История теоремы Пифагора. Доказательство теоремы

Теорема Пифагора – фундаментальная теорема евклидовой геометрии, которая постулирует соотношение катетов и гипотенузы прямоугольного треугольника. Это, пожалуй, самая популярная теорема в мире, известная каждому со школьной скамьи.

История теоремы

На самом деле, теория о соотношении сторон прямоугольного треугольника была известна задолго до Пифагора с острова Самос. Так, задачи о соотношении сторон встречаются в древних текстах периода правления вавилонского царя Хаммурапи, то есть за 1500 лет до рождения самосского математика. Заметки о сторонах треугольника зафиксированы не только в Вавилоне, но и Древних Египте и Китае. Одно из самых известных целочисленных соотношений катетов и гипотенузы выглядит как 3, 4 и 5. Эти числа использовались древними землемерами и зодчими для построения прямых углов.

Итак, Пифагор не изобретал теорему о соотношении катетов и гипотенузы. Он первым в истории доказал ее. Однако на этот счет существуют сомнения, так как доказательство самосского математика, если оно и было зафиксировано, утеряно в веках. Существует мнение, что доказательство теоремы, приведенное в «Началах» Евклида, принадлежит именно Пифагору. Впрочем, на этот счет у историков математики большие сомнения.

Пифагор был первым, но после него теорему о сторонах прямоугольного треугольника доказали около 400 раз, используя самые разные методики: от классической геометрии до дифференциального исчисления. Теорема Пифагора всегда занимала пытливые умы, поэтому среди авторов доказательств можно вспомнить , и президента США Джеймса Гарфилда.

Доказательства

В математической литературе зафиксировано не менее четырех сотен доказательств теоремы Пифагора. Такое умопомрачительное количество объясняется фундаментальным значением теоремы для науки и элементарностью результата. В основном пифагорова теорема доказывается геометрическими способами, наиболее популярными из которых являются метод площадей и метод подобий.

Самым простым методом доказательства теоремы, не требующим обязательных геометрических построений, является метод площадей. Пифагор заявил, что квадрат гипотенузы равен сумме квадратов катетов:

Попробуем доказать это смелое утверждение. Мы знаем, что площадь любой фигуры определяется при помощи возведения линейного сегмента в квадрат. Линейным сегментом может быть что угодно, но чаще всего это сторона фигуры или ее радиус. В зависимости от выбора сегмента и типа геометрической фигуры квадрат будет иметь различные коэффициенты:

  • единицу в случае с квадратом – S = a 2 ;
  • приблизительно 0,43 в случае с равносторонним треугольником – S = (sqrt(3)/4)a 2 ;
  • Пи в случае с кругом – S = pi × R 2 .

Таким образом, площадь любого треугольника мы можем выразить в виде S = F × a 2 , где F – некоторый коэффициент.

Прямоугольный треугольник – удивительная фигура, которую легко разделить на два подобных прямоугольных треугольника, всего лишь опустив перпендикуляр из любой вершины. Такое разделение превращает прямоугольный треугольник в сумму двух прямоугольных треугольников поменьше. Так как треугольники подобны, их площади вычисляются по одной и той же формуле, которая выглядит как:

S = F × гипотенуза 2

В результате разделения большого треугольника со сторонами a, b и c (гипотенуза) получились три треугольника, причем у меньших фигур гипотенузами оказались стороны изначального треугольника a и b. Таким образом, площади подобных треугольников вычисляются как:

  • S1 = F × c 2 – исходный треугольник;
  • S2 = F × a 2 – первый подобный треугольник;
  • S3 = F × b 2 – второй подобный треугольник.

Очевидно, что площадь большого треугольника равна сумме площадей подобных:

F × c 2 = F × a2 + F × b 2

Коэффициент F легко сократить. В итоге получаем:

c 2 = a 2 + b 2 ,

что и требовалось доказать.

Пифагоровы тройки

Выше уже упоминалось популярное соотношение катетов и гипотенуз как 3, 4 и 5. Пифагоровы тройки – это набор трех взаимно простых чисел, которые удовлетворяют условию a 2 + b 2 = c 2 . Таких комбинаций существует бесконечное количество, а первые из них использовались еще в древности для построения прямых углов. Завязывая определенное количество узлов на бечевке через равные промежутки и складывая ее в виде треугольника, древние ученые получали прямой угол. Для этого на каждой стороне треугольника требовалось завязать узлы, в количестве, соответствующем пифагоровым тройкам:

  • 3, 4, и 5;
  • 5, 12 и 13;
  • 7, 24 и 25;
  • 8, 15 и 17.

При этом любую пифагорову тройку можно увеличить в целое количество раз и получить пропорциональное соотношение, соответствующее условию теоремы Пифагора. К примеру, из тройки 5, 12, 13 можно получить значения сторон 10, 24, 26 простым умножением на 2. Сегодня пифагоровы тройки используются для быстрого решения геометрических задач.

Применение теоремы Пифагора

Теорема самосского математика используется не только в школьной геометрии. Пифагорова теорема находит применение в архитектуре, астрономии, физике, литературе, информационных технологиях и даже в оценке эффективности социальных сетей. Теорема применяется и в реальной жизни.

Выбор пиццы

В пиццериях перед покупателями часто возникает вопрос: взять одну большую пиццу или две поменьше? Допустим, можно купить одну пиццу диаметром 50 см или две пиццы поменьше, диаметром 30 см. На первый взгляд две пиццы поменьше – это больше и выгоднее, но не тут-то было. Как быстро сравнить площади приглянувшихся пицц?

Мы помним теорему самосского математика и пифагоровы тройки. Площадь круга – это квадрат диаметра с коэффициентом F = pi/4. А первая пифагорова тройка – это 3, 4 и 5, которую мы легко можем превратить в тройку 30, 40, 50. Следовательно 50 2 = 30 2 + 40 2 . Очевидно, что площадь пиццы с диаметром 50 см будет больше, чем сумма пицц с диаметрами по 30 см. Казалось бы, что теорема применима только в геометрии и только для треугольников, но на этом примере видно, что соотношение c 2 = a 2 + b 2 можно применять и для сравнения других фигур и их характеристик.

Наш онлайн-калькулятор позволяет вычислять любые значения, удовлетворяющие фундаментальному уравнению о сумме квадратов. Для расчета достаточно ввести 2 любых значения, после чего программа вычислит недостающее коэффициент. Калькулятор оперирует не только целыми, но и дробным значениями, поэтому для вычислений разрешается использовать любые числа, а не только пифагоровы тройки.

Заключение

Теорема Пифагора – фундаментальная вещь, которая находит широкое применение во многих научных приложениях. Используйте наш онлайн-калькулятор для подсчета величин значений, которые связаны выражением c 2 = a 2 + b 2 .

Различные способы доказательства теоремы Пифагора

учащаяся 9 «А» класса

МОУ СОШ №8

Научный руководитель:

учитель математики,

МОУ СОШ №8

ст. Новорождественской

Краснодарского края.

Ст. Новорождественская

АННОТАЦИЯ.

Теорема Пифагора по праву считается самой важной в курсе геометрии и заслуживает при­стального внимания. Она являет­ся основой решения множества геометрических задач, базой для изучения теоретического и практического курса геометрии в дальнейшем. Теорема окружена богатей­шим историческим материалом, связанным с её появлением и способами доказательства. Изучение истории развития геометрии прививает любовь к данному предмету, способствует развитию познава­тельного интереса, общей культу­ры и творчества, а так же развивает навыки научно-исследовательской работы .

В результате поисковой деятельности была достигнута цель работы, заключающаяся в пополнении и обобщении знаний по доказательству теоремы Пифагора. Удалось найти и рассмотреть различные способы доказательства и углубить знания по теме, выйдя за страницы школьного учебника.

Собранный материал ещё больше убеждает в том, что теорема Пифагора является великой теоремой геометрии, имеет огромное теоретическое и практическое значение.

Введение. Историческая справка 5 Основная часть 8

3. Заключение 19

4. Используемая литература 20
1. ВВЕДЕНИЕ. ИСТОРИЧЕСКАЯ СПРАВКА.

Суть истины вся в том, что нам она - навечно,

Когда хоть раз в прозрении ее увидим свет,

И теорема Пифагора через столько лет

Для нас, как для него, бесспорна, безупречна.

На радостях богам был Пифагором дан обет:

За то, что мудрости коснулся бесконечной,

Он сто быков заклал, благодаря предвечных;

Моленья и хвалы вознес он жертве вслед.

С тех пор быки, когда учуят, тужась,

Что к новой истине людей опять подводит след,

Ревут остервенело, так что слушать мочи нет,

Такой в них Пифагор вселил навеки ужас.

Быкам, бессильным новой правде противостоять,

Что остается? - Лишь глаза закрыв, реветь, дрожать.

Неизвестно, каким способом доказывал Пифагор свою теорему. Несомненно лишь то, что он открыл ее под силь­ным влиянием египетской науки. Частный случай теоре­мы Пифагора - свойства треугольника со сторонами 3, 4 и 5 - был известен строителям пирамид задолго до рожде­ния Пифагора, сам же он более 20 лет обучался у египет­ских жрецов. Сохранилась легенда, которая гласит, что, доказав свою знаменитую теорему, Пифагор принес богам в жертву быка, а по другим источникам, даже 100 быков. Это, однако, противоречит сведениям о моральных и ре­лигиозных воззрениях Пифагора. В литературных источ­никах можно прочитать, что он «запрещал даже убивать животных, а тем более ими кормиться, ибо животные имеют душу, как и мы». Пифагор питался только медом, хлебом, овощами и изредка рыбой. В связи со всем этим более правдоподобной можно считать следующую запись: «...и даже когда он открыл, что в прямоугольном треугольнике гипо­тенуза имеет соответствие с катетами, он принес в жертву быка, сделанного из пшеничного теста».

Популярность теоремы Пифагора столь велика, что ее доказательства встречаются даже в художественной литературе , например, в рассказе известного английско­го писателя Хаксли «Юный Архимед». Такое же Доказа­тельство, но для частного случая равнобедренного пря­моугольного треугольника приводится в диалоге Плато­на «Менон».

Сказка «Дом».

«Далеко-далеко, куда не летают даже самолеты, находится страна Геометрия. В этой необычной стране был один удиви­тельный город - город Теорем. Однажды в этот город пришла красивая девочка по имени Гипотенуза. Она попробовала снять комнату, но куда бы она ни обращалась, ей всюду отказывали. Наконец она подошла к покосившемуся домику и постучала. Ей открыл мужчина, назвавший себя Прямым Углом, и он предло­жил Гипотенузе поселиться у него. Гипотенуза осталась в доме, в котором жили Прямой Угол и два его маленьких сына по имени Катеты. С тех пор жизнь в доме Прямого Угла пошла по-ново­му. На окошке гипотенуза посадила цветы, а в палисаднике развела красные розы. Дом принял форму прямоугольного тре­угольника. Обоим катетам Гипотенуза очень понравилась и они попросили ее остаться навсегда в их доме. Ло вечерам эта друж­ная семья собирается за семейным столом. Иногда Прямой Угол играет со своими детишками в прятки. Чаще всего искать при­ходится ему, а Гипотенуза прячется так искусно, что найти ее бывает очень трудно. Однажды во время игры Прямой Угол подметил интересное свойство: если ему удается найти катеты, то отыскать Гипотенузу не составляет труда. Так Прямой Угол пользуется этой закономерностью, надо сказать, очень успешно. На свойстве этого прямоугольного треугольника и основана тео­рема Пифагора.»

(Из книги А. Окунева «Спасибо за урок, дети»).

Шутливая формулировка теоремы:

Если дан нам треугольник

И притом с прямым углом,

То квадрат гипотенузы

Мы всегда легко найдем:

Катеты в квадрат возводим,

Сумму степеней находим –

И таким простым путем

К результату мы придем.

Изучая алгебру и начала анализа и геометрию в 10 классе , я убедилась в том, что кроме рассмотренного в 8 классе способа доказательства теоремы Пифагора существуют и другие способы доказательства. Представляю их на ваше обозрение.
2. ОСНОВНАЯ ЧАСТЬ.

Теорема. В прямоугольном треугольнике квадрат

гипотенузы равен сумме квадратов катетов.

1 СПОСОБ.

Пользуясь свойствами площадей многоугольников, установим замечательное соотношение между гипотенузой и катетами прямоугольного треугольника.

Доказательство.

а, в и гипотенузой с (рис.1, а).

Докажем, что с²=а²+в² .

Доказательство.

Достроим треугольник до квадрата со стороной а + в так, как показано на рис. 1, б. Площадь S этого квадрата равна (а + в)² . С другой стороны, этот квадрат составлен из четырех равных прямоугольных треугольников, площадь каждого из которых равна ½ав  , и квадрата со стороной с, поэтому S= 4 * ½ав + с ² = 2ав + с ².

Таким образом,

(а + в )² = 2ав + с ²,

с²=а²+в² .

Теорема доказана.
2 СПОСОБ.

После изучения темы «Подобные треугольники» я выяснила, что можно применить подобие треугольников к доказательству теоремы Пифагора. А именно, я воспользовалась утверждением о том, что катет прямоугольного треугольника есть среднее пропорциональное для гипотенузы и отрезка гипотенузы, заключённого между катетом и высотой, проведённой из вершины прямого угла.

Рассмотрим прямоугольный треугольник с прямым углом С, СD– высота (рис. 2). Докажем, что АС ² +СВ ² = АВ ² .

Доказательство.

На основании утверждения о катете прямоугольного треугольника:

АС = , СВ = .

Возведем в квадрат и сложим полученные равенства:

АС² = АВ * АD, СВ² = АВ * DВ;

АС² + СВ² = АВ * (АD + DВ), где АD+DB=AB, тогда

АС² + СВ² = АВ * АВ,

АС² + СВ² = АВ².

Доказательство закончено.
3 СПОСОБ.

К доказательству теоремы Пифагора можно применить определение косинуса острого угла прямоугольного треугольника. Рассмотрим рис. 3.

Доказательство:

Пусть АВС – данный прямоугольный треугольник с прямым углом С. Проведем высоту СD из вершины прямого угла С.

По определению косинуса угла:

cos А = АD/АС = АС/АВ. Отсюда АВ * АD = АС²

Аналогично,

cos В = ВD/ВС = ВС/АВ.

Отсюда АВ * ВD = ВС² .

Складывая полученные равенства почленно и замечая, что АD + DВ = АВ, получим:

АС ² + ВС ² = АВ (АD + DВ) = АВ ²

Доказательство закончено.
4 СПОСОБ.

Изучив тему «Соотношения между сторонами и углами прямоугольного треугольника», я думаю, что теорему Пифагора можно доказать ещё одним способом.

Рассмотрим прямоугольный треугольник с катетами а, в и гипотенузой с . (рис. 4).

Докажем, что с²=а²+в².

Доказательство.

sinВ= в/с ; cosВ= a/с, то, возведя в квадрат полученные равенства, получим:

sin²В= в²/с²; cos²В = а²/с².

Сложив их, получим:

sin²В + cos²В= в²/с²+ а²/с², где sin²В + cos²В=1,

1= (в²+ а²) / с², следовательно,

с²= а² + в².

Доказательство закончено.

5 СПОСОБ.

Данное доказательство основано на разрезании квадратов, построенных на катетах (рис. 5), и укладывании полученных частей на квадрате, по­строенном на гипотенузе.

6 СПОСОБ.

Для доказательства на катете ВС строим BCD ABC (рис.6). Мы знаем, что пло­щади подобных фигур отно­сятся как квадраты их сход­ственных линейных размеров:

Вычитая из первого равенства второе, получим

с2 = а2 + b2.

Доказательство закончено.

7 СПОСОБ.

Дано (рис. 7):

ABС, = 90°, ВС = а, АС= b, АВ = с.

Доказать: с2 = а2 + b2 .

Доказательство.

Пусть катет b а. Продолжим отре­зок СВ за точку В и построим треугольник BMD так, что­бы точки М и А лежали по одну сторону от прямой CD и, кроме того, BD = b, BDM = 90°, DM = a, тогда BMD = ABC по двум сторонам и углу между ними. Точки А и М соединим отрезками AM. Имеем MD CD и AC CD, значит, прямая АС параллельна прямой MD. Так как MD < АС, то прямые CD и AM не параллельны. Следова­тельно, AMDC - прямоугольная трапеция.

В прямоугольных треугольниках ABC и BMD 1 + 2 = 90° и 3 + 4 = 90°, но так как = =, то 3 + 2 = 90°; тогда АВМ =180° - 90° = 90°. Оказа­лось, что трапеция AMDC разбита на три неперекрываю­щихся прямоугольных треугольника, тогда по аксиомам площадей

(a+b)(a+b)

Разделив все члены неравенства на , получим

а b + с2 + а b = (а + b) , 2 ab + с2 = а2 + b + b2,

с2 = а2 + b2.

Доказательство закончено.

8 СПОСОБ.

Данный способ основывается на гипотенузе и кате­тах прямоугольного тре­угольника ABC. Он строит соответствующие квадра­ты и доказывает, что квадрат, построенный на гипотенузе, равновелик сумме квадратов, постро­енных на катетах (рис. 8).

Доказательство.

1) DBC = FBA = 90°;

DBC + ABC = FBA + ABC, значит, FBC = DBA.

Таким образом, FBC =ABD (по двум сторонам и углу между ними).

2) , где AL DE, так как BD - общее основание, DL - общая высота.

3) , так как FB –снование, АВ - общая высота.

4)

5) Аналогично можно доказать, что

6) Складывая почленно, получаем:

, ВС2 = АВ2 + АС2 . Доказательство закончено.

9 СПОСОБ.

Доказательство.

1) Пусть ABDE - квадрат (рис. 9), сторона которого рав­на гипотенузе прямоугольно­го треугольника ABC (АВ = с, ВС = а, АС = b).

2) Пусть DK BC и DK = ВС, так как 1 + 2 = 90° (как острые углы прямоугольно­го треугольника), 3 + 2 = 90° (как угол квадрата), АВ = BD (стороны квадрата).

Значит, ABC = BDK (по гипотенузе и острому углу).

3)Пусть EL DK, AM EL. Можно легко доказать, что ABC = BDK =DEL = ЕАМ (с катетами а и b). Тогда КС = СМ = ML = LK = а - b.

4) SKB = 4S + SKLMC = 2ab + (a - b), с 2 = 2ab + a2 - 2ab + b2, c2 = a2 + b2 .

Доказательство закончено.

10 СПОСОБ.

Доказательство может быть проведено на фигуре, в шутке называемой «Пифагоровы штаны» (рис. 10). Идея его со­стоит в преобразовании квад­ратов, построенных на кате­тах, в равновеликие треуголь­ники, составляющие вместе квадрат гипотенузы.

ABC сдвигаем, как пока­зано стрелкой, и он занимает положение KDN. Оставша­яся часть фигуры AKDCB рав­новелика площади квадрата AKDC – это параллелограмм AKNB.

Сделана модель параллелограмма AKNB . Параллелограмм перекладываем так, как зарисовано в содержании работы. Чтобы показать преобразование парал­лелограмма в равновеликий треугольник, на глазах уча­щихся отрезаем на модели треугольник и перекладываем его вниз. Таким образом, площадь квадрата AKDC получилась равна площади прямоугольника. Аналогично преоб­разуем площадь квадрата в площадь прямоугольника.

Произведем преобразование для квадрата, построенно­го на катете а (рис. 11,а):

а) квадрат преобразуется в равновеликий параллелог­рамм (рис. 11,6):

б) параллелограмм поворачивается на четверть оборо­та (рис. 12):

в) параллелограмм преобразуется в равновеликий пря­моугольник (рис. 13): 11 СПОСОБ.

Доказательство:

PCL – прямая (Рис. 14);

KLOA = ACPF = ACED = а2;

LGBO = СВМР = CBNQ = b2;

AKGB = AKLO + LGBO = с2;

с2 = а2 + b2.

Доказательство окончено.

12 СПОСОБ.

Рис. 15 иллюстрирует еще одно ориги­нальное доказательство теоремы Пифагора.

Здесь: треугольник ABC с прямым углом С; отрезок BF перпендикулярен СВ и равен ему, отрезок BE перпендикулярен АВ и равен ему, отрезок AD перпендикулярен АС и равен ему; точки F, С, D принадлежат одной пря­мой; четырехугольники ADFB и АСВЕ равновели­ки, так как ABF = ЕСВ; треугольники ADF и АСЕ равновелики; отнимем от обоих равновеликих четырехугольников общий для них тре­угольник ABC, получим

, с2 = а2 + b2.

Доказательство закончено.

13 СПОСОБ.

Площадь данного пря­моугольного треугольни­ка, с одной стороны, равна , с другой, ,

3. ЗАКЛЮЧЕНИЕ.

В результате поисковой деятельности была достигнута цель работы, заключающаяся в пополнении и обобщении знаний по доказательству теоремы Пифагора. Удалось найти и рассмотреть различные способы её доказательства и углубить знания по теме, выйдя за страницы школьного учебника.

Собранный мною материал ещё больше убеждает в том, что теорема Пифагора является великой теоремой геометрии, имеет огромное теоретическое и практическое значение. В завершении хотелось бы сказать: причина популярности теоремы Пифагора триедина - это красота, простота и значимость!

4. ИСПОЛЬЗУЕМАЯ ЛИТЕРАТУРА.

1. Занимательная алгебра. . Москва «Наука», 1978.

2. Еженедельное учебно-методическое приложение к газете «Первое сентября», 24/2001.

3. Геометрия 7-9. и др.

4. Геометрия 7-9. и др.

История теоремы Пифагора насчитывает несколько тысячелетий. Утверждение, гласящее, что было известно еще задолго до рождения греческого математика. Однако теорема Пифагора, история создания и доказательства ее связываются для большинства именно с этим ученым. Согласно некоторым источникам, причиной тому послужило первое доказательство теоремы, которое было приведено Пифагором. Однако часть исследователей опровергает этот факт.

Музыка и логика

Прежде чем рассказать, как складывалась история теоремы Пифагора, кратко остановимся на биографии математика. Жил он в VI веке до нашей эры. Датой рождения Пифагора считается 570 год до н. э., местом — остров Самос. О жизни ученого достоверно известно немного. Биографические данные в древнегреческих источниках переплетаются с явным вымыслом. На страницах трактатов он предстает великим мудрецом, великолепно владеющим словом и умением убеждать. Кстати, именно поэтому греческого математика и прозвали Пифагором, то есть «убеждающим речью». По другой версии, рождение будущего мудреца предсказала Пифия. Отец в ее честь назвал мальчика Пифагором.

Мудрец учился у великих умов того времени. Среди преподавателей молодого Пифагора значатся Гермодамант и Ферекид Сиросский. Первый привил ему любовь к музыке, второй обучил философии. Обе эти науки останутся в центре внимания ученого на протяжении всей его жизни.

Обучение длиной в 30 лет

По одной из версий, будучи пытливым юношей, Пифагор покинул родину. Он отправился искать знаний в Египет, где пробыл, согласно разным источникам, от 11 до 22 лет, а затем попал в плен и был отправлен в Вавилон. Пифагор смог извлечь пользу из своего положения. В течение 12 лет он изучал математику, геометрию и магию в древнем государстве. На Самос Пифагор вернулся только в 56 лет. Здесь в то время правил тиран Поликрат. Пифагор не смог принять такую политическую систему и вскоре отправился на юг Италии, где располагалась греческая колония Кротон.

Сегодня нельзя точно утверждать, был ли Пифагор в Египте и Вавилоне. Возможно, он покинул Самос позже и отправился сразу в Кротон.

Пифагорейцы

История теоремы Пифагора связана с развитием созданной греческим философом школы. Это религиозно-этическое братство проповедовало соблюдение особого образа жизни, изучало арифметику, геометрию и астрономию, занималось исследованием философской и мистической стороны чисел.

Все открытия учеников греческого математика приписывались ему. Однако история возникновения теоремы Пифагора связывается древними биографами только с самим философом. Предполагается, что он передал грекам знания, полученные в Вавилоне и Египте. Есть также версия, что он действительно открыл теорему о соотношениях катетов и гипотенузы, не зная о достижениях других народов.

Теорема Пифагора: история открытия

В некоторых древнегреческих источниках описывается радость Пифагора, когда ему удалось доказать теорему. В честь такого события он приказал принести жертву богам в виде сотни быков и устроил пир. Некоторые ученые, однако, указывают на невозможность такого поступка из-за особенностей воззрений пифагорейцев.

Считается, что в трактате «Начала», созданном Евклидом, автор приводит доказательство теоремы, автором которого и был великий греческий математик. Однако подобную точку зрения поддерживали не все. Так, еще античный философ-неоплатоник Прокл указывал, что автором приведенного в «Началах» доказательства является сам Евклид.

Как бы то ни было, но первым, кто сформулировал теорему, все-таки был не Пифагор.

Древний Египет и Вавилон

Теорема Пифагора, история создания которой рассматривается в статье, согласно немецкому математику Кантору, была известна еще в 2300 году до н. э. в Египте. Древние жители долины Нила во времена правления фараона Аменемхета I знали равенство 3 2 + 4 ² = 5 ² . Предполагается, что с помощью треугольников со сторонами 3, 4 и 5 египетские «натягиватели веревок» выстраивали прямые углы.

Знали теорему Пифагора и в Вавилоне. На глиняных табличках, датируемых 2000 годом до н.э. и относимых ко времени правления обнаружен приблизительный расчет гипотенузы прямоугольного треугольника.

Индия и Китай

История теоремы Пифагора связана и с древними цивилизациями Индии и Китая. Трактат «Чжоу-би суань цзинь» содержит указания, что (его стороны соотносятся как 3:4:5) был известен в Китае еще в XII в. до н. э., а к VI в. до н. э. математики этого государства знали общий вид теоремы.

Построение прямого угла при помощи египетского треугольника было изложено и в индийском трактате «Сульва сутра», датируемом VII-V вв. до н. э.

Таким образом, история теоремы Пифагора к моменту рождения греческого математика и философа насчитывала уже несколько сотен лет.

Доказательство

За время своего существования теорема стала одной из основополагающих в геометрии. История доказательства теоремы Пифагора, вероятно, началась с рассмотрения равностороннего На его гипотенузе и катетах строятся квадраты. Тот, что «вырос» на гипотенузе, будет состоять из четырех треугольников, равных первому. Квадраты на катетах при этом состоят из двух таких треугольников. Простое графическое изображение наглядно показывает справедливость утверждения, сформулированного в виде знаменитой теоремы.

Еще одно простое доказательство сочетает геометрию с алгеброй. Четыре одинаковых прямоугольных треугольника со сторонами а, в, с вычерчиваются так, что образуют два квадрата: внешний со стороной (а + в) и внутренний со стороной с. При этом площадь меньшего квадрата будет равна с 2 . Площадь большого вычисляется из суммы площадей маленького квадрата и всех треугольников (площадь прямоугольного треугольника, напомним, вычисляется по формуле (а * в) / 2), то есть с 2 + 4 * ((а * в) / 2), что равно с 2 + 2ав. Площадь большого квадрата можно вычислить и иначе — как произведение двух сторон, то есть (а + в) 2 , что равно а 2 + 2ав + в 2 . Получается:

а 2 + 2ав + в 2 = с 2 + 2ав,

а 2 + в 2 = с 2 .

Известно множество вариантов доказательства этой теоремы. Над ними трудился и Евклид, и индийские ученые, и Леонардо да Винчи. Часто древние мудрецы приводили чертежи, примеры которых расположены выше, и не сопровождали их никакими объяснениями, кроме пометки «Смотри!» Простота геометрического доказательства при условии наличия некоторых знаний комментариев и не требовала.

История теоремы Пифагора, кратко изложенная в статье, развенчивает миф о ее происхождении. Однако трудно даже представить, что имя великого греческого математика и философа когда-нибудь перестанет ассоциироваться с ней.

ИЗМЕРЕНИЕ ПЛОЩАДЕЙ ГЕОМЕТРИЧЕСКИХ ФИГУР.

§ 58. ТЕОРЕМА ПИФАГОРА 1 .

__________
1 Пифагор - греческий учёный, живший около 2500 лет назад (564-473 гг. до нашей эры).
_________

Пусть дан прямоугольный треугольник, стороны которого а , b и с (черт. 267).

Построим на его сторонах квадраты. Площади этих квадратов соответственно равны а 2 , b 2 и с 2 . Докажем, что с 2 = а 2 + b 2 .

Построим два квадрата МКОР и М"К"О"Р" (черт. 268, 269), приняв за сторону каждого из них отрезок, равный сумме катетов прямоугольного треугольника АBС.

Выполнив в этих квадратах построения, показанные на чертежах 268 и 269, мы увидим, что квадрат МКОР разбился на два квадрата с площадями а 2 и b 2 и четыре равных прямоугольных треугольника, каждый из которых равен прямоугольному треугольнику АВС. Квадрат М"К"О"Р" разбился на четырёхугольник (он на чертеже 269 заштрихован) и четыре прямоугольных треугольника, каждый из которых также равен треугольнику АBС. Заштрихованный четырёхугольник - квадрат, так как стороны его равны (каждая равна гипотенузе треугольника АBС, т. е. с ), а углы - прямые / 1 + / 2 = 90°, откуда / 3 = 90°).

Таким образом, сумма площадей квадратов, построенных на катетах (на чертеже 268 эти квадраты заштрихованы), равна площади квадрата МКОР без суммы площадей четырёх равных треугольников, а площадь квадрата, построенного на гипотенузе (на чертеже 269 этот квадрат тоже заштрихован), равна площади квадрата М"К"О"Р", равного квадрату МКОР, без суммы площадей четырёх таких же треугольников. Следовательно, площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на катетах.

Получаем формулу с 2 = а 2 + b 2 , где с - гипотенуза, а и b - катеты прямоугольного треугольника.

Теорему Пифагора кратко принято формулировать так:

Квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов.

Из формулы с 2 = а 2 + b 2 можно получить такие формулы:

а 2 = с 2 - b 2 ;
b
2 = с 2 - а 2 .

Этими формулами можно пользоваться для нахождения неизвестной стороны прямоугольного треугольника по двум данным его сторонам.
Например:

а) если даны катеты а = 4 см, b =3 см, то можно найти гипотенузу (с ):
с 2 = а 2 + b 2 , т. е. с 2 = 4 2 + 3 2 ; с 2 = 25, откуда с = √25 =5 (см);

б) если даны гипотенуза с = 17 см и катет а = 8 см, то можно найти другой катет (b ):

b 2 = с 2 - а 2 , т. е. b 2 = 17 2 - 8 2 ; b 2 = 225, откуда b = √225 = 15 (см).

Следствие: Если в двух прямоугольных треугольниках АВС и А 1 В 1 С 1 гипотенузы с и с 1 равны, а катет b треугольника АBС больше катета b 1 треугольника А 1 В 1 C 1 ,
то катет а треугольника АВС меньше катета а 1 треугольника А 1 В 1 C 1 . (Сделать чертёж, иллюстрирующий это следствие.)

В самом деле, на основании теоремы Пифагора получим:

а 2 = с 2 - b 2 ,
а 1 2 = с 1 2 - b 1 2

В записанных формулах уменьшаемые равны, а вычитаемое в первой формуле больше вычитаемого во второй формуле, следовательно, первая разность меньше второй,
т. е. а 2 < а 1 2 . Откуда а < а 1 .

Упражнения.

1. Пользуясь чертежом 270, доказать теорему Пифагора для равнобедренного прямоугольного треугольника.

2. Один катет прямоугольного треугольника равен 12 см, другой - 5 см. Вычислить длину гипотенузы этого треугольника.

3. Гипотенуза прямоугольного треугольника равна 10 см, один из катетов равен 8 см. Вычислить длину другого катета этого треугольника.

4. Гипотенуза прямоугольного треугольника равна 37 см, один из его катетов равен 35 см. Вычислить длину другого катета этого треугольника.

5. Построить квадрат, по площади вдвое больший данного.

6. Построить квадрат, по площади вдвое меньший данного. Указание. Провести в данном квадрате диагонали. Квадраты, построенные на половинах этих диагоналей, будут искомыми.

7. Катеты прямоугольного треугольника соответственно равны 12 см и 15 см. Вычислить длину гипотенузы этого треугольника с точностью до 0,1 см.

8. Гипотенуза прямоугольного треугольника равна 20 см, один из его катетов равен 15 см. Вычислить длину другого катета с точностью до 0,1 см.

9. Какой длины должна быть лестница, чтобы её можно было приставить к окну, находящемуся на высоте 6 м, если нижний конец лестницы должен отстоять от здания на 2,5 м? (Черт. 271.)

Анимационное доказательство теоремы Пифагора – одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Считается, что она доказана греческим математиком Пифагором, в честь которого она названа (есть и другие версии, в частности альтернативное мнение, что эта теорема в общем виде была сформулирована математиком-пифагорейцем Гиппасом).
Теорема гласит:

В прямоугольном треугольнике площадь квадрата, построенного на гипотенузе равна сумме площадей квадратов, построенных на катетах.

Обозначив длину гипотенузы треугольника c, а длины катетов как a и b, получим следующую формулу:

Таким образом, теорема Пифагора устанавливает соотношение, которое позволяет определить сторону прямоугольного треугольника, зная длины двух других. Теорема Пифагора является частным случаем теоремы косинусов, которая определяет соотношение между сторонами произвольного треугольника.
Также доказано обратное утверждение (называют также обратной теореме Пифагора):

Для любых трех положительных чисел a, b и c, таких что a ? + b ? = c ?, существует прямоугольный треугольник с катетами a и b и гипотенузой c.

Визуальное доказательство для треугольника (3, 4, 5) из книги «Чу Пэй» 500-200 до н.э. Историю теоремы можно разделить на четыре части: знание о Пифагоровы числа, знания об отношении сторон в прямоугольном треугольнике, знание об отношении смежных углов и доказательство теоремы.
Мегалитические сооружения около 2500 до н.э. в Египте и Северной Европе, содержат прямоугольные треугольники со сторонами из целых чисел. Бартель Леендерт ван дер Варден высказал гипотезу, что в те времена Пифагоровы числа были найдены алгебраически.
Написанный между 2000 и 1876 до н.э. папирус времен Среднего Египетского царства Berlin 6619 содержит задачу решением которой являются числа Пифагора.
Во время правления Хаммурапи Великого, вивилонська табличка Plimpton 322, написанная между 1790 и 1750 до н.э содержит много записей тесно связанных с числами Пифагора.
В сутрах Будхаяны, которые датируются по разным версиям восьмой или второй веками до н.э. в Индии, содержит Пифагоровы числа выведены алгебраически, формулировка теоремы Пифагора и геометрическое доказательство для ривнобедренного прямоугольного треугольника.
В сутрах Апастамба (около 600 до н.э.) содержится числовое доказательство теоремы Пифагора с использованием вычисления площади. Ван дер Варден считает, что оно было основано на традициях предшественников. Согласно Альбертом Бурко, это оригинальное доказательство теоремы и он предполагает, что Пифагор посетил Араконам и скопировал его.
Пифагор, годы жизни которого обычно указывают 569 – 475 до н.э. использует алгебраические методы расчета пифагоровых чисел, согласно Проклова комментариями к Евклида. Прокл, однако, жил между 410 и 485 годами н.э. Согласно Томасом Гизом, нет никаких указаний на авторство теоремы течение пяти веков после Пифагора. Однако, когда такие авторы как Плутарх или Цицерон приписывают теорему Пифагору, они делают это так, будто авторство широко известно и несомненно.
Около 400 до н. э соответствии Прокла, Платон дал метод расчета пифагоровых чисел, сочетавший алгебру и геометрию. Около 300 до н.э., в Началах Евклида имеем древнейшее аксиоматическое доказательство, которое сохранилось до наших дней.
Написанные где-то между 500 до н.э. и 200 до н.э., китайский математическая книга «Чу Пэй» (? ? ? ?), дает визуальное доказательство теоремы Пифагора, которая в Китае называется теорема гугу (????), для треугольника со сторонами (3, 4, 5). Во время правления династии Хань, с 202 до н.э. до 220 н.э. Пифагоровы числа появляются в книге «Девять разделов математического искусства» вместе с упоминанием о прямоугольные треугольники.
Впервые зафиксировано использование теоремы в Китае, где она известна как теорема гугу (????) и в Индии, где она известна как теорема Баскара.
Многие дискутируется была теорема Пифагора открыта один раз или многократно. Бойер (1991) считает, что знания обнаружены в Шульба Сутра могут быть месопотамского происхождения.
Алгебраическое доказательство
Квадраты образуются из четырех прямоугольных треугольников. Известно более ста доказательств теоремы Пифагора. Здесь представлены доказательства основан на теореме существования площади фигуры:

Разместим четыре одинаковые прямоугольные треугольники так, как это изображено на рисунке.
Четырехугольник со сторонами c является квадратом, так как сумма двух острых углов , А развернутый угол – .
Площадь всей фигуры равна, с одной стороны, площади квадрата со стороной «a + b», а с другой – сумме площадей четырех треугольников и внутреннего квадрата.

Что и необходимо доказать.
По сходству треугольников
Использование подобных треугольников. Пусть ABC – прямоугольный треугольник, в котором угол C прямой, как показано на рисунке. Проведем высоту с точки C, и назовем H точку пересечения со стороной AB. Образован треугольник ACH подобен треугольника ABC, поскольку они оба прямоугольные (по определению высоты), и у них общий угол A, очевидно третий угол будет в этих треугольников также одинаков. Аналогично миркуюючы, треугольник CBH также подобен треугольника ABC. С подобия треугольников: Если

Это можно записать в виде

Если добавить эти две равенства, получим

HB + c times AH = c times (HB + AH) = c ^ 2, ! Src = "http://upload.wikimedia.org/math/7/0/9/70922f59b11b561621c245e11be0b61b.png" />

Другими словами, теорема Пифагора:

Доказательство Евклида
Доказательство Евклида в евклидовых «Началах», теорема Пифагора доказана методом параллелограммов. Пусть A, B, C вершины прямоугольного треугольника, с прямым углом A. Опустим перпендикуляр из точки A на сторону противоположную гипотенузы в квадрате построенном на гипотенузе. Линия делит квадрат на два прямоугольника, каждый из которых имеет такую же площадь, что и квадраты построены на катетах. Главная идея при доказательстве состоит в том, что верхние квадраты превращаются в параллелограммы такой же площади, а потом возвращаются и превращаются в прямоугольники в нижнем квадрате и снова при неизменной площади.

Проведем отрезки CF и AD, получим треугольники BCF и BDA.
Углы CAB и BAG – прямые; соответственно точки C, A и G – коллинеарны. Так же B, A и H.
Углы CBD и FBA – оба прямые, тогда угол ABD равен углу FBC, поскольку оба являются суммой прямого угла и угла ABC.
Треугольник ABD и FBC уровне по двум сторонам и углу между ними.
Поскольку точки A, K и L – коллинеарны, площадь прямоугольника BDLK равна двум площадям треугольника ABD (BDLK = BAGF = AB 2)
Аналогично миркуюючы получим CKLE = ACIH = AC 2
С одной стороны площадь CBDE равна сумме площадей прямоугольников BDLK и CKLE, а с другой стороны площадь квадрата BC 2, или AB 2 + AC 2 = BC 2.

Используя дифференциалы
Использование дифференциалов. Теореме Пифагора можно прийти, если изучать как прирост стороны влияет на ведичину гипотенузы как показано на рисунке справа и применить небольшое вычисления.
В результате прироста стороны a, из подобных треугольников для бесконечно малых приращений

Интегрируя получим

Если a = 0 тогда c = b, так что "константа" – b 2. Тогда

Как можно увидеть, квадраты получен благодаря пропорции между приращениями и сторонами, тогда как сумма является результатом независимого вклада приростов сторон, не очевидно из геометрических доказательств. В этих уравнениях da и dc – соответственно бесконечно малые приращения сторон a и c. Но вместо них мы используем? a и? c, тогда предел отношения, если они стремятся к нулю равна da / dc, производная, и также равен c / a, отношению длин сторон треугольников, в результате получаем дифференциальное уравнение.
В случае ортогональной системы векторов имеет место равенство, которую также называют теоремой Пифагора:

Если – Это проекции вектора на координатные оси, то эта формула совпадает с расстоянием Евклида и означает, что длина вектора равна корню квадратному суммы квадратов его компонентов.
Аналог этого равенства в случае бесконечной системы векторов называется равенства Парсеваля.