней - сложной конструкции сфер из смеси замороженных топливных компонентов в оболочке диаметром несколько миллиметров. На внешней части камеры находятся мощные - порядка сотен тераватт - лазеры , наносекундный импульс излучения которых через оптически прозрачные окна в стенах камеры попадает на мишень. При этом на поверхности мишени мгновенно создается температура более 100 млн градусов при давлении порядка миллиона атмосфер - условия, достаточные для начала термоядерной реакции. Происходит термоядерный микровзрыв мощностью в несколько сотен килограммов в тротиловом эквиваленте. Частота таких взрывов в камере в проекте «Дедал» - порядка 250 в секунду, что требовало подачи топливных мишеней со скоростью более 10 км/с при помощи ЭМ-пушки. Расширяющаяся плазма вытекает из открытой части камеры реактора через сопло соответствующей конструкции, создавая реактивную тягу. В настоящее время уже теоретически и практически доказано, что лазерный метод обжатия/разогрева микромишеней является тупиковым - в том числе практически невозможно построить лазеры такой мощности с достаточным ресурсом. Поэтому в настоящее время для инерциального синтеза рассматривается вариант с ионно-пучковым обжатием/нагревом микромишеней, как более эффективный, компактный и с гораздо большим ресурсом.

И тем не менее, есть мнение, что ТЯРД на инерциально-импульсном принципе слишком громоздок из-за очень больших циркулирующих в нём мощностей, при худшем, чем у ТЯРД с магнитным удержанием, удельном импульсе и тяге, что вызвано импульсно-периодическим типом его действия. Идеологически к ТЯРД на инерциально-импульсном принципе примыкают взрыволеты на термоядерных зарядах типа проекта «Орион» .

Типы реакций и термоядерное топливо

ТЯРД может использовать различные виды термоядерных реакций в зависимости от вида применяемого топлива. В частности, на настоящее время принципиально осуществимы следующие типы реакций:

Реакция дейтерий + тритий (Топливо D-T)

2 H + 3 H = 4 He + n при энергетическом выходе 17,6 МэВ

Такая реакция наиболее легко осуществима с точки зрения современных технологий, даёт значительный выход энергии, топливные компоненты относительно дёшевы. Недостаток её - весьма большой выход нежелательной (и бесполезной для прямого создания тяги) нейтронной радиации, уносящей большую часть мощности реакции и резко снижающей КПД двигателя. Тритий радиоактивен, период его полураспада - около 12 лет, то есть его долговременное хранение невозможно. В то же время, возможно окружить дейтериево-тритиевый реактор оболочкой, содержащий литий: последний, облучаясь нейтронным потоком, превращается в тритий, что в известной степени замыкает топливный цикл, поскольку реактор работает в режиме размножителя (бридера). Таким образом, топливом для D-T- реактора фактически служат дейтерий и литий.

Реакция дейтерий + гелий-3

2 H + 3 He = 4 He + p. при энергетическом выходе 18,3 МэВ

Условия её достижения значительно сложнее. Гелий-3, кроме того, является редким и чрезвычайно дорогим изотопом. В промышленных масштабах на настоящее время не производится. Хотя энергетический выход реакции D-T выше, реакция D- 3 He имеет следующие преимущества:

Сниженный нейтронный поток, реакцию можно отнести к «безнейтронным»,

Меньшая масса радиационной защиты,

Меньшая масса магнитных катушек реактора.

При реакции D- 3 He в форме нейтронов выделяется всего около 5 % мощности (против 80 % для реакции D-T).Около 20 % выделяется в форме рентгеновского излучения. Вся остальная энергия может быть непосредственно использована для создания реактивной тяги. Таким образом, реакция D-3He намного более перспективна для применения в реакторе ТЯРД.

Другие виды реакций

Реакция между ядрами дейтерия (D-D, монотопливо) D + D -> 3 He + n при энергетическом выходе 3,3 МэВ, и

D + D -> T + p+ при энергетическом выходе 4 МэВ. Нейтронный выход в этой реакции весьма значителен.

Возможны и некоторые другие типы реакций:

P + 6 Li → 4 He (1.7 MeV) + 3 He (2.3 MeV) 3 He + 6 Li → 2 4 He + p + 16.9 MeV p + 11 B → 3 4 He + 8.7 MeV

Нейтронный выход в указанных выше реакциях отсутствует.

Выбор топлива зависит от многих факторов - его доступность и дешевизна, энергетический выход, лёгкость достижения потребных для реакции термоядерного синтеза условий (в первую очередь, температуры), необходимых конструктивных характеристик реактора и проч. Наиболее перспективны для осуществления ТЯРД т. н. «безнейтронные» реакции, так как порождаемый термоядерным синтезом нейтронный поток (например, в реакции дейтерий-тритий) уносит значительную часть мощности и не может быть использован для создания тяги. Кроме того, нейтронная радиация порождает наведенную радиоактивность в конструкции реактора и корабля, создавая опасность для экипажа. Реакция дейтерий- гелий-3 является перспективной в том числе и по причине отсутствия нейтронного выхода. В настоящее время предложена ещё одна концепция ТЯРД - с использованием малых количеств антиматерии в качестве катализатора термоядерной реакции.

История, современное состояние и перспективы разработок ТЯРД

Идея создания ТЯРД появилась практически сразу после осуществления первых термоядерных реакций (испытаний термоядерных зарядов). Одной из первых публикаций по теме разработки ТЯРД явилась изданная в 1958 году статья Дж. Росса. В настоящее время ведутся теоретические разработки таких видов двигателей (в частности, на основе лазерного термоядерного синтеза) и в целом - широкие практические исследования в области управляемого термоядерного синтеза. Существуют твёрдые теоретические и инженерные предпосылки для осуществления такого типа двигателя в обозримом будущем. Исходя из расчетных характеристик ТЯРД, такие двигатели смогут обеспечить создание скоростного и эффективного межпланетного транспорта для освоения Солнечной системы. Однако реальные образцы ТЯРД на настоящий момент (2012) ещё не созданы.

См. также

Ссылки

  • Космонавтика XXI века: термоядерные двигатели // газета «За науку», 2003
  • New Scientist Space (23.01.2003): Nuclear fusion could power NASA spacecraft (англ.)
  • Физическая энциклопедия, т.4, статья «термоядерные реакции», на стр. 102, Москва, «Большая Российская энциклопедия», 1994 г, 704 c.
Паровая машина Двигатель Стирлинга Пневматический двигатель
По виду рабочего тела
Газовые Газотурбинная установка Газотурбинная электростанция Газотурбинные двигатели‎
Паровые Парогазовая установка Конденсационная турбина
Гидравлические турбины‎ Пропеллерная турбина Гидротрансформатор
По конструктивным особенностям Осевая (аксиальная) турбина Центробежная турбина (радиальная,

Атомная энергетика состоит из большого количества предприятий разного назначения. Сырье для этой индустрии добывается на урановых рудниках. После оно доставляется на предприятия по изготовлению топлива.

Далее топливо транспортируют на атомные станции, где оно попадает в активную зону реактора. Когда ядерное топливо отрабатывает свой срок, его подлежат захоронению. Стоит отметить, что опасные отходы появляются не только после переработки топлива, но и на любом этапе - от добычи урана до работы в реакторе.

Ядерное топливо

Топливо бывает двух видов. Первое - это уран, добытый в шахтах, соответственно, природного происхождения. Он содержит сырье, которое способно образовать плутоний. Второе - это топливо, которое создано искусственно (вторичное).

Также ядерное топливо делится по химическому составу: металлическое, оксидное, карбидное, нитридное и смешанное.

Добыча урана и производство топлива

Большая доля добычи урана приходится всего лишь на несколько стран: Россию, Францию, Австралию, США, Канаду и ЮАР.

Уран - это основной элемент для топлива на атомных электростанциях. Чтобы попасть в реактор, он проходит несколько стадий обработки. Чаще всего залежи урана находятся рядом с золотом и медью, поэтому его добычу осуществляют с добычей драгоценных металлов.

На разработках здоровье людей подвергается большой опасности, потому что уран - токсичный материал, и газы, которые появляются в процессе его добычи, вызывают разнообразные формы рака. Хотя в самой руде содержится очень малое количество урана - от 0,1 до 1 процента. Также большому риску подвергается население, которое проживает рядом с урановыми шахтами.

Обогащенный уран - главное топливо для атомных станций, но после его использования остается огромное количество радиоактивных отходов. Несмотря на всю его опасность, обогащение урана является неотъемлемым процессом создания ядерного топлива.

В природном виде уран практически нельзя нигде применить. Для того чтобы использовать, его нужно обогатить. Для обогащения используются газовые центрифуги.

Обогащенный уран используют не только в атомной энергетике, но и в производстве оружия.

Транспортировка

На любом этапе топливного цикла есть транспортировка. Она осуществляется всеми доступными способами: по земле, морем, воздухом. Это большой риск и большая опасность не только для экологии, но и для человека.

Во время перевозки ядерного топлива или его элементов происходит немало аварий, следствием которых является выброс радиоактивных элементов. Это одна из многих причин, по которой считают небезопасной.

Вывод из строя реакторов

Ни один из реакторов не демонтирован. Даже печально известная Чернобыльская Все дело в том, что по подсчетам экспертов цена демонтажа равняется, а то и превосходит цену постройки нового реактора. Но точно никто не может сказать, сколько понадобится средств: стоимость рассчитывалась на опыте демонтажа небольших станций для исследования. Специалисты предлагают два варианта:

  1. Помещать реакторы и отработанное ядерное топливо в могильники.
  2. Строить над вышедшими из эксплуатации реакторами саркофаги.

В ближайшие десять лет около 350 реакторов по всему миру выработают свой ресурс и должны быть выведены из строя. Но так как наиболее подходящего по безопасности и цене способа не придумали, это вопрос еще решается.

Сейчас по всему миру работают 436 реакторов. Безусловно, это большой вклад в энергосистему, но он очень небезопасен. Исследования показывают, что через 15-20 лет АЭС смогут заменить станциями, которые работают на энергии ветра и солнечных батареях.

Ядерные отходы

Огромное количество ядерных отходов образуется в результате деятельности АЭС. Переработка ядерного топлива также оставляет после себя опасные отходы. При этом ни одна из стран не нашла решения проблемы.

Сегодня ядерные отходы содержатся во временных хранилищах, в бассейнах с водой или захороняются неглубоко под землей.

Наиболее безопасный способ - это хранение в специальных хранилищах, но тут тоже возможна утечка радиации, как и при других способах.

На самом деле ядерные отходы имеют некоторую ценность, но требуют строго соблюдения правил их хранения. И это наиболее острая проблема.

Важным фактором является время, в течение которого отходы опасны. У каждого свой срок распада, в течение которого оно токсично.

Виды ядерных отходов

При эксплуатации любой атомной электростанции ее отходы попадают в окружающую среду. Это вода для охлаждения турбин и газообразные отходы.

Ядерные отходы делят на три категории:

  1. Низкого уровня - одежда сотрудников АЭС, лабораторное оборудование. Такие отходы могут поступать и из медицинских учреждений, научных лабораторий. Они не представляют большой опасности, но требуют соблюдения мер безопасности.
  2. Промежуточного уровня - металлические емкости, в которых перевозят топливо. Уровень радиации их достаточно высок, и те, кто находится от них недалеко, должны быть защищены.
  3. Высокого уровня - это отработанное ядерное топливо и продукты его переработки. Уровень радиоактивности быстро уменьшается. Отходов высокого уровня очень мало, около 3 процентов, но они содержат 95 процентов всей радиоактивности.