Латинское название водорода. Химические свойства водорода: особенности и применение

Рассмотрим, что собой представляет водород. Химические свойства и получение этого неметалла изучают в курсе неорганической химии в школе. Именно этот элемент возглавляет периодическую систему Менделеева, а потому заслуживает детального описания.

Краткие сведения об открытии элемента

Прежде чем рассматривать физические и химические свойства водорода, выясним, как был найден этот важный элемент.

Химики, которые работали в шестнадцатом и семнадцатом веках, неоднократно упоминали в своих трудах о горючем газе, который выделяется при воздействии на кислоты активными металлами. Во второй половине восемнадцатого века Г. Кавендишу удалось собрать и проанализировать этот газ, дав ему название «горючий газ».

Физические и химические свойства водорода на тот момент времени не были изучены. Только в конце восемнадцатого века А. Лавуазье удалось путем анализа установить, что получить этот газ можно путем анализа воды. Чуть позже он стал называть новый элемент hydrogene, что в переводе означает «рождающий воду». Своим современным русским названием водород обязан М. Ф. Соловьеву.

Нахождение в природе

Химические свойства водорода можно анализировать только на основании его распространенности в природе. Данный элемент присутствует в гидро- и литосфере, а также входит в состав полезных ископаемых: природного и попутного газа, торфа, нефти, угля, горючих сланцев. Сложно себе представить взрослого человека, который бы не знал о том, что водород является составной частью воды.

Кроме того, данный неметалл находится в организмах животных в виде нуклеиновых кислот, белков, углеводов, жиров. На нашей планете данный элемент встречается в свободном виде достаточно редко, пожалуй, только в природном и вулканическом газе.

В виде плазмы водород составляет примерно половину массы звезд и Солнца, кроме того, входит в состав межзвездного газа. Например, в свободном виде, а также в форме метана, аммиака этот неметалл присутствует в составе комет и даже некоторых планет.

Физические свойства

Прежде чем рассматривать химические свойства водорода, отметим, что при нормальных условиях он является газообразным веществом легче воздуха, имеющим несколько изотопных форм. Он почти нерастворим в воде, имеет высокую теплопроводность. Протий, имеющий массовое число 1, считается самой легкой его формой. Тритий, который обладает радиоактивными свойствами, образуется в природе из атмосферного азота при воздействии на него нейронов УФ-лучей.

Особенности строения молекулы

Чтобы рассмотреть химические свойства водорода, реакции, характерные для него, остановимся и на особенностях его строения. В этой двухатомной молекуле ковалентная неполярная химическая связь. Образование атомарного водорода возможно при взаимодействии активных металлов на растворы кислот. Но в таком виде этот неметалл способен существовать только незначительный временной промежуток, практически сразу же он рекомбинируется в молекулярный вид.

Химические свойства

Рассмотрим химические свойства водорода. В большей части соединений, которые образует данный химический элемент, он проявляет степень окисления +1, что делает его похожим с активными (щелочными) металлами. Основные химические свойства водорода, характеризующие его в качестве металла:

  • взаимодействие с кислородом с образованием воды;
  • реакция с галогенами, сопровождающаяся образованием галогеноводорода;
  • получение сероводорода при соединении с серой.

Ниже представлено уравнение реакций, характеризующих химические свойства водорода. Обращаем внимание на то, что в качестве неметалла (со степенью окисления -1) он выступает только в реакции с активными металлами, образуя с ними соответствующие гидриды.

Водород при обычной температуре неактивно вступает во взаимодействие с другими веществами, поэтому большая часть реакций осуществляется только после предварительного нагревания.

Остановимся подробнее на некоторых химических взаимодействиях элемента, который возглавляет периодическую систему химических элементов Менделеева.

Реакция образования воды сопровождается выделением 285,937 кДж энергии. При повышенной температуре (больше 550 градусов по Цельсия) данный процесс сопровождается сильным взрывом.

Среди тех химических свойств газообразного водорода, которые нашли существенное применение в промышленности, интерес представляет его взаимодействие с оксидами металлов. Именно путем каталитического гидрирования в современной промышленности осуществляют переработку оксидов металлов, например выделяют из железной окалины (смешанного оксида железа) чистый металл. Данный способ позволяет вести эффективную переработку металлолома.

Синтез аммиака, который предполагает взаимодействие водорода с азотом воздуха, также востребован в современной химической промышленности. Среди условий протекания этого химического взаимодействия отметим давление и температуру.

Заключение

Именно водород является малоактивным химическим веществом при обычных условиях. При повышении температуры его активность существенно возрастает. Данное вещество востребовано в органическом синтезе. Например, путем гидрирования можно восстановить кетоны до вторичных спиртов, а альдегиды превратить в первичные спирты. Кроме того, путем гидрирования можно превратить ненасыщенные углеводороды класса этилена и ацетилена в предельные соединения ряда метана. Водород по праву считают простым веществом, востребованным в современном химическом производстве.

ВОДОРОД (латинский Hydrogenium), Н, химический элемент VII группы короткой формы (1-й группы длинной формы) периодической системы; атомный номер 1, атомная масса 1,00794; неметалл. В природе два стабильных изотопа: протий 1 Н (99,985% по массе) и дейтерий D, или 2 Н (0,015%). Искусственно получаемый радиоактивный тритий 3 Н, или Т (ß-распад, Т 1/2 12,26 года), в природе образуется в ничтожно малых количествах в верхних слоях атмосферы в результате взаимодействия космического излучения главным образом с ядрами N и О. Искусственно получены крайне неустойчивые радиоактивные изотопы 4 Н, 5 Н, 6 Н.

Историческая справка. Впервые водород исследован в 1766 году Г. Кавендишем и назван им «горючим воздухом». В 1787 году А. Лавуазье показал, что этот газ при горении образует воду, включил его в список химических элементов и предложил название hydrogène (от греческого?δωρ - вода и γενν?ω - рождать).

Распространённость в природе. Содержание водорода в атмосферном воздухе 3,5-10 % по массе, в земной коре 1%. Главный резервуар водорода на Земле - вода (11,19% водорода по массе). Водород относится к числу биогенных элементов, входит в состав соединений, образующих угли, нефть, природные горючие газы, многие минералы и пр. В околоземном пространстве водород в виде потока протонов образует внутренний радиационный пояс Земли. Водород - самый распространённый элемент в космосе; в виде плазмы составляет около 70% массы Солнца и звёзд, основную часть межзвёздной среды и газовых туманностей, присутствует в атмосфере ряда планет в форме Н 2 , СН 4 , NН 3 , Н 2 О и пр.

Свойства . Конфигурация электронной оболочки атома водород 1s 1 ; в соединениях проявляет степени окисления +1 и -1. Электроотрицательность по Полингу 2,1; радиусы (пм): атомный 46, ковалентный 30, ван-дер-ваальсов 120; энергия ионизации Н°→ Н + 1312,0 кДж/моль. В свободном состоянии водород образует двухатомную молекулу Н 2 , межъядерное расстояние 76 пм, энергия диссоциации 432,1 кДж/моль (0 К). В зависимости от взаимной ориентации ядерных спинов существуют орто-водород (параллельные спины) и пара-водород (антипараллельные спины), различающиеся по магнитным, оптическим и термическим свойствам и содержащиеся обычно в соотношении 3:1; при превращении пара-водорода в орто-водород затрачивается 1418 Дж/моль энергии.

Водород - газ без цвета, вкуса и запаха; t ПЛ -259,19 °С, t KИП -252,77 °С. Водород - самый лёгкий и наиболее теплопроводный из всех газов: при 273 К плотность 0,0899 кг/м 3 , теплопроводность 0,1815 Вт/(м·К). Не растворяется в воде; хорошо растворяется во многих металлах (лучше всего в Pd - до 850% по объёму); диффундирует через многие материалы (например, сталь). На воздухе горит, образует взрывоопасные смеси. Твёрдый водород кристаллизуется в гексагональной решётке; при давлении свыше 10 4 МПа возможен фазовый переход с образованием структуры, построенной из атомов и обладающей металлическими свойствами, - так называемый металлический водород.

Водород образует соединения со многими элементами. С кислородом образует воду (при температуре выше 550 °С реакция сопровождается взрывом), с азотом -аммиак, с галогенами - галогеноводороды, с металлами, интерметаллидами, а также со многими неметаллами (например, халькогенами) - гидриды, с углеродом - углеводороды. Практическое значение имеют реакции с СО (смотри Синтез-газ). Водород восстанавливает оксиды и галогениды многих металлов до металлов, ненасыщенные углеводороды - до насыщенных (смотри Гидрирование). Ядро атома водорода - протон Н + - определяет кислотные свойства соединений. В водных растворах Н + образует с молекулой воды ион гидроксония Н 3 О + . В составе молекул различных соединений водород склонен образовывать водородную связь со многими электроотрицательные элементами.

Применение . Газообразный водород используют в промышленном синтезе аммиака, соляной кислоты, метанола и высших спиртов, синтетического жидкого топлива и пр., для гидрогенизации жиров и других органических соединений; в нефтепереработке - для гидроочистки и гидрокрекинга нефтяных фракций; в металлургии - для получения металлов (например, W, Mo, Re из их оксидов и фторидов), создания защитной среды при обработке металлов и сплавов; в производстве изделий из кварцевого стекла с использованием водородно-кислородного пламени, для атомно-водородной сварки тугоплавких сталей и сплавов и пр., как подъёмный газ аэростатов. Жидкий водород - горючее в ракетной и космической технике; применяется также в качестве хладагента.

Об основных способах получения, а также о хранении, транспортировке и применении водорода в качестве носителя энергии смотри Водородная энергетика.

Лит. смотри при ст. Водородная энергетика.

Самым распространённым химическим элементом во Вселенной является водород. Это в своём роде точка отсчёта, потому что в таблице Менделеева его атомное число равняется единице. Человечество надеется, что сможет узнать о нём побольше как об одном из самых возможных транспортных средств в грядущем. Водород - это самый простой, самый лёгкий, самый распространённый элемент, его много повсюду - семьдесят пять процентов от всей массы вещества. Он есть в любой звезде, особенно много водорода в газовых гигантах. Его роль в звёздных реакциях синтеза является ключевой. Без водорода нет воды, а значит - нет и жизни. Все помнят, что молекула воды содержит один атом кислорода, а два атома в ней - водород. Это всем известная формула Н 2 О.

Как мы его используем

Обнаружил водород в 1766 году Генри Кавендиш, когда анализировал реакцию окисления металла. Через несколько лет наблюдений он понял, что в процессе горения водорода происходит образование воды. Ранее учёные выделяли этот элемент, но самостоятельным его не считали. В 1783 году водород получил имя гидроген (в переводе с греческого "гидро" - вода, а "ген" - рождать). Элемент, порождающий воду, - водород. Это газ, молекулярная формула которого Н 2 . Если температура близка к комнатной, а давление нормальное, этот элемент неощутим. Водород можно даже не уловить человеческими органами чувств - он безвкусен, не имеет цвета, лишён запаха. А вот под давлением и при температуре -252,87 С (очень большой холод!) этот газ разжижается. Так его и хранят, поскольку в виде газа он занимает гораздо больше места. Именно жидкий водород используют как ракетное топливо.

Водород может становиться твёрдым, металлическим, но для этого давление необходимо сверхвысокое, именно этим сейчас и занимаются самые видные учёные - физики и химики. Уже сейчас этот элемент служит альтернативным топливом для транспорта. Применение его похоже на то, как работает двигатель внутреннего сгорания: когда сжигают водород, высвобождается много его химической энергии. Также практически разработан способ создания топливного элемента на его основе: при соединении с кислородом происходит реакция, а посредством этого образуются вода и электричество. Возможно, скоро транспорт "пересядет" вместо бензина на водород - масса автомобилестроителей интересуется созданием альтернативных горючих материалов, есть и успехи. Но чисто водородный двигатель пока в перспективе, здесь множество трудностей. Однако и преимущества таковы, что создание топливного бака с твёрдым водородом идёт полным ходом, и учёные и инженеры отступать не собираются.

Основные сведения

Hydrogenium (лат.) - водород, первый порядковый номер в таблице Менделеева, обозначается Н. Атом водорода имеет массу 1,0079, это газ, не имеющий при обычных условиях ни вкуса, ни запаха, ни цвета. Химики с шестнадцатого века описывали некий горючий газ, обозначая его по-разному. Но получался он у всех при одинаковых условиях - когда на металл воздействует кислота. Водород даже самим Кавендишем много лет назывался просто "горючий воздух". Лишь в 1783 году Лавуазье доказал, что вода имеет сложный состав, путём синтеза и анализа, а через четыре года он же и дал "горючему воздуху" его современное название. Корень этого сложного слова широко употребляется, когда нужно называть соединения водорода и какие-либо процессы, в которых он участвует. Например, гидрогенизация, гидрид и тому подобное. А русское название предложил в 1824 году М. Соловьёв.

В природе распространение этого элемента не имеет равных. В литосфере и гидросфере земной коры его масса - один процент, зато атомов водорода - целых шестнадцать процентов. Наиболее распространена на Земле вода, и 11,19% по массе в ней - водород. Также он непременно присутствует практически во всех соединениях, из которых состоят нефть, уголь, все природные газы, глина. Есть водород и во всех организмах растений и животных - в составе белков, жиров, нуклеиновых кислот, углеводов и так далее. Свободное состояние для водорода не характерно и почти не встречается - его очень немного в природных и вулканических газах. Совсем ничтожный объем водорода в атмосфере - 0,0001%, по количеству атомов. Зато целые потоки протонов представляют водород в околоземном пространстве, из него состоит внутренний радиационный пояс нашей планеты.

Космос

В космосе ни один элемент не встречается так часто, как водород. Объем водорода в составе элементов Солнца - более половины его массы. Большинство звёзд образует водород, находящийся в виде плазмы. Основная часть разнообразных газов туманностей и межзвёздной среды тоже состояит из водорода. Он присутствует в кометах, в атмосфере целого ряда планет. Естественно, не в чистом виде, - то как свободный Н 2 , то как метан СН 4 , то как аммиак NH 3 , даже как вода Н 2 О. Очень часто встречаются радикалы СН, NH, SiN, OH, РН и тому подобные. Как поток протонов водород является частью корпускулярного солнечного излучения и космических лучей.

В обычном водороде смесь двух устойчивых изотопов - это лёгкий водород (или протий 1 Н) и тяжёлый водород (или дейтерий - 2 Н или D). Есть и другие изотопы: радиоактивный тритий - 3 Н или Т, иначе - сверхтяжёлый водород. А ещё очень неустойчивый 4 Н. В природе соединение водорода содержит изотопы в таких пропорциях: на один атом дейтерия приходится 6800 атомов протия. Тритий образуется в атмосфере из азота, на который воздействуют нейтроны космических лучей, но ничтожно мало. Что обозначают числа массы изотопов? Цифра указывает, что ядро протия - только с одним протоном, а у дейтерия в ядре атома не только протон, но и нейтрон. У трития в ядре к одному протону уже два нейтрона. А вот 4 Н содержит три нейтрона на один протон. Поэтому физические свойства и химические у изотопов водорода очень сильно отличаются по сравнению с изотопами всех других элементов, - слишком большое различие масс.

Строение и физические свойства

По строению атом водород наиболее прост по сравнению со всеми другими элементами: одно ядро - один электрон. Потенциал ионизации - энергия связи ядра с электроном - 13,595 электронвольт (eV). Именно из-за простоты этого строения атом водорода удобен как модель в квантовой механике, когда нужно рассчитать энергетические уровни более сложных атомов. В молекуле Н 2 - два атома, которые соединены химической ковалентной связью. Энергия распада очень велика. Атомарный водород может образоваться в химических реакциях, например цинка и соляной кислоты. Однако взаимодействие с водородом практически не происходит - атомарное состояние водорода очень коротко, атомы сразу рекомбинируют в молекулы Н 2 .

С физической точки зрения водород легче всех известных веществ - более чем в четырнадцать раз легче воздуха (вспомним улетающие воздушные шарики на праздниках - внутри у них как раз водород). Однако он умеет кипеть, сжижаться, плавиться, затвердевать, и только гелий кипит и плавится при более низких температурах. Сжижать его сложно, нужна температура ниже -240 градусов по Цельсию. Зато теплопроводность он имеет очень высокую. В воде почти не растворяется, зато прекрасно происходит взаимодействие с водородом металлов - он растворяется почти во всех, лучше всего в палладии (на один его объем водорода уходит восемьсот пятьдесят объемов). Жидкий водород лёгок и текуч, а когда растворяется в металлах, часто разрушает сплавы из-за взаимодействия с углеродом (сталь, например), происходит диффузия, декарбонизация.

Химические свойства

В соединениях по большей части водород показывает степень окисления (валентность) +1, как натрий и другие щелочные металлы. Его и рассматривают как их аналог, стоящий во главе первой группы системы Менделеева. Но ион водорода в гидридах металлов заряжен отрицательно, со степенью окисления -1. Также этот элемент близок к галогенам, которые даже способны замещать его в органических соединениях. Значит, водород можно отнести и к седьмой группе системы Менделеева. В обычных условиях молекулы водорода активностью не отличаются, соединяясь только с самыми активными неметаллами: хорошо с фтором, а если светло - с хлором. Но при нагревании водород становится другим - он со многими элементами вступает в реакцию. Атомарный водород по сравнению с молекулярным очень активен химически, так в связи с кислородом образуется вода, а попутно выделяется энергия и тепло. При комнатной температуре эта реакция очень медленная, зато при нагревании выше пятисот пятидесяти градусов получается взрыв.

Используется водород для восстановления металлов, потому что у их оксидов он отнимает кислород. Со фтором водород образует взрыв даже в темноте и при минус двухсот пятидесяти двух градусах по Цельсию. Хлор и бром возбуждают водород только при нагревании или освещении, а йод - только при нагревании. Водород с азотом образует аммиак (так производятся большинство удобрений). При нагревании он очень активно взаимодействует с серой, и получается сероводород. С теллуром и селеном вызвать реакцию водорода трудно, а с чистым углеродом реакция происходит при очень высоких температурах, и получается метан. С оксидом углерода водород образует разные органические соединения, здесь влияют давление, температура, катализаторы, и всё это имеет огромное практическое значение. И вообще, роль водорода, а также и его соединений исключительно велика, поскольку он даёт кислотные свойства протонным кислотам. Со многими элементами образуется водородная связь, влияющая на свойства и неорганических и органических соединений.

Получение и применение

Получают водород в промышленных масштабах из природных газов - горючих, коксового, газов переработки нефти. Также его можно получить методом электролиза там, где электроэнергия не слишком дорога. Однако важнейшим способом производства водорода является каталитическое взаимодействие углеводородов, по большей части метана, с водяным паром, когда получается конверсия. Также широко применяется и способ окисления углеводородов кислородом. Добыча водорода из природного газа является самым дешёвым способом. Другие два - использование коксового газа и газа нефтепереработки - водород выделяется, когда сжижаются остальные компоненты. Они более легко поддаются сжижению, а для водорода, как мы помним, нужно -252 градуса.

Очень популярна в использовании перекись водорода. Лечение этим раствором применяется очень часто. Молекулярную формулу Н 2 О 2 вряд ли назовут все те миллионы людей, которые хотят быть блондинками и осветляют себе волосы, а также и те, кто любит чистоту на кухне. Даже те, кто обрабатывает царапины, полученные от игры с котёнком, чаще всего не отдают себе отчёта, что применяют лечение водородом. Зато все знают историю: с 1852 года водород долгое время использовался в воздухоплавании. Дирижабль, изобретённый Генри Гиффардом, был создан на основе водорода. Их называли цеппелинами. Вытеснило цеппелины с небесных просторов стремительное развитие самолётостроения. В 1937 году произошла крупная авария, когда сгорел дирижабль "Гинденбург". После этого случая цеппелины более не использовались никогда. Зато в конце восемнадцатого века распространение воздушных шаров, наполненных водородом, было повсеместным. Помимо производства аммиака, сегодня водород необходим для изготовления метилового спирта и других спиртов, бензина, гидрогенизированного тяжёлого жидкого топлива и твёрдого топлива. Не обойтись без водорода при сварке, при резке металлов - она может быть кислородно-водородной и атомно-водородной. А тритий и дейтерий дают жизнь атомной энергетике. Это, как мы помним, изотопы водорода.

Неумывакин

Водород как химический элемент настолько хорош, что у него не могли не появиться собственные фанаты. Иван Павлович Неумывакин - доктор медицинских наук, профессор, лауреат Государственной премии и ещё много у него званий и наград, - в их числе. Будучи врачом традиционной медицины, он назван лучшим народным целителем России. Именно он разрабатывал многие методы и принципы оказания медицинской помощи космонавтам, находящимся в полёте. Именно он создал уникальный стационар - больницу на борту космического судна. В то же самое время был государственным координатором направления косметической медицины. Космос и косметика. Его увлечение водородом направлено не на то, чтобы сделать большие деньги, как это сейчас бытует в отечественной медицине, а напротив - научить народ вылечиваться от чего угодно буквально копеечным средством, без дополнительного посещения аптек.

Он пропагандирует лечение препаратом, который присутствует буквально в каждом доме. Это - перекись водорода. Неумывакина можно сколько угодно критиковать, он всё равно будет настаивать на своём: да, действительно, перекисью водорода можно вылечить буквально всё, потому что она насыщает внутренние клетки организма кислородом, разрушает токсины, нормализует кислотное и щелочное равновесие, а отсюда регенерируются ткани, омолаживается весь организм. Вылечившихся перекисью водорода пока ещё никто не видел и тем более не обследовал, однако Неумывакин утверждает, что, пользуясь этим средством, можно полностью избавиться от вирусных, бактериальных и грибковых заболеваний, предупредить развитие опухолей и атеросклероза, победить депрессию, омолодить организм и никогда не болеть ОРВИ и простудой.

Панацея

Иван Павлович уверен, что при грамотном использовании этого простейшего препарата и при соблюдении всех нехитрых инструкций можно победить очень многие болезни, среди которых и очень серьёзные. Список их огромен: от пародонтоза и ангины до инфарктов миокарда, инсультов и сахарного диабета. Такие пустяки, как гайморит или остеохондроз, улетают с первых сеансов лечения. Даже раковые опухоли пугаются и бегут от перекиси водорода, потому что стимулируется иммунитет, жизнь организма и его защита активизируются.

Лечить таким образом можно даже детей, разве что беременным женщинам лучше пока от употребления перекиси водорода воздержаться. Также не рекомендуется данный метод людям с пересаженными органами из-за возможной несовместимости тканей. Дозировка должна соблюдаться чётко: от одной капли до десяти, прибавляя по одной каждый день. Трижды в день (тридцать капель трёхпроцентного раствора перекиси водорода в сутки, ого!) за полчаса до еды. Можно вводить раствор внутривенно и под наблюдением врача. Иногда перекись водорода комбинируют для более действенного эффекта с другими препаратами. Внутрь раствор применяют только в разведённом виде - с чистой водой.

Наружно

Компрессы и полоскания ещё до создания профессором Неумывакиным его методики были весьма популярны. Все знают, что так же, как и спиртовые компрессы, в чистом виде перекись водорода применять нельзя, потому что получится ожог тканей, а вот бородавки или грибковые поражения смазывают локально и крепким раствором - до пятнадцати процентов.

При кожных высыпаниях, при головных болях тоже делают процедуры, в которых участвует перекись водорода. Компресс нужно делать с помощью хлопковой ткани, смоченной в растворе из двух чайных ложек трёхпроцентной перекиси водорода и пятидесяти миллиграммов чистой воды. Ткань накрыть плёнкой и укутать шерстью или полотенцем. Время действия компресса от четверти часа до полутора часов утром и вечером до выздоровления.

Мнение врачей

Мнения разделились, далеко не всех восхищают свойства перекиси водорода, более того, им не только не верят, над ними смеются. Находятся среди медиков и те, кто поддержал Неумывакина и даже подхватил развитие его теории, но их меньшинство. Большая часть врачей считает такого плана лечение не только неэффективным, но и часто губительным.

И правда, не существует пока официально ни единого доказанного случая, когда пациент вылечился бы перекисью водорода. Одновременно нет сведений и об ухудшении состояния здоровья в связи с применением этого метода. А вот время драгоценное теряется, и человек, получивший одно из серьёзных заболеваний и полностью положившийся на панацею Неумывакина, рискует опоздать к началу своего настоящего традиционного лечения.

Атом водорода имеет электронную формулу внешнего (и единственного) электронного уровня 1s 1 . С одной стороны, по наличию одного электрона на внешнем электронном уровне атом водорода похож на атомы щелочных металлов. Однако, ему, так же как и галогенам не хватает до заполнения внешнего электронного уровня всего одного электрона, поскольку на первом электронном уровне может располагаться не более 2-х электронов. Выходит, что водород можно поместить одновременно как в первую, так и в предпоследнюю (седьмую) группу таблицы Менделеева, что иногда и делается в различных вариантах периодической системы:

С точки зрения свойств водорода как простого вещества, он, все-таки, имеет больше общего с галогенами. Водород, также как и галогены, является неметаллом и образует аналогично им двухатомные молекулы (H 2).

В обычных условиях водород представляет собой газообразное, малоактивное вещество. Невысокая активность водорода объясняется высокой прочностью связи между атомами водорода в молекуле, для разрыва которой требуется либо сильное нагревание, либо применение катализаторов, либо и то и другое одновременно.

Взаимодействие водорода с простыми веществами

с металлами

Из металлов водород реагирует только с щелочными и щелочноземельными! К щелочным металлам относятся металлы главной подгруппы I-й группы (Li, Na, K, Rb, Cs, Fr), а к щелочно-земельным — металлы главной подгруппы II-й группы, кроме бериллия и магния (Ca, Sr, Ba, Ra)

При взаимодействии с активными металлами водород проявляет окислительные свойства, т.е. понижает свою степень окисления. При этом образуются гидриды щелочных и щелочноземельных металлов, которые имеют ионное строение. Реакция протекает при нагревании:

Следует отметить, что взаимодействие с активными металлами является единственным случаем, когда молекулярный водород Н 2 является окислителем.

с неметаллами

Из неметаллов водород реагирует только c углеродом, азотом, кислородом, серой, селеном и галогенами!

Под углеродом следует понимать графит или аморфный углерод, поскольку алмаз — крайне инертная аллотропная модификация углерода.

При взаимодействии с неметаллами водород может выполнять только функцию восстановителя, то есть только повышать свою степень окисления:




Взаимодействие водорода со сложными веществами

с оксидами металлов

Водород не реагирует с оксидами металлов, находящихся в ряду активности металлов до алюминия (включительно), однако, способен восстанавливать многие оксиды металлов правее алюминия при нагревании:

c оксидами неметаллов

Из оксидов неметаллов водород реагирует при нагревании с оксидами азота, галогенов и углерода. Из всех взаимодействий водорода с оксидами неметаллов особенно следует отметить его реакцию с угарным газом CO.

Смесь CO и H 2 даже имеет свое собственное название – «синтез-газ», поскольку из нее в зависимости от условий могут быть получены такие востребованные продукты промышленности как метанол, формальдегид и даже синтетические углеводороды:

c кислотами

С неорганическими кислотами водород не реагирует!

Из органических кислот водород реагирует только с непредельными, а также с кислотами, содержащими функциональные группы способные к восстановлению водородом, в частности альдегидные, кето- или нитрогруппы.

c солями

В случае водных растворов солей их взаимодействие с водородом не протекает. Однако при пропускании водорода над твердыми солями некоторых металлов средней и низкой активности возможно их частичное или полное восстановление, например:

Химические свойства галогенов

Галогенами называют химические элементы VIIA группы (F, Cl, Br, I, At), а также образуемые ими простые вещества. Здесь и далее по тексту, если не сказано иное, под галогенами будут пониматься именно простые вещества.

Все галогены имеют молекулярное строение, что обусловливает низкие температуры плавления и кипения данных веществ. Молекулы галогенов двухатомны, т.е. их формулу можно записать в общем виде как Hal 2 .

Следует отметить такое специфическое физическое свойство йода, как его способность к сублимации или, иначе говоря, возгонке . Возгонкой , называют явление, при котором вещество, находящееся в твердом состоянии, при нагревании не плавится, а, минуя жидкую фазу, сразу же переходит в газообразное состояние.

Электронное строение внешнего энергетического уровня атома любого галогена имеет вид ns 2 np 5 , где n – номер периода таблицы Менделеева, в котором расположен галоген. Как можно заметить, до восьмиэлектронной внешней оболочки атомам галогенов не хватает всего одного электрона. Из этого логично предположить преимущественно окисляющие свойства свободных галогенов, что подтверждается и на практике. Как известно, электроотрицательность неметаллов при движении вниз по подгруппе снижается, в связи с чем активность галогенов уменьшается в ряду:

F 2 > Cl 2 > Br 2 > I 2

Взаимодействие галогенов с простыми веществами

Все галогены являются высокоактивными веществами и реагируют с большинством простых веществ. Однако, следует отметить, что фтор из-за своей чрезвычайно высокой реакционной способности может реагировать даже с теми простыми веществами, с которыми не могут реагировать остальные галогены. К таким простым веществам относятся кислород, углерод (алмаз), азот, платина, золото и некоторые благородные газы (ксенон и криптон). Т.е. фактически, фтор не реагирует лишь с некоторыми благородными газами.

Остальные галогены, т.е. хлор, бром и йод, также являются активными веществами, однако менее активными, чем фтор. Они реагируют практически со всеми простыми веществами, кроме кислорода, азота, углерода в виде алмаза, платины, золота и благородных газов.

Взаимодействие галогенов с неметаллами

водородом

При взаимодействии всех галогенов с водородом образуются галогеноводороды с общей формулой HHal. При этом, реакция фтора с водородом начинается самопроизвольно даже в темноте и протекает со взрывом в соответствии с уравнением:

Реакция хлора с водородом может быть инициирована интенсивным ультрафиолетовым облучением или нагреванием. Также протекает со взрывом:

Бром и йод реагируют с водородом только при нагревании и при этом, реакция с йодом является обратимой:

фосфором

Взаимодействие фтора с фосфором приводит к окислению фосфора до высшей степени окисления (+5). При этом происходит образование пентафторида фосфора:

При взаимодействии хлора и брома с фосфором возможно получение галогенидов фосфора как в степени окисления + 3, так и в степени окисления +5, что зависит от пропорций реагирующих веществ:

При этом в случае белого фосфора в атмосфере фтора, хлора или жидком броме реакция начинается самопроизвольно.

Взаимодействие же фосфора с йодом может привести к образованию только триодида фосфора из-за существенно меньшей, чем у остальных галогенов окисляющей способности:

серой

Фтор окисляет серу до высшей степени окисления +6, образуя гексафторид серы:

Хлор и бром реагируют с серой, образуя соединения, содержащие серу в крайне не свойственных ей степенях окисления +1 и +2. Данные взаимодействия являются весьма специфичными, и для сдачи ЕГЭ по химии умение записывать уравнения этих взаимодействий не обязательно. Поэтому три нижеследующих уравнения даны скорее для ознакомления:

Взаимодействие галогенов с металлами

Как уже было сказано выше, фтор способен реагировать со всеми металлами, даже такими малоактивными как платина и золото:

Остальные галогены реагируют со всеми металлами кроме платины и золота:




Реакции галогенов со сложными веществами

Реакции замещения с галогенами

Более активные галогены, т.е. химические элементы которых расположены выше в таблице Менделеева, способны вытеснять менее активные галогены из образуемых ими галогеноводородных кислот и галогенидов металлов:

Аналогичным образом, бром и йод вытесняют серу из растворов сульфидов и или сероводорода:

Хлор является более сильным окислителем и окисляет сероводород в его водном растворе не до серы, а до серной кислоты:

Взаимодействие галогенов с водой

Вода горит во фторе синим пламенем в соответствии с уравнением реакции:

Бром и хлор реагируют с водой иначе, чем фтор. Если фтор выступал в роли окислителя, то хлор и бром диспропорционируют в воде, образуя смесь кислот. При этом реакции обратимы:

Взаимодействие йода с водой протекает в настолько ничтожно малой степени, что им можно пренебречь и считать, что реакция не протекает вовсе.

Взаимодействие галогенов с растворами щелочей

Фтор при взаимодействии с водным раствором щелочи опять же выступает в роли окислителя:

Умение записывать данное уравнение не требуется для сдачи ЕГЭ. Достаточно знать факт о возможности такого взаимодействия и окислительной роли фтора в этой реакции.

В отличие от фтора, остальные галогены в растворах щелочей диспропорционируют, то есть одновременно и повышают и понижают свою степень окисления. При этом, в случае хлора и брома в зависимости от температуры возможно протекание по двум разным направлениям. В частности, на холоду реакции протекают следующим образом:

а при нагревании:

Йод реагирует с щелочами исключительно по второму варианту, т.е. с образованием йодата, т.к. гипоиодит не устойчив не только при нагревании, но также при обычной температуре и даже на холоду.

Распространённость в природе. В. широко распространён в природе, его содержание в земной коре (литосфера и гидросфера) составляет по массе 1%, а по числу атомов 16%. В. входит в состав самого распространённого вещества на Земле - воды (11,19% В. по массе), в состав соединений, слагающих угли, нефть, природные газы, глины, а также организмы животных и растений (т. е. в состав белков, нуклеиновых кислот, жиров, углеводов и др.). В свободном состоянии В. встречается крайне редко, в небольших количествах он содержится в вулканических и других природных газах. Ничтожные количества свободного В. (0,0001% по числу атомов) присутствуют в атмосфере. В околоземном пространстве В. в виде потока протонов образует внутренний ("протонный") радиационный пояс Земли. В космосе В. является самым распространённым элементом. В виде плазмы он составляет около половины массы Солнца и большинства звёзд, основную часть газов межзвёздной среды и газовых туманностей. В. присутствует в атмосфере ряда планет и в кометах в виде свободного H2, метана CH4, аммиака NH3, воды H2O, радикалов типа CH, NH, OH, SiH, PH и т.д. В виде потока протонов В. входит в состав корпускулярного излучения Солнца и космических лучей.

Изотопы, атом и молекула. Обыкновенный В. состоит из смеси 2 устойчивых изотопов: лёгкого В., или протия (1H), и тяжёлого В., или дейтерия (2H, или D). В природных соединениях В. на 1 атом 2H приходится в среднем 6800 атомов 1H. Искусственно получен радиоактивный изотоп - сверхтяжёлый В., или тритий (3H, или Т), с мягким β-излучением и периодом полураспада T1/2 = 12,262 года. В природе тритий образуется, например, из атмосферного азота под действием нейтронов космических лучей; в атмосфере его ничтожно мало (4-10-15% от общего числа атомов В.). Получен крайне неустойчивый изотоп 4H. Массовые числа изотопов 1H, 2H, 3H и 4H, соответственно 1,2, 3 и 4, указывают на то, что ядро атома протия содержит только 1 протон, дейтерия - 1 протон и 1 нейтрон, трития - 1 протон и 2 нейтрона, 4H - 1 протон и 3 нейтрона. Большое различие масс изотопов В. обусловливает более заметное различие их физических и химических свойств, чем в случае изотопов других элементов.

Атом В. имеет наиболее простое строение среди атомов всех других элементов: он состоит из ядра и одного электрона. Энергия связи электрона с ядром (потенциал ионизации) составляет 13,595 эв. Нейтральный атом В. может присоединять и второй электрон, образуя отрицательный ион Н-; при этом энергия связи второго электрона с нейтральным атомом (сродство к электрону) составляет 0,78 эв. Квантовая механика позволяет рассчитать все возможные энергетические уровни атома В., а следовательно, дать полную интерпретацию его атомного спектра. Атом В. используется как модельный в квантовомеханических расчётах энергетических уровней других, более сложных атомов. Молекула В. H2 состоит из двух атомов, соединённых ковалентной химической связью. Энергия диссоциации (т. е. распада на атомы) составляет 4,776 эв (1 эв = 1,60210-10-19 дж). Межатомное расстояние при равновесном положении ядер равно 0,7414-Å. При высоких температурах молекулярный В. диссоциирует на атомы (степень диссоциации при 2000°C 0,0013, при 5000°C 0,95). Атомарный В. образуется также в различных химических реакциях (например, действием Zn на соляную кислоту). Однако существование В. в атомарном состоянии длится лишь короткое время, атомы рекомбинируют в молекулы H2.

Физические и химические свойства. В. - легчайшее из всех известных веществ (в 14,4 раза легче воздуха), плотность 0,0899 г/л при 0°C и 1 атм. В. кипит (сжижается) и плавится (затвердевает) соответственно при -252,6°C и -259,1°C (только гелий имеет более низкие температуры плавления и кипения). Критическая температура В. очень низка (-240°C), поэтому его сжижение сопряжено с большими трудностями; критическое давление 12,8 кгс/см2 (12,8 атм), критическая плотность 0,0312 г/см3. Из всех газов В. обладает наибольшей теплопроводностью, равной при 0°C и 1 атм 0,174 вт/(м-К), т. е. 4,16-0-4 кал/(с-см-°C). Удельная теплоёмкость В. при 0°C и 1 атм Ср 14,208-103 дж/(кг-К), т. е. 3,394 кал/(г-°C). В. мало растворим в воде (0,0182 мл/г при 20°C и 1 атм), но хорошо - во многих металлах (Ni, Pt, Pd и др.), особенно в палладии (850 объёмов на 1 объём Pd). С растворимостью В. в металлах связана его способность диффундировать через них; диффузия через углеродистый сплав (например, сталь) иногда сопровождается разрушением сплава вследствие взаимодействия В. с углеродом (так называемая декарбонизация). Жидкий В. очень лёгок (плотность при -253°C 0,0708 г/см3) и текуч (вязкость при - 253°C 13,8 спуаз).

В большинстве соединений В. проявляет валентность (точнее, степень окисления) +1, подобно натрию и другим щелочным металлам; обычно он и рассматривается как аналог этих металлов, возглавляющий 1 гр. системы Менделеева. Однако в гидридах металлов ион В. заряжен отрицательно (степень окисления -1), т. е. гидрид Na+H- построен подобно хлориду Na+Cl-. Этот и некоторые другие факты (близость физических свойств В. и галогенов, способность галогенов замещать В. в органических соединениях) дают основание относить В. также и к VII группе периодической системы (подробнее см. Периодическая система элементов). При обычных условиях молекулярный В. сравнительно мало активен, непосредственно соединяясь лишь с наиболее активными из неметаллов (с фтором, а на свету и с хлором). Однако при нагревании он вступает в реакции со многими элементами. Атомарный В. обладает повышенной химической активностью по сравнению с молекулярным. С кислородом В. образует воду: H2 + 1/2O2 = H2O с выделением 285,937-103 дж/моль, т. е. 68,3174 ккал/моль тепла (при 25°C и 1 атм). При обычных температурах реакция протекает крайне медленно, выше 550°C - со взрывом. Пределы взрывоопасности водородо-кислородной смеси составляют (по объёму) от 4 до 94% H2, а водородо-воздушной смеси - от 4 до 74% H2 (смесь 2 объёмов H2 и 1 объёма О2 называется гремучим газом). В. используется для восстановления многих металлов, так как отнимает кислород у их окислов:

CuO +Н2 = Cu + H2O,
Fe3O4 + 4H2 = 3Fe + 4H2O, и т.д.
С галогенами В. образует галогеноводороды, например:
H2 + Cl2 = 2HCl.

При этом с фтором В. взрывается (даже в темноте и при -252°C), с хлором и бромом реагирует лишь при освещении или нагревании, а с иодом только при нагревании. С азотом В. взаимодействует с образованием аммиака: 3H2 + N2 = 2NH3 лишь на катализаторе и при повышенных температурах и давлениях. При нагревании В. энергично реагирует с серой: H2 + S = H2S (сероводород), значительно труднее с селеном и теллуром. С чистым углеродом В. может реагировать без катализатора только при высоких температурах: 2H2 + С (аморфный) = CH4 (метан). В. непосредственно реагирует с некоторыми металлами (щелочными, щёлочноземельными и др.), образуя гидриды: H2 + 2Li = 2LiH. Важное практическое значение имеют реакции В. с окисью углерода, при которых образуются в зависимости от температуры, давления и катализатора различные органические соединения, например HCHO, CH3OH и др. (см. Углерода окись). Ненасыщенные углеводороды реагируют с В., переходя в насыщенные, например: CnH2n + H2 = CnH2n+2 (см. Гидрогенизация).