Радиоактивные изотопы, образующиеся при делении(Дайджест). Как проходит лечение радиоактивным йодом? Применение в медицинской практике

Здоровье

Обеспокоенность воздействием радиоактивных веществ нарастает. Страны по всему миру либо запрещают, либо активизируют проверку импортных продуктов из пострадавшей от землетрясения Японии после того, как радиоактивные вещества были найдены в продуктах питания и воде после взрывов на АЭС.

Три основных радиоактивных вещества, которые вызывают тревогу у специалистов и которые были обнаружены в Японии - это радиоактивный йод-131, радиоактивный цезий-134 и радиоактивный цезий-137 .

Радиоактивный йод-131

На прошлой неделе в зеленых листовых овощах в Японии были обнаружены 22,000 Бк (беккерелей) радиоактивного йода-131 на каждый килограмм. Это уровень превышает предельно допустимый уровень в 11 раз.

Съев килограмм таких овощей, вы получаете половину количества радиации, которую средний человек получает из естественной среды за год.

Съедая такое количество овощей ежедневно в течение 45 дней, приведет к накоплению 50 миллизиверт, годовой радиационный предел, который установлен для работника ядерной станции. Миллизиверты выражают количество радиации поглощаемой тканями человека.

Воздействие 100 миллизиверт в год повышает риск возникновения рака . Это является эквивалентом сканирования всего тела тремя КТ (компьютерными томографами).

При вдыхании или проглатывании, йод-131 скапливается в щитовидной железе и повышает риск возникновения рака щитовидной железы . Особенно подвержены этому воздействию дети, плоды находящиеся в утробе матери и молодые люди.

Риск возникновения рака щитовидной железы можно снизить принимая йодид калия , который предотвращает накопление радиоактивного йода.

Однако, йод-131 распадается относительно быстро и его радиоактивность уменьшается вдвое каждые 8 дней. Это означает, что он теряет свое воздействие за 80 дней.

Радиоактивный цезий-134 и радиоактивный цезий-137

Овощи в Японии также были заражены 14,000 Бк цезия на каждый килограмм. Это превышает допустимый предел больше, чем в 11 раз.

Если съедать килограмм таких зараженных овощей каждый день в течение месяца, то это приведет к накоплению радиации 20-ти миллизиверт.

Внешнее воздействие большого количества радиоактивного цезия может вызвать ожоги, острую лучевую болезнь и смерть . Он также может увеличить риск возникновения рака. Вдыхание и поглощение цезия позволяет ему распределиться в мягких тканях, особенно тканях мышц, повышая риск рака. Он также может вызывать спазмы, непроизвольные мышечные сокращения и бесплодие .

В отличие от йода, поглощение радиоактивного цезия невозможно предотвратить, как только человек подвергся его воздействию.

Это вещество вызывает больше беспокойства, чем йод-131, так как оно более стойкое и требуется гораздо больше времени для того, чтобы оно распалось.

Период полураспада Цезия-137 составляет 30 лет, что означает, что столько времени требуется для того, чтобы снизить его радиоактивность в два раза. Потребуется, по крайней мере, 240 лет, чтобы его радиоактивность исчерпалась .

Период полураспада Цезия-134 составляет 2 года, что означает, что потребуется около 20 лет, чтобы он стал безвредным .

Эффект краткосрочного и высокого уровня облучения, опубликованного Американским агентством по охране окружающей среды.

В отличие от рака, эти последствия от острого облучения, как правило, появляются сразу, вызывая так называемую лучевую болезнь , включая такие симптомы как тошнота, выпадение волос и кожные ожоги. Если человек получает смертельную дозу, то смерть наступает в течение 2-х месяцев.

Воздействие 50-100 миллизиверт: изменения в химическом составе крови

Воздействие 500 миллизиверт: тошнота, в течение нескольких часов

Воздействие 700 миллизиверт: рвота

Воздействие 750 миллизиверт: потеря волос, в течение 2-3 недель

Воздействие 900 миллизиверт: диарея

Воздействие 1,000 миллизиверт: кровотечение

Воздействие 4,000 миллизиверт: возможная смерть в течение 2 месяцев, если оставить без лечения

Воздействие 10,000 миллизиверт: разрушение слизистой оболочки кишечника, внутреннее кровотечение и смерть в течение 1-2 недель

Воздействие 20,000 миллизиверт: повреждения центральной нервной системы и потеря сознания в течение нескольких минут, и смерть в течение нескольких часов или дней

Иод-131 (йод-131, 131 I) - искусственный радиоактивный изотоп иода . Период полураспада около 8 суток, механизм распада - бета-распад . Впервые получен в 1938 году в Беркли .

Является одним из значимых продуктов деления ядер урана , плутония и тория , составляя до 3 % продуктов деления ядер. При ядерных испытаниях и авариях ядерных реакторов является одним из основных короткоживущих радиоактивных загрязнителей природной среды. Представляет большую радиационную опасность для человека и животных в связи со способностью накапливаться в организме, замещая природный иод.

52 131 T e → 53 131 I + e − + ν ¯ e . {\displaystyle \mathrm {{}_{52}^{131}Te} \rightarrow \mathrm {{}_{53}^{131}I} +e^{-}+{\bar {\nu }}_{e}.}

В свою очередь теллур-131 образуется в природном теллуре при поглощении им нейтронов стабильным природным изотопом теллур-130, концентрация которого в природном теллуре составляет 34 % ат.:

52 130 T e + n → 52 131 T e . {\displaystyle \mathrm {{}_{52}^{130}Te} +n\rightarrow \mathrm {{}_{52}^{131}Te} .} 53 131 I → 54 131 X e + e − + ν ¯ e . {\displaystyle \mathrm {^{131}_{53}I} \rightarrow \mathrm {^{131}_{54}Xe} +e^{-}+{\bar {\nu }}_{e}.}

Получение

Основные количества 131 I получают в ядерных реакторах путём облучения теллуровых мишеней тепловыми нейтронами . Облучение природного теллура позволяет получить почти чистый иод-131 как единственный конечный изотоп с периодом полураспада более нескольких часов.

В России 131 I получают облучением на Ленинградской АЭС в реакторах РБМК . Химическое выделение 131 I из облученного теллура осуществляется в . Объем производства позволяет получить изотоп в количестве, достаточным для выполнения 2…3 тысяч медицинских процедур в неделю.

Иод-131 в окружающей среде

Выброс иода-131 в окружающую среду происходит в основном в результате ядерных испытаний и аварий на предприятиях атомной энергетики . В связи с коротким периодом полураспада, через несколько месяцев после такого выброса содержание иода-131 опускается ниже порога чувствительности детекторов.

Иод-131 считается наиболее опасным для здоровья людей нуклидом, образующимся при делении ядер. Это объясняется следующим:

  1. Относительно высоким содержанием иода-131 среди осколков деления (около 3 %).
  2. Период полураспада (8 суток), с одной стороны, достаточно велик, чтобы нуклид распространился по большим площадям, а с другой стороны, достаточно мал, чтобы обеспечить очень высокую удельную активность изотопа - примерно 4,5 ПБк /г .
  3. Высокая летучесть. При любых авариях ядерных реакторов в первую очередь в атмосферу улетучиваются инертные радиоактивные газы, затем - иод. Например, при аварии на ЧАЭС из реактора было выброшено 100 % инертных газов, 20 % иода, 10-13 % цезия и всего 2-3 % остальных элементов [ ] .
  4. Иод очень подвижен в природной среде и практически не образует нерастворимых соединений.
  5. Иод является жизненно важным микроэлементом , и, в то же время, - элементом, концентрация которого в пище и воде невелика. Поэтому все живые организмы выработали в процессе эволюции способность накапливать иод в своем теле.
  6. У человека бо́льшая часть иода в организме концентрируется в щитовидной железе, но имеющей небольшую массу по сравнению со массой тела (12-25 г). Поэтому даже относительно небольшое количество радиоактивного йода, поступившего в организм, приводит к высокому локальному облучению щитовидной железы.

Основным источником загрязнения атмосферы радиоактивным иодом являются атомные электростанции и фармакологическое производство .

Радиационные аварии

Оценка по радиологическому эквиваленту активности иода-131 принята для определения уровня ядерных событий по шкале INES .

Санитарные нормативы по содержанию иода-131

Профилактика

В случае попадания йода-131 в организм возможно вовлечение его в процесс обмена веществ. При этом йод задержится в организме на длительное время, увеличивая продолжительность облучения. У человека наибольшее накопление йода наблюдается в щитовидной железе. Чтобы минимизировать накопление радиоактивного йода в организме при радиоактивном загрязнении окружающей среды принимают препараты, насыщающие обмен веществ обычным стабильным йодом. Например, препарат йодида калия . При приеме калия йодида одновременно с поступлением радиоактивного йода защитный эффект составляет около 97 %; при приеме за 12 и 24 ч до контакта с радиоактивным загрязнением - 90 % и 70 % соответственно, при приеме через 1 и 3 ч после контакта - 85 % и 50 %, более чем через 6 ч - эффект незначительный. [ ]

Применение в медицине

Иод-131, как и некоторые другие радиоактивные изотопы иода ( 125 I , 132 I) применяются в медицине для диагностики и лечения некоторых заболеваний щитовидной железы :

Изотоп применяется для диагностики распространения и лучевой терапии нейробластомы , которая также способна накапливать некоторые препараты иода.

В России фармпрепараты на основе 131 I производит .

См. также

Примечания

  1. Audi G. , Wapstra A. H. , Thibault C. The AME2003 atomic mass evaluation (II). Tables, graphs, and references (англ.) // Nuclear Physics A . - 2003. - Vol. 729 . - P. 337-676 . -

Радиойод, а точнее один из радиоактивных (бета- и гамма-излучение) изотопов йода с массовым числом 131 с периодом полураспада в 8,02 суток. Йод-131 известен в первую очередь как продукт деления (до 3%) ядер урана и плутония, выделявшийся при авариях на атомных электростанциях .

Получение радиойода. Откуда он появляется

В природе изотоп йод-131 не возникает. Его появления связано лишь с работой фармакологических производств, а также атомных реакторов. Выделяется он и при проведении ядерных испытаний или радиоактивных катастроф. Так повысила содержание изотопа йода в морской и водопроводной воде в Японии, а также в продуктах питания. Использование специальных фильтров помогло в снижении распространения изотопов, а также в предотвращении возможных провокаций на объектах разрушенной атомной электростанции. Подобные фильтры в России производятся в компании «НТЦ Фарадей» .

Облучение в ядерном реакторе теплуровых мишеней тепловыми нейтронами позволяет получить йод-131 с высокой степенью содержания.

Характеристики йода-131. Вред

Период полураспада радиойода в 8,02 суток с одной стороны не делает йод-131 высокоактивным, а с другой позволяет ему распространиться на большие площади. Этому также способствует высокая летучесть изотопа. Так – около 20% йода-131 были выброшены из реактора. Для сравнения цезия-137 – около 10%, стронция-90 – 2%.

Йод-131 почти не образует нерастворимых соединений, что также помогает распространению.

Йод сам по себе дефицитный элемент и организмы людей и животных научились его концентрировать в теле, это же касается и радиойода, что не идет на пользу здоровью.

Если говорить о вреде йода-131 для человека, то речь идет в первую очередь о щитовидной железе. Щитовидка не отличает обычный йод от радиойода. А при ее массе в 12-25 грамм даже небольшая доза радиоактивного йода приводит к облучению органа.

Йод-131 вызывает мутации и гибель клеток, при активности в 4,6·10 15 Бк/грамм.

Йод-131. Польза. Применение. Лечение

В медицине применяются изотопы йод-131, а также йод-125 и йод-132 для диагностики и даже лечения проблем со щитовидной железой, в частности болезни Грейвса.

При распаде йода-131 появляется бета-частица с высокой скоростью полета. Она способна проникать в биологические ткани на расстояние до 2 мм, что вызывает гибель клеток. В случае гибели зараженных клеток это вызывает лечебных эффект.

Также йод-131 применяется как индикатор обменных процессов в организме человека.

Выброс радиоактивного йода 131 в Европе

21 февраля 2017 года в сводках новостей появилась информация о том, что европейские станции в более чем десятке стран от Норвегии до Испании на протяжении нескольких недель замечали превышение норм по содержанию йода-131 в атмосфере. Были высказаны предположения об источниках изотопа – выброс на

Лидия Люшукова

I-131 – это радиоактивный йод, правильнее сказать – изотоп йода, синтезированный искусственно. Период полураспада его 8 часов, в это время образуются излучения 2 типов – бета и гамма-излучения. Вещество абсолютно бесцветно и безвкусно, не обладает ароматом.

Когда вещество приносит пользу здоровью?

В медицине он применяется для лечения следующих болезней:

  • гипертиреоза – болезни, вызванной увеличенной активностью работы щитовидной железы, при которой в ней образуются небольшие узловые доброкачественные образования;
  • тиреотоксикоза – осложнение гипертиреоза;
  • диффузного токсического зоба;
  • рака щитовидной железы – во время него в теле железы появляются злокачественные опухоли, и присоединяется воспалительный процесс.

Изотоп проникает в активные клетки щитовидной железы, разрушая их – воздействию подвергаются здоровые и больные клетки. На окружающие ткани йод не действует.

В это время функция органа угнетается.

Вводят в организм изотоп заключенным в капсулу – или в виде жидкости – все зависит от состояния железы, разовое необходимо лечение или курсом.

Плюсы и минусы лечения радиоактивным йодом щитовидной железы

Лечение с помощью изотопа считается более безопасным, чем хирургическое вмешательство:

  1. Больного не нужно вводить в наркоз;
  2. Отсутствует реабилитационный период;
  3. На теле не появляются эстетические дефекты – шрамы и рубцы; особенно ценно, что не уродуется шея – для женщин ее внешний вид имеет огромное значение.

Доза йода чаще всего вводится в организм однократно, и если и вызывает неприятный симптом – зуд в горле и отек, то его легко купировать лекарственными средствами местного действия.

Полученное излучение не распространяется на организм больного – оно вбирается единственным органом, который и подвергается воздействию.

Количество радиоактивного йода зависит от заболевания.

При раке щитовидной железы повторная операция несет угрозу жизни больного, и лечение радиоактивным йодом является наилучшим способом, чтобы купировать рецидив.

Минусы и противопоказания

Минусами методики являются некоторые последствия лечения:


  • Противопоказаниями к лечению являются состояния беременности и лактации;
  • Накопление изотопа происходит не только в тканях самой железы – что естественно, но и в яичниках, поэтому нужно в течение 6 месяцев после терапевтического воздействия тщательно предохраняться. Кроме того, может нарушиться функция выработки гормонов, которые необходимы для правильного формирования плода, поэтому врачи предупреждают, что лучше отложить планы по рождению детей на 1,5-2 года;
  • Одним из главных недостатков лечения является поглощение изотопа молочными железами, придатками у женщин и простатой у мужчин. Пусть в малых дозах, но в этих органах йод накапливается;
  • Одним из последствий лечения рака щитовидной железы и гипертиреоза радиоактивным йодом является гипотиреоз – это заболевание, вызванное искусственным путем, поддается лечению намного сложнее, чем если бы являлось следствием нарушения работы щитовидной железы. В этом случае может потребоваться постоянная гормональная терапия;
  • Последствиями от лечения радиоактивным йодом может быть изменение функции слюнных и слезных желез – изотоп I-131 вызывает их сужение;
  • Осложнения могут коснуться и органов зрения – есть риск развития эндокринной офтальмопатии;
  • Может увеличиваться вес, появляться беспричинная усталость и мышечные боли – фибромиалгия;
  • Обостряются хронические заболевания: пиелонефрит, цистит, гастрит, может возникнуть рвота и изменение вкусовых ощущений. Эти последствия имеют кратковременный характер, болезни быстро купируются обычными способами.

Противники метода лечения щитовидной железы йодом во многом преувеличивают негативные последствия этого метода.

Если возникнет осложнение – гипотиреоз, то гормональные препараты придется принимать всю жизнь. При невылеченном гипертиреозе приходится точно так же всю жизнь принимать препараты противоположного действия, и при этом опасаться, что узлы в щитовидной железе станут злокачественными.

Увеличивается вес – если вести активный образ жизни и рационально питаться, то вес намного не увеличится, зато качество жизни возрастет и сама жизнь будет более продолжительной.

Усталость, быстрая утомляемость – эти симптомы присущи всем эндокринным нарушениям, и нельзя их связывать напрямую с использованием радиоактивного йода.

После применения изотопа увеличивается риск заболеть раком тонкого кишечника и щитовидной железы.

К сожалению, от рецидива заболевания никто не застрахован, да и возможность возникновения онкологического процесса в отдельных органах – если уже в организме были атипичные клетки – высокая и без применения радиоактивного йода.

Разрушенную радиацией щитовидную железу не восстановить.

После оперативного вмешательства удаленная ткань тоже не вырастает.

Нужно отметить еще одну особенность лечения, которая считается негативным фактором – в течение 3 дней после приема радиоактивного йода больные должны находиться в изоляции. Они представляют опасность для окружающих, выделяя бета и гамма-излучения.

Одежду и вещи, которые находились в палате и на больном, необходимо в дальнейшем будет промыть проточной водой или уничтожить.

Подготовка к процедуре

Готовиться к приему радиоактивного йода следует заранее – уже за 10-14 дней до лечения.


Начинать следует с изменения питания. Из рациона удаляются продукты с повышенным содержанием йода – клетки должны испытывать йодный голод. Но совсем от соли отказываться не стоит – достаточно снизить ее количество до 8 г в сутки.

Если щитовидная железа отсутствует – ее удалили, и в настоящее время заболевание рецидивировало, то накопление йода берут на себя легкие и лимфатические узлы – именно на их чувствительности будет проведен тест – как усваивается изотоп организмом.

Требуется отказаться от всех используемых медикаментов, включая гормональные средства – это необходимо сделать не позже чем за 4 дня до начала лечения.

При делении образуются разнообразные изотопы, можно сказать, половина таблицы Менделеева. Вероятность образования изотопов разная. Какие-то изотопы образуются с большей вероятностью, какие-то с гораздо меньшей (см. рисунок). Практически все они радиоактивные. Однако у большинства из них периоды полураспада очень маленькие (минуты или еще меньше) и они быстро распадаются в стабильные изотопы. Однако, среди них есть изотопы, которые с одной стороны охотно образуются при делении, а с другой имеют периоды полураспада дни и даже годы. Именно они представляют для нас основную опасность. Активность, т.е. количество распадов в единицу времени и соответственно количество "радиоактивных частиц", альфа и/или бета и/или гамма, обратно пропорциональна периоду полураспада. Таким образом, если есть одинаковое количество изотопов, активность изотопа с меньшим периодом полураспада будет выше, чем с большим. Но активность изотопа с меньшим периодом полураспада будет спадать быстрее, чем с большим. Йод-131 образуется при делении с приблизительно такой же "охотой" как и цезий-137. Но у йода-131 период полураспада "всего" 8 суток, а у цезия-137 около 30 лет. В процессе деления урана, по началу количество продуктов его деления, и йода и цезия растет, но вскоре для йода наступает равновесие – сколько его образуется, столько и распадается. С цезием-137, из-за его относительно большого периода полураспада, до этого равновесия далеко. Теперь, если произошел выброс продуктов распада во внешнюю среду, в начальные моменты из этих двух изотопов наибольшую опасность представляет йод-131. Во-первых, из-за особенностей деления его образуется много (см. рис.), во-вторых из-за относительно малого периода полураспада его активность высока. Со временем (через 40 дней) его активность упадет в 32 раза, и скоро практически его видно не будет. А вот цезий-137 поначалу может быть "светить" не так сильно, зато его активность будет спадать гораздо медленнее.
Ниже рассказано о самых "популярных" изотопах, которые представляют опасность при авариях на АЭС.

Радиоактивный йод

Среди 20 радиоизотопов йода, образующихся в реакциях деления урана и плутония, особое место занимают 131-135 I (T 1/2 = 8.04 сут.; 2.3 ч.; 20.8 ч.; 52.6 мин.; 6.61 ч.), характеризующиеся большим выходом в реакциях деления, высокой миграционной способностью и биологической доступностью.

В обычном режиме эксплуатации АЭС выбросы радионуклидов, в том числе радиоизотопов йода, невелики. В аварийных условиях, как свидетельствуют крупные аварии, радиоактивный йод, как источник внешнего и внутреннего облучения, был основным поражающим фактором в начальный период аварии.


Упрощенная схема распада йода-131. При распаде йода-131 образуются электроны с энергиями до 606 кэВ и гамма-кванты, в основном с энергиями 634 и 364 кэВ.

Основным источником поступления радиойода населению в зонах радионуклидного загрязнения были местные продукты питания растительного и животного происхождения. Человеку радиойод может поступать по цепочкам:

  • растения → человек,
  • растения → животные → человек,
  • вода → гидробионты → человек.

Молоко, свежие молочные продукты и листовые овощи, имеющие поверхностное загрязнение, обычно являются основным источником поступления радиойода населению. Усвоение нуклида растениями из почвы, учитывая малые сроки его жизни, не имеет практического значения.

У коз и овец содержание радиойода в молоке в несколько раз больше, чем у коров. В мясе животных накапливаются сотые доли поступившего радиойода. В значительных количествах радиойод накапливается в яйцах птиц. Коэффициенты накопления (превышение над содержанием в воде) 131 I в морских рыбах, водорослях, моллюсках достигает соответственно 10, 200-500, 10-70.

Практический интерес представляют изотопы 131-135 I . Их токсичность невелика по сравнению с другими радиоизотопами, особенно альфа-излучающими. Острые радиационные поражения тяжелой, средней и легкой степени у взрослого человека можно ожидать при пероральном поступлении 131 I в количестве 55, 18 и 5 МБк/кг массы тела. Токсичность радионуклида при ингаляционном поступлении примерно в два раза выше, что связано с большей площадью контактного бета-облучения.

В патологический процесс вовлекаются все органы и системы, особенно тяжелые повреждения в щитовидной железе, где формируются наиболее высокие дозы. Дозы облучения щитовидной железы у детей вследствие малой ее массы при поступлении одинаковых количеств радиойода значительно больше, чем у взрослых (масса железы у детей в зависимости от возраста равна 1:5-7 г., у взрослых – 20 г.).

Радиоактивный йод про радиоактивный йод содержатся гораздо подробные сведения, которые, в частности, могут быть полезны медицинским работникам.

Радиоактивный цезий

Радиоактивный цезий является одним из основных дозообразующих радионуклидов продуктов деления урана и плутония. Нуклид характеризуется высокой миграционной способностью во внешней среде, включаяпищевые цепочки. Основным источником поступления радиоцезия человеку являются продукты питания животного и растительного происхождения. Радиоактивный цезий, поступающий животным с загрязненным кормом, в основном накапливается в мышечной ткани (до 80 %) и в скелете (10 %).

После распада радиоактивных изотопов йода основным источником внешнего и внутреннего облучения является радиоактивный цезий.

У коз и овец содержание радиоактивного цезия в молоке в несколько раз больше, чем у коров. В значительных количествах он накапливается в яйцах птиц. Коэффициенты накопления (превышение над содержанием в воде) 137 Cs в мышцах рыб достигает 1000 и более, у моллюсков – 100- 700,
ракообразных – 50- 1200, водных растений – 100- 10000.

Поступление цезия человеку зависит от характера питания. Так после аварии на ЧАЭС в 1990 гю вклад различных продуктов в среднесуточное поступление радиоцезия в наиболее загрязненных областях Беларуси был следующим: молоко – 19 %, мясо – 9 %, рыба – 0.5 %, картофель – 46 %, овощи – 7.5 %, фрукты и ягоды – 5 %, хлеб и хлебопродукты – 13 %. Регистрируют повышенное содержание радиоцезия у жителей, потребляющих в больших количествах "дары природы" (грибы, лесные ягоды и особенно дичь).

Радиоцезий, поступая в организм, относительно равномерно распределяется, что приводит к практически равномерному облучению органов и тканей. Этому способствует высокая проникающая способность гамма-квантов его дочернего нуклида 137m Ba, равная примерно 12 см.

В исходной статье И.Я. Василенко, О.И. Василенко. Радиоактивный цезий про радиоактивный цезий содержатся гораздо подробные сведения, которые, в частности, могут быть полезны медицинским работникам.

Радиоактивный стронций

После радиоактивных изотопов йода и цезия следующим по значимости элементом, радиоактивные изотопы которого вносят наибольший вклад в загрязнение – стронций. Впрочем, доля стронция в облучении значительно меньше.

Природный стронций относится к микроэлементам и состоит из смеси четырех стабильных изотопов 84 Sr (0.56 %), 86 Sr (9.96 %), 87 Sr (7.02 %), 88 Sr (82.0 %). По физико-химическим свойствам он является аналогом кальция. Стронций содержится во всех растительных и животных организмах. В организме взрослого человека содержится около 0.3 г стронция. Почти весь он находится в скелете.

В условиях нормальной эксплуатации АЭС выбросы радионуклидов незначительны. В основном они обусловлены газообразными радионуклидами (радиоактивными благородными газами, 14 С, тритием и йодом). В условиях аварий, особенно крупных, выбросы радионуклидов, в том числе радиоизотопов стронция, могут быть значительными.

Наибольший практический интерес представляют 89 Sr
(Т 1/2 = 50.5 сут.) и 90 Sr
(Т 1/2 = 29.1 лет), характеризующиеся большим выходом в реакциях деления урана и плутония. Как 89 Sr, так и 90 Sr являются бета-излучателями. При распаде 89 Sr образуется стабильный изотоп итрия ( 89 Y) . При распаде 90 Sr образуется бета-активный 90 Y, который в свою очередь распадается с образованием стабильного изотопа циркония (90 Zr).


C хема цепочки распадов 90 Sr → 90 Y → 90 Zr. При распаде стронция-90 образуются электроны с энергиями до 546кэВ, при последующем распаде итрия-90 образуются электроны с энергиями до 2.28 МэВ.

В начальный период 89 Sr является одним из компонентов загрязнения внешней среды в зонах ближних выпадений радионуклидов. Однако у 89 Sr относительно небольшой период полураспада и со временем начинает превалировать 90 Sr.

Животным радиоактивный стронций в основном поступает с кормом и в меньшей степени с водой (около 2 %). Помимо скелета наибольшая концентрация стронция отмечена в печени и почках, минимальная – в мышцах и особенно в жире, где концентрация в 4–6 раз меньшая, чем в других мягких тканях.

Радиоактивный стронций относится к остеотропным биологически опасным радионуклидам. Как чистый бета-излучатель основную опасность он представляет при поступлении в организм. Населению нуклид в основном поступает с загрязненными продуктами. Ингаляционный путь имеет меньшее значение. Радиостронций избирательно откладывается в костях, особенно у детей, подвергая кости и заключенный в них костный мозг постоянному облучению.

Подробно все изложено в исходной статье И.Я. Василенко, О.И. Василенко. Радиоактивный стронций .