Искомое сечение. Как начертить наклонное сечение

На этом уроке мы рассмотрим тетраэдр и его элементы (ребро тетраэдра, поверхность, грани, вершины). И решим несколько задач на построение сечений в тетраэдре, используя общий метод для построения сечений.

Тема: Параллельность прямых и плоскостей

Урок: Тетраэдр. Задачи на построение сечений в тетраэдре

Как построить тетраэдр? Возьмем произвольный треугольник АВС . Произвольную точку D , не лежащую в плоскости этого треугольника. Получим 4 треугольника. Поверхность, образованная этими 4 треугольниками, и называется тетраэдром (Рис. 1.). Внутренние точки, ограниченные этой поверхностью, также входят в состав тетраэдра.

Рис. 1. Тетраэдр АВСD

Элементы тетраэдра
А, B , C , D - вершины тетраэдра .
AB , AC , AD , BC , BD , CD - ребра тетраэдра .
ABC , ABD , BDC , ADC - грани тетраэдра .

Замечание: можно принять плоскость АВС за основание тетраэдра , и тогда точка D является вершиной тетраэдра . Каждое ребро тетраэдра является пересечением двух плоскостей. Например, ребро АВ - это пересечение плоскостей АВ D и АВС . Каждая вершина тетраэдра - это пересечение трех плоскостей. Вершина А лежит в плоскостях АВС , АВ D , А D С . Точка А - это пересечение трех означенных плоскостей. Этот факт записывается следующим образом: А = АВС АВ D АС D .

Тетраэдр определение

Итак, тетраэдр - это поверхность, образованная четырмя треугольниками.

Ребро тетраэдра - линия перечесения двух плоскостей тетраэдра.

Составьте из 6 спичек 4 равных треугольника. На плоскости решить задачу не получается. А в пространстве это сделать легко. Возьмем тетраэдр. 6 спичек - это его ребра, четыре грани тетраэдра и будут четырьмя равными треугольниками. Задача решена.

Дан тетраэдр АВС D . Точка M принадлежит ребру тетраэдра АВ , точка N принадлежит ребру тетраэдра В D и точка Р принадлежит ребру D С (Рис. 2.). Постройте сечение тетраэдра плоскостью MNP .

Рис. 2. Рисунок к задаче 2 - Построить сечение тетраэдра плоскостью

Решение :
Рассмотрим грань тетраэдра D ВС . В этой грани точки N и P принадлежат грани D ВС , а значит, и тетраэдру. Но по условию точки N, P принадлежат секущей плоскости. Значит, NP - это линия пересечения двух плоскостей: плоскости грани D ВС и секущей плоскости. Предположим, что прямые NP и ВС не параллельны. Они лежат в одной плоскости D ВС. Найдем точку пересечения прямых NP и ВС . Обозначим ее Е (Рис. 3.).

Рис. 3. Рисунок к задаче 2. Нахождение точки Е

Точка Е принадлежит плоскости сечения MNP , так как она лежит на прямой , а прямая целиком лежит в плоскости сечения MNP .

Также точка Е лежит в плоскости АВС , потому что она лежит на прямой ВС из плоскости АВС .

Получаем, что ЕМ - линия пересечения плоскостей АВС и MNP, так как точки Е и М лежат одновременно в двух плоскостях - АВС и MNP. Соединим точки М и Е , и продолжим прямую ЕМ до пересечения с прямой АС . Точку пересечения прямых ЕМ и АС обозначим Q .

Итак, в этом случае NPQМ - искомое сечение.

Рис. 4. Рисунок к задаче 2.Решение задачи 2

Рассмотрим теперь случай, когда NP параллельна BC . Если прямая NP параллельна какой-нибудь прямой, например, прямой ВС из плоскости АВС , то прямая NP параллельна всей плоскости АВС .

Искомая плоскость сечения проходит через прямую NP , параллельную плоскости АВС , и пересекает плоскость по прямой МQ . Значит, линия пересечения МQ параллельна прямой NP . Получаем, NPQМ - искомое сечение.

Точка М лежит на боковой грани А D В тетраэдра АВС D . Постройте сечение тетраэдра плоскостью, которое проходит через точку М параллельно основанию АВС .

Рис. 5. Рисунок к задаче 3 Построить сечение тетраэдра плоскостью

Решение:
Секущая плоскость φ параллельна плоскости АВС по условию, значит, эта плоскость φ параллельна прямым АВ , АС , ВС .
В плоскости АВ D через точку М проведем прямую PQ параллельно АВ (рис. 5). Прямая PQ лежит в плоскости АВ D . Аналогично в плоскости АС D через точку Р проведем прямую РR параллельно АС . Получили точку R . Две пересекающиеся прямые PQ и РR плоскости РQR соответственно параллельны двум пересекающимся прямым АВ и АС плоскости АВС , значит, плоскости АВС и РQR параллельны. РQR - искомое сечение. Задача решена.

Дан тетраэдр АВС D . Точка М - точка внутренняя, точка грани тетраэдра АВ D . N - внутренняя точка отрезка D С (Рис. 6.). Построить точку пересечения прямой NM и плоскости АВС .

Рис. 6. Рисунок к задаче 4

Решение:
Для решения построим вспомогательную плоскость D МN . Пусть прямая D М пересекает прямую АВ в точке К (Рис. 7.). Тогда, СК D - это сечение плоскости D МN и тетраэдра. В плоскости D МN лежит и прямая NM , и полученная прямая СК . Значит, если NM не параллельна СК , то они пересекутся в некоторой точке Р . Точка Р и будет искомая точка пересечения прямой NM и плоскости АВС .

Рис. 7. Рисунок к задаче 4. Решение задачи 4

Дан тетраэдр АВС D . М - внутренняя точка грани АВ D . Р - внутренняя точка грани АВС . N - внутренняя точка ребра D С (Рис. 8.). Построить сечение тетраэдра плоскостью, проходящей через точки М , N и Р .

Рис. 8. Рисунок к задаче 5 Построить сечение тетраэдра плоскостью

Решение:
Рассмотрим первый случай, когда прямая MN не параллельна плоскости АВС . В прошлой задаче мы нашли точку пересечения прямой MN и плоскости АВС . Это точка К , она получена с помощью вспомогательной плоскости D МN , т.е. мы проводим D М и получаем точку F . Проводим СF и на пересечении MN получаем точку К .

Рис. 9. Рисунок к задаче 5. Нахождение точки К

Проведем прямую КР . Прямая КР лежит и в плоскости сечения, и в плоскости АВС . Получаем точки Р 1 и Р 2 . Соединяем Р 1 и М и на продолжении получаем точку М 1 . Соединяем точку Р 2 и N . В результате получаем искомое сечение Р 1 Р 2 NМ 1 . Задача в первом случае решена.
Рассмотрим второй случай, когда прямая MN параллельна плоскости АВС . Плоскость МNР проходит через прямую МN параллельную плоскости АВС и пересекает плоскость АВС по некоторой прямой Р 1 Р 2 , тогда прямая Р 1 Р 2 параллельна данной прямой MN (Рис. 10.).

Рис. 10. Рисунок к задаче 5. Искомое сечение

Теперь проведем прямую Р 1 М и получим точку М 1 . Р 1 Р 2 NМ 1 - искомое сечение.

Итак, мы рассмотрели тетраэдр, решили некоторые типовые задачи на тетраэдр. На следующем уроке мы рассмотрим параллелепипед.

1. И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М. : Мнемозина, 2008. - 288 с. : ил. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни)

2. Шарыгин И. Ф. - М.: Дрофа, 1999. - 208 с.: ил. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений

3. Е. В. Потоскуев, Л. И. Звалич. - 6-е издание, стереотип. - М. : Дрофа, 008. - 233 с. :ил. Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики

Дополнительные веб-ресурсы

2. Как построить сечение тетраэдра. Математика ().

3. Фестиваль педагогических идей ().

Сделай дома задачи по теме "Тетраэдр", как находить ребро тетраэдра, грани тетраэдра, вершины и поверхность тетраэдра

1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М.: Мнемозина, 2008. - 288 с.: ил. Задания 18, 19, 20 стр. 50

2. Точка Е середина ребра МА тетраэдра МАВС . Постройте сечение тетраэдра плоскостью, проходящей через точки В, С и Е .

3. В тетраэдре МАВС точка М принадлежит грани АМВ, точка Р - грани ВМС, точка К - ребру АС. Постройте сечение тетраэдра плоскостью, проходящей через точки М, Р, К.

4. Какие фигуры могут получиться в результате пересечения плоскостью тетраэдра?

Разрез, служащий для выяснения устройства предмета лишь в от-

дельном, ограниченном месте, называется местным (рис. 24, 25).

Часть вида и часть соответствующего

разреза допускается соединять, разделяя их

сплошной волнистой линией или сплошной

тонкой линией с изломом (рис. 24).Если при

этом соединяются половина вида и полови-

на разреза, каждый из которых является

симметричной фигурой, то разделяющей

линией служит ось симметрии. При этом

ниже оси симметрии (рис. 2, рис. 25).

Если с осью симметрии изображения

совпадает какая – либо линия, например,

проекция ребра (рис. 26), то вид от разреза

отделяют сплошной волнистой линией, проводимой правее, если ребро изо-

бражается на виде (рис. 26, а), или левее, если ребро изображается на разрезе

(рис. 26, б).

Построение сечений

Сечение - изображение фигуры, получающейся при мысленном рассечении предмета плоскостью. На сечении показывается только то, что находится непосредственно в секущей плоскости.

Сечения, не входящие в состав разреза, разделяют на: вынесенные (рис. 27) иналоженные (рис. 28).

Вынесенные сечения являются предпочтительными и их допускается располагать в разрыве между частями одного и того же вида (рис. 29).

Контур вынесенного сечения, а также сечения, входящего в состав разреза, изображают сплошными основными линиями, а контур наложенного сечения – сплошными тонкими линиями, причем контур изображения в месте расположения наложенного сечения не прерывают (рис. 28).

Ось симметрии вынесенного или наложенного сечения (рис. 28) указывают штрихпунктирной тонкой линией без обозначения буквами и стрелками

и линию сечения не проводят.

В случаях, подобных указанному на рис. 29, при симметричной фигуре сечения, линию сечения не проводят.

Во всех остальных случаях для линии сечения применяют разомкнутую линию с указанием стрелками направления взгляда и обозначают ее одинаковыми прописными буквами русского алфавита. Сечение сопровождают надписью по типу «А – А » (рис. 27).

Для несимметричных сечений, расположенных в разрыве или наложенных (рис. 30), линию сечения проводят со стрелками, но буквами не обозначают. Если секущая плоскость проходит через ось поверхности вращения, ограничивающей отверстие или углубление, то контур отверстия или углубления в сечении показывают полностью (рис. 31).

Выносные элементы

Выносной элемент - дополнительное отдельное изображение (обычно увеличенное) какой-либо части предмета, требующей графического и других пояснений в отношении формы, размеров и иных данных.

Выносной элемент может содержать подробности, не указанные на соответствующем изображении, и может отличаться от него по содержанию (например, изображение может быть видом, а выносной элемент – разрезом).

При применении выносного элемента соответствующее место отмечают на виде, разрезе или сечении замкнутой сплошной тонкой линией – окружностью, овалом и т.п. с обозначением выносного элемента прописной буквой русского алфавита на полке линии-выноски. Над изображением выносного элемента указывают обозначение и масштаб, в котором он выполнен

Выносной элемент располагают на чертеже возможно ближе к соответствующему месту на изображении предмета.

Построение аксонометрической проекции

В аксонометрии обычно выполняют вырез¼ части детали, при этом вырез не всегда повторяет разрез, выполненный на ортогональном изображении. Угол, образованный секущими плоскостями, должен быть раскрыт.

На рис. 34 – 37 показано поэтапное выполнение изометрии детали с

вырезом ¼ части. Для удобства построений будем считать, что нижняя плоскость детали совпадает с горизонтальной плоскостью проекций, а осьz – с осью конической и цилиндрической поверхностей.

Рис. 34 Рис. 35

Рис. 36 Рис. 37

Выполнение задания начинаем с построения аксонометрических осей и очертания плоских фигур, полученных при сечении детали вертикальными плоскостями, проведенными по осям симметрии детали (рис. 34).

Отмечаем центры окружностей усеченного конуса и цилиндров – точки О1 , О2 , О3 , О4 и строим изометрические проекции тех частей окружностей, которые остались после выполнения выреза (рис. 35). Заканчиваем построение прямоугольных очертаний детали (рис. 36). Выполнив штриховку плоских фигур, образовавшихся при сечении детали вертикальными плоскостями (проводя линии штриховки параллельно направлениям, показанным на рисунке), обводим контур детали (рис. 37).

Построение наклонного сечения

Наклонное сечение получается от пересечения предмета плоскостью, составляющей с горизонтальной плоскостью проекций угол, отличный от прямого.

На чертеже наклонные сечения выполняют по типу вынесенных сечений и в соответствии с направлением, указанным стрелками на линии сечения. При построении сечения не является обязательным строгое соблюдение проекционной связи между изображением, где задан след секущей плоскости, и фигурой сечения. Фигуру сечения можно расположить в любом удобном месте поля чертежа, рис. 38, б, в. При этом, если ориентация сечения на чертеже не соответствует направлению взгляда, указанному стрелками на штрихах линии сечения, то обозначение сечения должно сопровождаться знаком повернуто, рис. 38, в.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ, НАУКИ И МОЛОДЕЖИ РЕСПУБЛИКИ КРЫМ

МАЛАЯ АКАДЕМИЯ НАУК «ИСКАТЕЛЬ»

Отделение: математика

Секция: математика

МЕТОДЫ ПОСТРОЕНИЯ СЕЧЕНИЙ МНОГОГРАННИКОВ

Работу выполнил:

_______________

ученик класса

Научный руководитель:

Тезисы

Методы построения сечений многогранников

Отделение: математика

Секция: математика

Научный руководитель:

Целью исследования является изучение различных методов построения сечений многогранников. Для этого и зучен теоретический материал по данной теме , систематизированы методы решения задач на построение сечений, приведены примеры задач на применение каждого метода, рассмотрены примеры задач единого государственного экзамена на построение сечений и вычисление их элементов.

ВВЕДЕНИЕ……………………………………………………………………….3

РАЗДЕЛ 1. ПОСТРОЕНИЕ СЕЧЕНИЙ МНОГОГРАННИКОВ НА ОСНОВЕ СИСТЕМЫ АКСИОМ СЕРЕОМЕТРИИ………………………………………4

РАЗДЕЛ 2. МЕТОД СЛЕДОВ В ПОСТРОЕНИИ СЕЧЕНИЙ МНОГОГРАННИКОВ…………………………………………………………10

РАЗДЕЛ 3. МЕТОД ВНУТРЕННЕГО ПРОЕКТИРОВАНИЯ

В ПОСТРОЕНИИ СЕЧЕНИЙ МНОГОГРАННИКОВ………………………14

РАЗДЕЛ 4. КОМБИНИРОВАННЫЙ МЕТОД ПОСТРОЕНИЯ СЕЧЕНИЙ

МНОГОГРАННИКОВ…………………………………………………………17

РАЗДЕЛ 5. КООРДИНАТНЫЙ МЕТОД ПОСТРОЕНИЯ СЕЧЕНИЙ МНОГОГРАННИКОВ………………………………………………………….19

ЗАКЛЮЧЕНИЕ…………………………………………………………………25

СПИСОК ЛИТЕРАТУРЫ………………………………………………………26

ВВЕДЕНИЕ

Выпускникам предстоит сдавать экзамен по математике , а знание и умение решать стереометрические задачи необходимо для того , чтобы написать данный экзамен на максимальное количество баллов . Актуальность данной работы состоит в необходимости самостоятельно готовиться к экзамену, а рассматриваемая тема является одной из важнейших.

А нализ демонстрационных , диагностических и тренировочных вариантов ЕГЭ с 2009-2014 гг. показал , что 70% геометрических задач составляют задачи на построение сечений и вычисление их элементов – углов, площадей.

В учебном плане задачам на построение сечений многогранников отводится 2 академических часа , что недостаточно для изучения данной темы . В школе плоские сечения многогранников строят лишь на основании аксиом и теорем стереометрии. Вместе с тем существуют и другие методы построения плоских сечений многогранников. Наиболее эффективными являются метод следов, метод внутреннего проектирования и комбинированный метод. Очень интересен и перспективен в плане применения к решению различных задач координатный метод. Если многогранник поместить в систему координат, а секущую плоскость задать уравнением, то построение сечения сведется к отысканию координат точек пересечения плоскости с ребрами многогранника.

Объект исследования: методы построения сечений многогранников.

Цель исследования: изучить различные методы построения сечений многогранников.

Задачи исследования:

1) Изучить теоретический материал по данной теме .

2) Систематизировать методы решения задач на построение сечений.

3) Привести примеры задач на применение каждого метода.

4) Рассмотреть примеры задач единого государственного экзамена на построение сечений и вычисление их элементов.

РАЗДЕЛ 1

ПОСТРОЕНИЕ СЕЧЕНИЙ МНОГОГРАННИКОВ

НА ОСНОВЕ СИСТЕМЫ АКСИОМ СЕРЕОМЕТРИИ

Определение. Сечением многогранника плоскостью называется геометрическая фигура, представляющая собой множество всех точек пространства, принадлежащих одновременно данным многограннику и плоскости; плоскость при этом называется секущей плоскостью.

Поверхность многогранника состоит из ребер - отрезков и граней - плоских многоугольников. Так как прямая и плоскость пересекаются в точке, а две плоскости - по прямой, то сечением многогранника плоскостью является плоский многоугольник; вершинами этого многоугольника служат точки пересечения секущей плоскости с ребрами многогранника, а сторонами - отрезки, по которым секущая плоскость пересекает его грани. Это означает, что для построения искомого сечения данного многогранника плоскостью α достаточно построить точки ее пересечения с ребрами многогранника. Затем последовательно соединить отрезками эти точки.

Секущая плоскость α может быть задана: тремя точками, не лежащими на одной прямой; прямой и не принадлежащей ей точкой; другими условиями, определяющими ее положение относительно данного многогранника. Например, на рис.1 построено сечение четырехугольной пирамиды РАВСD плоскостью α, заданной точками М, К и Н, принадлежащими ребрам соответственно РС, РD и РВ;

Рис.1

Задача. В параллелепипеде АВС DA 1 B 1 C 1 D 1 постройте сечение плоскостью , проходящей через вершины C и D 1 и точку K отрезка B 1 C 1 (рис.2, а).

Решение. 1. Т . к . С DD 1 C 1 , D 1 DD 1 C 1 , то по аксиоме (через две точки , принадлежащие плоскости , проходит прямая , притом только одна ) построим след CD 1 в плоскости DD 1 C 1 (рис.2, б).

2. Аналогично в плоскости А 1 В 1 С 1 построим след DK, в плоскости BB 1 C 1 построим след CK.

3. D 1 KC – искомое сечение (рис .2, в)

а) б) в)

Рис.2

Задача. Постройте сечение пирамиды РАВС плоскостью α = (МКH), где М, К и Н - внутренние точки соответственно ребер РС, РВ и АВ (рис. 3, а).

Решение. 1-й шаг. Точки М и K лежат в каждой из двух плоскостей α и РВС. Поэтому по аксиоме пересечения двух плоскостей плоскость α пересекает плоскость РВС по прямой МК. Следовательно, отрезок МК - одна из сторон искомого сечения (рис.3, б).

2-й шаг. Аналогично, отрезок КН - другая сторона искомого сечения (рис.3, в).

3-й шаг. Точки М и Н не лежат одновременно ни в одной из граней пирамиды РАВС, поэтому отрезок МН не является стороной сечения этой пирамиды. Прямые КН и РА лежат в плоскости грани АВР и пересекаются. Построим точку T= КН ∩АР (рис. 3, г).

Поскольку прямая КН лежит в плоскости α, то и точка T лежит в плоскости α. Теперь мы видим, что плоскости α и АРС имеют общие точки М и T. Следовательно, по аксиоме пересечения двух плоскостей плоскость α и плоскость АРС пересекаются по прямой МТ, которая, в свою очередь, пересекает ребро АС в точке R (рис. 3, д).

4-й шаг. Теперь так же, как в шаге 1, устанавливаем, что плоскость α пересекает грани АСР и АВС по отрезкам MR и HR соответственно. Следовательно, искомое сечение - четырехугольник MKHR (рис.3,е).

Рис.3

Рассмотрим более сложную задачу.

Задача . Постройте сечение пятиугольной пирамиды PABCDE плоскостью

α = (KQR), где K, Q - внутренние точки ребер соответственно РА и РС, а точка R лежит внутри грани DPE (рис. 4, а).

Решение . Прямые QK и АС лежат в одной плоскости АСР (по аксиоме прямой и плоскости) и пересекаются в некоторой точке T 1 , (рис. 4,б), при этом T 1 є α, так как QК є α .

Прямая РR пересекает DE в некоторой точке F (рис.4, в), которая является точкой пересечения плоскости АРR и стороны DE основания пирамиды. Тогда прямые КR и АF лежат в одной плоскости АРR и пересекаются в некоторой точке Т 2 (рис. 4, г), при этом Т 2 є α , как точка прямой KR є α (по аксиоме прямой и плоскости).

Получили: прямая Т 1 Т 2 лежит в секущей плоскости α и в плоскости основания пирамиды (по аксиоме прямой и плоскости), при этом прямая пересекает стороны DE и АЕ основания ABCDE пирамиды соответственно в точках М и N (рис. 4, д), которые являются точками пересечения плоскости α с ребрами DE и АЕ пирамиды и служат вершинами искомого сечения.

Далее, прямая MR лежит в плоскости грани DPE и в секущей плоскости α (по аксиоме прямой и плоскости), пересекая при этом ребро PD в некоторой точке Н - еще одной вершине искомого сечения (рис.4, е).

Далее, построим точку Т 3 - Т 1 Т 2 ∩ АВ (рис. 4, ж), которая, как точка прямой Т 1 Т 2 є α, лежит в плоскости а (по аксиоме прямой и плоскости). Теперь плоскости грани РАВ принадлежат две точки Т 3 и К секущей плоскости α, значит, прямая Т 3 К - прямая пересечения этих плоскостей. Прямая Т 3 К пересекает ребро РВ в точке L (рис. 4, з), которая служит очередной вершиной искомого сечения.

Таким образом, «цепочка» последовательности построения искомого сечения такова:

1. Т 1 = QK ∩ АС ; 2. F = PR ∩ DE;

3. Т 2 = KR ∩ AF; 4. М = Т 1 Т 2 ∩ DE;

5. N = Т 1 Т 2 АЕ ; 6. Н = MR ∩ PD;

7. T 3 = Т 1 Т 2 АВ ; 8. L = T 3 K ∩ PB.

Шестиугольник MNKLQH - искомое сечение.

Рис.4

Сечение многогранника, имеющего параллельные грани (призма, куб параллелепипед), можно строить, используя свойства параллельных плоскостей.

Задача . Точки M, P и R расположены на ребрах параллелепипеда. Пользуясь свойствами параллельных прямых и плоскостей, построить сечение данного параллелепипеда плоскостью MPR.

Решение. Пусть точки M, P и R расположены на ребрах соответственно DD 1 , ВВ 1 и СС 1 параллелепипеда АВСВА 1 В 1 С 1 В 1 (рис. 5, а).

Обозначим: (MPR) = α - секущая плоскость. Проводим отрезки MR и PR (рис. 5, б), по которым плоскость α пересекает соответственно грани СС 1 D 1 D и ВВ 1 С 1 С данного параллелепипеда. Отрезки MR и PR - стороны искомого сечения. Далее используем теоремы о пересечении двух параллельных плоскостей третьей.

Так как грань АА 1 В 1 В параллельна грани СС 1 D 1 D, то прямая пересечения плоскости α с плоскостью грани АА 1 В 1 В должна быть параллельна прямой MR. Поэтому проводим отрезок PQ || MR, Q є АВ (рис. 5, в); отрезок РQ - следующая сторона искомого сечения. Аналогично, так как грань АА 1 D 1 D параллельна грани СС 1 В 1 В, то прямая пересечения плоскости α с плоскостью грани АА 1 D 1 D должна быть параллельна прямой PR. Поэтому проводим отрезок МН || PR, H є AD (рис. 5, в); отрезок МН - еще одна сторона искомого сечения. На ребрах АВ и AD грани АВСD построили точки Q є АВ и H є AD, которые являются вершинами искомого сечения. Проводим отрезок QH и получаем пятиугольник MRPQH - искомое сечение параллелепипеда.


а) б) в)

Рис. 5

РАЗДЕЛ 2

МЕТОД СЛЕДОВ В ПОСТРОЕНИИ СЕЧЕНИЙ МНОГОГРАННИКОВ

Определение. Прямая, по которой секущая плоскость α пересекает плоскость основания многогранника, называется следом плоскости α в плоскости этого основания.

Из определения следа получаем: в каждой его точке пересекаются прямые, одна из которых лежит в секущей плоскости, другая - в плоскости основания. Именно это свойство следа используют при построении плоских сечений многогранников методом следов. При этом в секущей плоскости удобно использовать такие прямые, которые пересекают ребра многогранника.

Сначала секущую плоскость зададим ее следом в плоскости основания призмы (пирамиды) и точкой, принадлежащей поверхности призмы (пирамиды).

Задача. Построить сечение призмы АВСВЕА 1 В 1 С 1 D 1 Е 1 плоскостью α, которая задана следом l в плоскости АВС основания призмы и точкой М, принадлежащей ребру DD 1 (рис.7,а).

Решение. Анализ. Предположим, что пятиугольник MNPQR - искомое сечение (рис. 6). Для построения этого плоского пятиугольника достаточно построить его вершины N, P, Q, R (точка М дана) - точки пересечения секущей плоскости α с ребрами соответственно СС 1 , ВB 1 , АА 1 , ЕЕ 1 данной призмы.

Рис. 6

Для построения точки N = α ∩ СС 1 достаточно построить прямую пересечения секущей плоскости α с плоскостью грани СDD 1 C 1 . Для этого, в свою очередь, достаточно построить в плоскости этой грани еще одну точку, принадлежащую секущей плоскости α. Как построить такую точку?

Так как прямая l лежит в плоскости основания призмы, то она может пересекать плоскость грани СDD 1 C 1 лишь в точке, которая принадлежит прямой CD = (CDD 1 ) ∩ (АВС), т.е. точка X = l ∩ СD = l ∩ (CDD 1 ) принадлежит секущей плоскости α. Таким образом, для построения точки N = α ∩ СС 1 достаточно построить точку X = l ∩ СD. Аналогично, для построения точек Р = α ∩ ВВ 1 , Q = α ∩ АА 1 и R = α ∩ ЕЕ 1 достаточно построить соответственно точки: У = l ∩ ВС, Z = l ∩ АВ и Т = l ∩ АЕ. Отсюда

Построение.

    X = l ∩ СD (рис. 7, б);

    N = МХ ∩ СС 1 (рис. 7, б);

    У = l ∩ ВС (рис. 7, в);

    Р = NY ∩ ВВ 1 (рис. 7, в);

    Z = l ∩ АВ (рис. 7, в);

    Q= РZ ∩ АА 1 (рис. 7, г);

    T= l ∩ АЕ (рис. 6);

    R= QT ∩ ЕЕ 1 (рис. 6).

Пятиугольник MNPQR - искомое сечение (рис. 6).

Доказательство . Так как прямая l - след секущей плоскости α, то точки X = l ∩ СD, Y = l ∩ ВС, Z = l ∩ АВ и T= l ∩ АЕ принадлежат этой плоскости.

Поэтому имеем:

М є α , X є α => МХ є α, тогда МХ ∩ СС 1 = N є α , значит, N = α ∩ СС 1 ;

N є α, Y є α => NY є α, тогда NY ∩ ВВ 1 = Р є α, значит, Р = α ∩ ВВ 1 ;

Р є α, Z є α => РZ є α, тогда PZ ∩ AА 1 = Q є α, значит, Q = α ∩ АA 1 ;

Q є α, T є α => QТ є α, тогда QТ ∩ EЕ 1 =R є α, значит, R = α ∩ ЕЕ 1 .

Следовательно, MNPQR - искомое сечение.



а) б)

в) г)

Рис. 7

Исследование. След l секущей плоскости α не пересекает основание призмы, а точка М секущей плоскости принадлежит боковому ребру DD 1 призмы. Поэтому секущая плоскость α не параллельна боковым ребрам. Следовательно, точки N, Р, Q и R пересечения этой плоскости с боковыми ребрами призмы (или продолжениями этих ребер) всегда существуют. А поскольку, кроме того, точка М не принадлежит следу l , то определяемая ими плоскость α единственна. Это означает, что задача имеет единственное решение.

Задача. Построить сечение пятиугольной пирамиды PABCDE плоскостью, которая задана следом l и внутренней точкой К ребра РЕ.

Решение. Схематически построение искомого сечения можно изобразить так (рис.8): T 1 → Q → Т 2 → R → Т 3 → М → Т 4 → N.

Пятиугольник MNKQR - искомое сечение.

«Цепочка» последовательности построения вершин сечения такова:

1. Т 1 = l ∩ АЕ; 2. Q = Т 1 К ∩ РА;

3. Т 2 = l ∩ АВ; 4. R = Т 2 Q ∩ РВ;

5. Т 3 = l ∩ ВС; 6. М = T 3 R ∩ РС;

7. Т 4 = l ∩ СD; 8. N = Т 4 М ∩ РD.

Рис. 8

Секущая плоскость часто задается тремя точками, принадлежащими многограннику. В таком случае для построения искомого сечения методом следов сначала строят след секущей плоскости в плоскости основания данного многогранника.

РАЗДЕЛ 3

МЕТОД ВНУТРЕННЕГО ПРОЕКТИРОВАНИЯ

В ПОСТРОЕНИИ СЕЧЕНИЙ МНОГОГРАННИКОВ

Метод внутреннего проектирования называют еще методом соответствий, или методом диагональных сечений.

При применении этого метода каждая заданная точка проектируется на плоскость основания. Существует два возможных вида проектирования: центральное и параллельное. Центральное проектирование, как правило, используется при построении сечений пирамид, вершина пирамиды при этом является центром проекции. Параллельное проектирование используется при построении сечений призм.

Задача . Построить сечение пирамиды PABCDE плоскостью α = (МFR), если точки М, F и R являются внутренними точками ребер соответственно РА, РС и РЕ (рис. 9, а).

Решение . Плоскость основания пирамиды обозначим β. Для построения искомого сечения построим точки пересечения секущей плоскости α с ребрами пирамиды.

Построим точку пересечения секущей плоскости с ребром РD данной пирамиды.

Плоскости APD и CPE пересекают плоскость β по прямым соответственно АD и СЕ, которые пересекаются в некоторой точке К (рис. 9, в). Прямая РК=(АРD) ∩(СРЕ) пересекает прямую FR є α в некоторой точке К 1 : К 1 = РК ∩ FR (рис. 9, г), при этом К 1 є α. Тогда: М є α, К 1 є α => прямая МK є а. Поэтому точка Q = МК 1 ∩ РD (рис. 9, д) есть точка пересечения ребра РD и секущей плоскости: Q =α ∩ PD. Точка Q- вершина искомого сечения. Аналогично строим точку пересечения плоскости α и ребра РВ. Плоскости ВРЕ и АРD пересекают плоскость β по прямым соответственно ВЕ и АD, которые пересекаются в точке Н (рис. 9, е). Прямая РН = (ВРЕ) ∩ (АРD) пересекает прямую МQ в точке Н 1 (рис. 9, ж). Тогда прямая RН 1 пересекает ребро РВ в точке N = α ∩ РВ - вершине сечения (рис. 9, з).

1. К = АD ∩ ЕС; 2. К 1 = РК ∩ RF;

3. Q = МК 1 Р D; 4. H = BE ∩ А D;

5. Н 1 = РН ∩ МQ; 6. N = RН 1 ∩ РВ.

Пятиугольник MNFQR - искомое сечение (рис. 9, и).

а) б) в)

г) д) е)

ж) з) и)

Рис. 9

Задача . Постройте сечение призмы АВСDEА 1 В 1 С 1 D 1 Е 1 , плоскостью α, заданной точками М є ВВ 1 , Р є DD 1 , Q є ЕЕ 1 (рис.10).

Решение. Обозначим: β - плоскость нижнего основания призмы. Для построения искомого сечения построим точки пересечения плоскости α = (МРQ) с ребрами призмы.

Построим точку пересечения плоскости α с ребром АА 1 .

Плоскости А 1 АD и ВЕЕ 1 пересекают плоскость β по прямым соответственно АD и ВЕ, которые пересекаются в некоторой точке К. Так как плоскости А 1 АD и ВЕЕ 1 проходят через параллельные ребра АА 1 и ВВ 1 призмы и имеют общую точку К, то прямая КК 1 их пересечения проходит через точку К и параллельна ребру ВВ 1 . Точку пересечения этой прямой с прямой QМ обозначим: К 1 = КК 1 ∩ QМ, КК 1 ║ ВВ 1 . Так как QM є α, то К 1 є α.

Рис. 10

Получили: Р є α , К 1 є α => прямая РК 1 є α, при этом РК 1 ∩ АА 1 = R. Точка R служит точкой пересечения плоскости α и ребра АА 1 (R = α ∩ АА 1 ), поэтому является вершиной искомого сечения. Аналогично строим точку N = α ∩ СС 1 .

Таким образом, последовательность «шагов» построения искомого сечения такова:

    К = АD ∩ ВЕ; 2. К 1 = КК 1 ∩ MQ, КК 1 || ВВ 1 ;

    R = РК 1 ∩ АА 1 ; 4. Н = ЕС ∩АD;

    H 1 – HH 1 ∩ РR, НН 1 || СС 1 ; 6.N = QН 1 ∩ СС 1 .

Пятиугольник MNPQR- искомое сечение.

Задачи на построение сечений многогранников занимают значительное место как школьном курсе геометрии для старших классов, так и на экзаменах разного уровня. Решение этого вида задач способствует усвоению аксиом стереометрии, систематизации знаний и умений, развитию пространственного представления и конструктивных навыков. Общеизвестны трудности, возникающие при решении задач на построение сечений.

С самого раннего детства мы сталкиваемся с сечениями. Режем хлеб, колбасу и другие продукты, обстругиваем палочку или карандаш ножом. Секущей плоскостью во всех этих случаях является плоскость ножа. Сечения (срезы кусочков) оказываются различными.

Сечение выпуклого многогранника есть выпуклый многоугольник, вершины которого в общем случае являются точками пересечения секущей плоскости с ребрами многоугольника, а стороны- линиями пересечения секущей плоскости с гранями.

Для построения прямой пересечения двух плоскостей достаточно найти две общие точки этих плоскостей и провести через них прямую. Это основано на следующих утверждениях:

1.если две точки прямой принадлежат плоскости, то и вся прямая принадлежит этой плоскости;

2.если две различные плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку.

Как я уже сказал ппостроение сечений многогранников можно осуществлять на основании аксиом стереометрии и теорем о параллельности прямых и плоскостей. Вместе с тем, существуют определенные методы построения плоских сечений многогранников. Наиболее эффективными являются следующие три метода:

Метод следов

Метод внутреннего проектирования

Комбинированный метод.

В изучении геометрии и, в особенности, тех её разделов, где рассматриваются изображения геометрических фигур, изображения геометрических фигур помогают использования компьютерных презентаций. С помощью компьютера многие уроки геометрии становятся более наглядной и динамичной. Аксиомы, теоремы, доказательства, задачи на построения, задачи на построения сечений можно сопровождать последовательными построениями на экране монитора. Сделанные с помощью компьютера чертежи можно сохранять и вставлять их в другие документы.

Хочу показать несколько слайдов по теме: «Построения сечений в геометрических телах»

Для построения точки пересечения прямой и плоскости находят в плоскости прямую, пересекающую данную прямую. Тогда искомая точка является точкой пересечения найденной прямой с данной. Проследим это на следующих слайдах.

Задача 1.

На ребрах тетраэдра DABC отмечены две точки М и N; М GAD, N б DC. Укажите точку пересечения прямой MN с плоскостью основания.

Решение: для того, чтобы найти точку пересечения прямой MN с плоскостью

основания мы продолжим АС и отрезок MN. Отметим точку пересечения этих прямых через X. Точка X принадлежит прямой MN и грани АС, а АС лежит в плоскости основания, значит точка X тоже лежит в плоскости основания. Следовательно, точка X есть точка пересечения прямой MN с плоскостью основания.

Рассмотрим вторую задачу. Немного усложним его.

Задача 2.

Дан тетраэдр DABC точки М и N, где М € DA, N С (DBC). Найти точку пересечения прямой MN с плоскостью ABC .

Решение: точка пересечения прямой MN с плоскостью ABC должна лежать в плоскости, которая содержит прямую MN и в плоскости основания. Продолжим отрезок DN до точки пересечения с ребром DC. Точку пересечения отметим через Е. Продолжим прямую АЕ и MN до точки их пересечения. Отметим X. Точка X принадлежит MN, значит она лежит на плоскости которая содержит прямую MN и X принадлежит АЕ, а АЕ лежит на плоскости ABC. Значит X тоже лежит в плоскости ABC. Следовательно X и есть точка пересечения прямой MN и плоскости ABC.

Усложним задачу. Рассмотрим сечение геометрических фигур плоскостями, проходящими через три данные точки.

Задача 3

На ребрах AC, AD и DB тетраэдра DABC отмечены точки М, N и Р. Построить сечение тетраэдра плоскостью MNP.

Решение: построим прямую, по которой плоскость MNP. Пересекается с плоскостью грани ABC. Точка М является общей точкой этих плоскостей. Для построения ещё одной общей точки продолжим отрезок АВ и NP. Точку пересечения отметим через X, которая и будет второй общей точкой плоскости MNP и ABC. Значит эти плоскости пересекаются по прямой MX . MX пересекает ребро ВС в некоторой точке Е. Так как Е лежит на MX, а MX прямая принадлежащей плоскости MNP, значит РЕ принадлежит MNP. Четырёхугольник MNPE искомое сечение.

Задача 4

Построим сечение прямой призмы АВСА1В1С1 плоскостью проходящей через точки P, Q ,R, где R принадлежит (AA 1C 1C ), Р принадлежит В 1С1,

Q принадлежит АВ

Решение: Все три точки P,Q,R лежат в разных гранях, поэтому построить линию пересечения секущей плоскости с какой- либо гранью призмы мы пока не можем. Найдем точку пересечения PR с ABC. Найдем проекции точек Р и R на плоскость основания PP1 перпендикулярно ВС и RR1 перпендикулярна АС. Прямая P1R1 пересекается с прямой PR в точке X. X точка пересечения прямой PR с плоскостью ABC. Она лежит в искомой плоскости К ив плоскости основания, как и точка Q. XQ- прямая пересекающая К с плоскостью основания. XQ пересекает АС в точке К. Следовательно, KQ отрезок пересечения плоскости Х с гранью ABC. К и R лежат в плоскости Х и в плоскости грани АА1С1С. Проведем прямую KR и точку пересечения с A1Q отметим Е. КЕ является линией пересечения плоскости Х с этой гранью. Найдем линию пересечения плоскости Х с плоскостью граней BB1A1A. КЕ пересекается с А1А в точке У. Прямая QY есть линия пересечения секущей плоскости с плоскостью AA1B1B. FPEKQ- искомое сечение.

Сегодня еще раз разберем, как построить сечение тетраэдра плоскостью .
Рассмотрим самый простой случай (обязательный уровень), когда 2 точки плоскости сечения принадлежат одной грани, а третья точка - другой грани.

Напомним алгоритм построения сечений такого вида (случай: 2 точки принадлежат одной грани).

1. Ищем грань, которая содержит 2 точки плоскости сечения. Проводим прямую через две точки, лежащие в одной грани. Находим точки ее пересечения с ребрами тетраэдра. Часть прямой, оказавшаяся в грани, есть сторона сечения.

2. Если многоугольник можно замкнуть - сечение построено. Если нельзя замкнуть, то находим точку пересечения построенной прямой и плоскости, содержащей третью точку.

1. Видим, что точки E и F лежат в одной грани (BCD), проведем прямую EF в плоскости (BCD).
2. Найдем точку пересечения прямой EF c ребром тетраэдра BD, это точка Н.
3. Теперь следует найти точку пересечения прямой EF и плоскости, содержащей третью точку G, т.е. плоскости (ADC).
Прямая CD лежит в плоскостях (ADC) и (BDC), значит она пересекается с прямой EF, и точка К является точкой пересечения прямой EF и плоскости (ADC).
4. Далее находим еще две точки, лежащие в одной плоскости. Это точки G и K, обе лежат в плоскости левой боковой грани. Проводим прямую GK, отмечаем точки, в которых эта прямая пересекает ребра тетраэдра. Это точки M и L.
4. Осталось "замкнуть" сечение, т.е.соединить точки, лежащие в одной грани. Это точки M и H, и также L и F. Оба этих отрезка - невидимы, проводим их пунктиром.


В сечении получился четырехугольник MHFL. Все его вершины лежат на ребрах тетраэдра. Выделим получившееся сечение.

Теперь сформулируем "свойства" правильно построенного сечения:

1. Все вершины многоугольника, которое является сечением, лежат на ребрах тетраэдра (параллелепипеда, многоугольника).

2. Все стороны сечения лежат в гранях многогранника.
3. В каждой грани многоранника может находиться не более одной (одна или ни одной!) стороны сечения