Реферат: Применение спектрального анализа.

Министерство образования и науки
Республики Казахстан

Карагандинский Государственный Университет
имени Е.А. Букетова

Физический факультет

Кафедра оптики и спектроскопии

Курсовая работа

на тему:

Спектры. С пектральный анализ и его применение.

Подготовил:

студент группы ФТРФ-22

Ахтариев Дмитрий.

Проверил:

преподаватель

Кусенова Асия Сабиргалиевна

Караганды – 2003г. План

Введение

1. Энергия в спектре

2. Виды спектров

3. Спектральный анализ и его применение

4. Спектральные аппараты

5. Спектр электромагнитных излучений

Заключение

Список использованной литературы

Введение

Исследование линейчатого спектра вещества позволяет определить, из каких химических элементов оно состоит и в каком количестве содержится каждый элемент в данном веществе.

Количественное содержание элемента в исследуемом образце определяется путем сравнения интенсивности отдельных линий спектра этого элемента с интенсивностью линий другого химического элемента, количественное содержание которого в образце известно.

Метод определения качественного и количественного состава вещества по его спектру называется спектральным анализом. Спектральный анализ широко применяется при поисках полезных ископаемых для определения химического состава образцов руды. В промышленности спектральный анализ позволяет контролировать составы сплавов и примесей, вводимых в металлы для получения материалов с задаными свойствами.

Достоинствами спектрального анализа являются высокая чувствительность и быстрота получения результатов. С помощью спектрального анализа можно обнаружить в пробе массой 6*10 -7 г присутствие золота при его массе всего 10 -8 г. Определение марки стали методом спектрального анализа может быть выполнено за несколько десятков секунд.

Спектральный анализ позволяет определить химический состав небесных тел, удаленных от Земли на расстояния в миллиарды световых лет. Химический состав атмосфер планет и звезд, холодного газа в межзвездном пространстве определяется по спектрам поглощения.

Изучая спектры, ученые смогли определить не только химический состав небесных тел, но и их температуру. По смещению спектральных линий можно определять скорость движения небесного тела.

Энергия в спектре.

Источник света должен потреблять энергию. Свет - это электромагнитные волны с длиной волны 4*10 -7 - 8*10 -7 м. Электромагнитные волны излучаются при ускоренном движении заряженных частиц. Эти заряженные частицы входят в состав атомов. Но, не зная, как устроен атом, ничего достоверного о механизме излучения сказать нельзя. Ясно лишь, что внутри атома нет света так же, как в струне рояля нет звука. Подобно струне, начинающей звучать лишь после удара молоточка, атомы рождают свет только после их возбуждения.

Для того чтобы атом начал излучать, ему необходимо передать энергию. Излучая, атом теряет полученную энергию, и для непрерывного свечения вещества необходим приток энергии к его атомам извне.

Тепловое излучение. Наиболее простой и распространенный вид излучения - тепловое излучение, при котором потери атомами энергии на излучение света компенсируются за счет энергии теплового движения атомов или (молекул) излучающего тела. Чем выше температура тела, тем быстрее движутся атомы. При столкновении быстрых атомов (молекул) друг с другом часть их кинетической энергии превращается в энергию возбуждения атомов, которые затем излучают свет.

Тепловым источником излучения является Солнце, а также обычная лампа накаливания. Лампа очень удобный, но малоэкономичный источник. Лишь примерно 12% всей энергии, выделяемой в лампе электрическим током, преобразуется в энергию света. Тепловым источником света является пламя. Крупинки сажи раскаляются за счет энергии, выделяющейся при сгорании топлива, и испускают свет.

Электролюминесценция. Энергия, необходимая атомам для излучения света, может заимствоваться и из нетепловых источников. При разряде в газах электрическое поле сообщает электронам большую кинетическую энергию. Быстрые электроны испытывают соударения с атомами. Часть кинетической энергии электронов идет на возбуждение атомов. Возбужденные атомы отдают энергию в виде световых волн. Благодаря этому разряд в газе сопровождается свечением. Это и есть электролюминесценция.

Катодолюминесценция. Свечение твердых тел, вызванное бомбардировкой их электронами, называют катодолюминисенцией. Благодаря катодолюминесценции светятся экраны электронно-лучевых трубок телевизоров.

Хемилюминесценция. При некоторых химических реакциях, идущих с выделением энергии, часть этой энергии непосредственно расходуется на излучение света. Источник света остается холодным (он имеет температуру окружающей среды). Это явление называется хемиолюминесценкией.

Фотолюминесценция. Падающий на вещество свет частично отражается, а частично поглощается. Энергия поглощаемого света в большинстве случаев вызывает лишь нагревание тел. Однако некоторые тела сами начинают светиться непосредственно под действием падающего на него излучения. Это и есть фотолюминесценция. Свет возбуждает атомы вещества (увеличивает их внутреннюю энергию), после этого они высвечиваются сами. Например, светящиеся краски, которыми покрывают многие елочные игрушки, излучают свет после их облучения.

Излучаемый при фотолюминесценции свет имеет, как правило, большую длину волны, чем свет, возбуждающий свечение. Это можно наблюдать экспериментально. Если направить на сосуд с флюоресцеитом (органический краситель) световой пучок, пропущенный через фиолетовый светофильтр, то эта жидкость начинает светиться зелено - желтым светом, т. е. светом большей длины волны, чем у фиолетового света.

Явление фотолюминесценции широко используется в лампах дневного света. Советский физик С. И. Вавилов предложил покрывать внутреннюю поверхность разрядной трубки веществами, способными ярко светиться под действием коротковолнового излучения газового разряда. Лампы дневного света примерно в три-четыре раза экономичнее обычных ламп накаливания.

Перечислены основные виды излучений и источники, их создающие. Самые распространенные источники излучения - тепловые.

Распределение энергии в спектре. Ни один из источников не дает монохроматического света, т. е. света строго определенной длины волны. В этом нас убеждают опыты по разложению света в спектр с помощью призмы, а также опыты по интерференции и дифракции.

Та энергия, которую несет с собой свет от источника, определенным образом распределена по волнам всех длин, входящим в состав светового пучка. Можно также сказать, что энергия распределена по частотам, так как между длиной волны и частотой существует простая связь: ђv = c.

Плотность потока электромагнитного излучения, или интенсивность /, определяется энергией &W, приходящейся на все частоты. Для характеристики распределения излучения по частотам нужно ввести новую величину: интенсивность, приходящуюся на единичный интервал частот. Эту величину называют спектральной плотностью интенсивности излучения.

Спектральную плотность потока излучения можно найти экспериментально. Для этого надо с помощью призмы получить спектр излучения, например, электрической дуги, и измерить плотность потока излучения, приходящегося на небольшие спектральные интервалы шириной Av.

Полагаться на глаз при оценке распределения энергии нельзя. Глаз обладает избирательной чувствительностью к свету: максимум его чувствительности лежит в желто-зеленой области спектра. Лучше всего воспользоваться свойством черного тела почти полностью поглощать свет всех длин волн. При этом энергия излучения (т. е. света) вызывает нагревание тела. Поэтому достаточно измерить температуру тела и по ней судить о количестве поглощенной в единицу времени энергии.

Обычный термометр имеет слишком малую чувствительность для того, чтобы его можно было с успехом использовать в таких опытах. Нужны более чувствительные приборы для измерения температуры. Можно взять электрический термометр, в котором чувствительный элемент выполнен в виде тонкой металлической пластины. Эту пластину надо покрыть тонким слоем сажи, почти полностью поглощающей свет любой длины волны.

Чувствительную к нагреванию пластину прибора следует поместить в то или иное место спектра. Всему видимому спектру длиной l от красных лучей до фиолетовых соответствует интервал частот от v кр до у ф. Ширине соответствует малый интервал Av. По нагреванию черной пластины прибора можно судить о плотности потока излучения, приходящегося на интервал частот Av. Перемещая пластину вдоль спектра, мы обнаружим, что большая часть энергии приходится на красную часть спектра, а не на желто-зеленую, как кажется на глаз.

По результатам этих опытов можно построить кривую зависимости спектральной плотности интенсивности излучения от частоты. Спектральная плотность интенсивности излучения определяется по температуре пластины, а частоту нетрудно найти, если используемый для разложения света прибор проградуирован, т. е. если известно, какой частоте соответствует данный участок спектра.

Откладывая по оси абсцисс значения частот, соответствующих серединам интервалов Av, а по оси ординат спектральную плотность интенсивности излучения, мы получим ряд точек, через которые можно провести плавную кривую. Эта кривая дает наглядное представление о распределении энергии и видимой части спектра электрической дуги.

Виды спектров.

Спектральный состав излучения различных веществ весьма разнообразен. Но, несмотря на это, все спектры, как показывает опыт, можно разделить на три сильно отличающихся друг от друга типа.

Непрерывные спектры.

Солнечный спектр или спектр дугового фонаря является непрерывным. Это означает, что в спектре представлены волны всех длин. В спектре нет разрывов, и на экране спектрографа можно видеть сплошную разноцветную полосу.

Распределение энергии по частотам, т. е. Спектральная плотность интенсивности излучения, для различных тел различно. Например, тело с очень черной поверхностью излучает электромагнитные волны всех частот, но кривая зависимости спектральной плотности интенсивности излучения от частоты имеет максимум мри определенной частоте. Энергия излучения, приходящаяся на очень малые и очень большие частоты, ничтожно мала. При повышении температуры максимум спектральной плотности излучения смещается в сторону коротких волн.

Непрерывные (или сплошные) спектры, как показывает опыт, дают тела, находящиеся в твердом или жидком состоянии, а также сильно сжатые газы. Для получения непрерывного спектра нужно нагреть тело до высокой температуры.

Характер непрерывного спектра и сам факт его существования определяются не только свойствами отдельных излучающих атомов, но и в сильной степени зависят от взаимодействия атомов друг с другом.

Непрерывный спектр дает также высокотемпературная плазма. Электромагнитные волны излучаются плазмой в основном при столкновении электронов с ионами.

Линейчатые спектры.

Внесем в бледное пламя газовой горелки кусочек асбеста, смоченного раствором обыкновенной поваренной соли. При наблюдении пламени в спектроскоп на фоне едва различимого непрерывного спектра пламени вспыхнет ярко желтая линия. Эту желтую линию дают пары натрия, которые образуются при расщеплении молекул поваренной соли в пламени. На спектроскопе также можно увидеть частокол цветных линий различной яркости, разделенных широкими темными полосами. Такие спектры называются линейчатыми . Наличие линейчатого спектра означает, что вещество излучает свет только вполне определенных длин волн (точнее, в определенных очень узких спектральных интервалах). Каждая из линий имеет конечную ширину.

Линейчатые спектры дают все вещества в газообразном атомарном ( но не молекулярном) состоянии. В этом случае свет излучают атомы, которые практически не взаимодействуют друг с другом. Это самый фундаментальный, основной тип спектров.

Изолированные атомы данного химического элемента излучают строго определенные длины волн.

Обычно для наблюдения линейчатых спектров используют свечение паров вещества в пламени или свечение газового разряда в трубке, наполненной исследуемым газом.

При увеличении плотности атомарного газа отдельные спектральные линии расширяются и, наконец при очень большой плотности газа, когда взаимодействие атомов становится существенным, эти линии перекрывают друг друга, образуя непрерывный спектр.

Полосатые спектры.

Полосатый спектр состоит из отдельных полос, разделенных темными промежутками. С помощью очень хорошего спектрального аппарата можно обнаружить, что каждая полоса представляет собой совокупность большого числа очень тесно расположенных линий. В отличие от линейчатых спектров полосатые спектры создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом.
Для наблюдения молекулярных спектров так же, как и для наблюдения линейчатых спектров, обычно используют свечение паров в пламени или свечение газового разряда.

Спектры поглощения.

Все вещества, атомы которых находятся в возбужденном состоянии, излучают световые волны, энергия которых определенным образом распределена по длинам волн. Поглощение света веществом также зависит от длины волны. Так, красное стекло пропускает волны, соответствующие красному свету (l»8·10 -5 см), и поглощает все остальные.

Если пропускать белый свет сквозь холодный, неизлучающий газ, то на фоне непрерывного спектра источника появляются темные линии. Газ поглощает наиболее интенсивно свет как раз тех длин волн, которые он испускает в сильно нагретом состоянии. Темные линии на фоне непрерывного спектра - это линии поглощения, образующие в совокупности спектр поглощения.

Существуют непрерывные, линейчатые и полосатые спектры излучения и столько же видов спектров поглощения.

Важно знать, из чего состоят окружающие нас тела. Изобретено много способов определения их состава. Но состав звезд и галактик можно узнать только с помощью спектрального анализа.

Спектральный анализ и его применение

Линейчатые спектры играют особо важную роль, потому что их структура прямо связана со строением атома. Ведь эти спектры создаются атомами, не испытывающими внешних воздействий. Поэтому, знакомясь с линейчатыми спектрами, мы тем самым делаем первый шаг к изучению строения атомов. Наблюдая эти спектры, ученые получили возможность "заглянуть" внутрь атома. Здесь оптика вплотную соприкасается с атомной физикой.

Главное свойство линейчатых спектров состоит в том, что длины волн (или частоты) линейчатого спектра какого-либо вещества зависят только от свойств атомов этого вещества, но совершенно не зависят от способа возбуждения свечения атомов . Атомы любого химического элемента дают спектр, не похожий на спектры всех других элементов: они способны излучать строго-определенный набор длин волн.

На этом основан спектральный анализ - метод определения химического состава вещества по его спектру. Подобно отпечаткам пальцев у людей линейчатые спектры имеют неповторимую индивидуальность. Неповторимость узоров на коже пальца помогает часто найти преступника. Точно так же благодаря индивидуальности спектров имеется возможность определить химический состав тела. С помощью спектрального анализа можно обнаружить данный элемент в составе сложного вещества если даже его масса не превышает 10 -10 . Это очень чувствительный метод.

Количественный анализ состава вещества по его спектру затруднен, так как яркость спектральных линий зависит не только от массы вещества, но и от способа возбуждения свечения. Так, при низких температурах многие спектральные линии вообще не появляются. Однако при соблюдении стандартных условий возбуждения свечения можно проводить и количественный спектральный анализ.

В настоящее время определены спектры всех атомов и составлены таблицы спектров. С помощью спектрального анализа были открыты многие новые элементы: рубидий, цезий и др. Элементам часто давали названия в соответствии с цветом наиболее интенсивных линий спектра. Рубидий дает темно-красные, рубиновые линии. Слово цезий означает «небесно-голубой». Это цвет основных линий спектра цезия.

Именно с помощью спектрального анализа узнали химический состав Солнца и звезд. Другие методы анализа здесь вообще невозможны. Оказалось, что звезды состоят из тех же самых химических элементов, которые имеются и на Земле. Любопытно, что гелий первоначально открыли на Солнце и лишь затем нашли в атмосфере Земли. Название этого элемента напоминает об истории его открытия: слово гелий означает в переводе «солнечный».

Благодаря сравнительной простоте и универсальности спектральный анализ является основным методом контроля состава вещества в металлургии, машиностроении, атомной индустрии. С помощью спектрального анализа определяют химический состав руд и минералов.

Состав сложных, главным образом органических, смесей анализируется по их молекулярным спектрам.

Спектральный анализ можно производить не только по спектрам испускания, но и по спектрам поглощения. Именно линии поглощения в спектре Солнца и звезд позволяют исследовать химический состав этих небесных тел. Ярко светящаяся поверхность Солнца - фотосфера - дает непрерывный спектр. Солнечная атмосфера поглощает избирательно свет от фотосферы, что приводит к появлению линий поглощения на фоне непрерывного спектра фотосферы.

Но и сама атмосфера Солнца излучает свет. Во время солнечных затмений, когда солнечный диск закрыт Луной, происходит обращение линий спектра. На месте линий поглощения в солнечном спектре вспыхивают линии излучения.

В астрофизике под спектральным анализом понимают не только определение химического состава звезд, газовых облаков и т. д., но и нахождение по спектрам многих других физических характеристик этих объектов: температуры, давления, скорости движения, магнитной индукции.

Кроме астрофизики спектральный анализ широко применяют в криминалистике, для расследования улик, найденных на месте преступления. Также спектральный анализ в криминалистике хорошо помогает определять орудие убийства и вообще раскрывать некоторые частности преступления.

Еще шире спектральный анализ используют в медицине. Здесь его применение весьма велико. Его можно использовать для диагностирования, а также для того, чтобы определять инородные вещества в организме человека.

Спектральный анализ прогрессирует не только науку, но и общественную сферу человеческой деятельности.

Для спектрального анализа необходимы специальные спектральные приборы, которые мы и рассмотрим дальше.

Спектральные аппараты

Для точного исследования спектров такие простые приспособления, как узкая щель, ограничивающая световой пучок, и призма, уже недостаточны. Необходимы приборы, дающие четкий спектр, т. е. приборы, хорошо разделяющие волны различной длины и не допускающие перекрытия отдельных участков спектра. Такие приборы называют спектральными аппаратами. Чаще всего основной частью спектрального аппарата является призма или дифракционная решетка.

Рассмотрим схему устройства призменного спектрального аппарата. Исследуемое излучение поступает вначале в часть прибора, называемую коллиматором. Коллиматор представляет собой трубу, на одном конце которой имеется ширма с узкой щелью, а на другом - собирающая линза. Щель находится на фокусном расстоянии от линзы. Поэтому расходящийся световой пучок, попадающий на линзу из щели, выходит из нее параллельным пучком и падает на призму.

Так как разным частотам соответствуют различные показатели преломления, то из призмы выходят параллельные пучки, не совпадающие по направлению. Они падают на линзу. На фокусном расстоянии этой линзы располагается экран - матовое стекло или фотопластинка. Линза фокусирует параллельные пучки лучей на экране, и вместо одного изображения щели получается целый ряд изображений. Каждой частоте (узкому спектральному интервалу) соответствует свое изображение. Все эти изображения вместе и образуют спектр.

Описанный прибор называется спектрографом. Если вместо второй линзы и экрана используется зрительная труба для визуального наблюдения спектров, то прибор называется спектроскопом. Призмы и другие детали спектральных аппаратов необязательно изготовляются из стекла. Вместо стекла применяются и такие прозрачные материалы, как кварц, каменная соль и др.

Вы познакомились с новой величиной - спектральной плотностью интенсивности излучения. Узнали, что находится внутри кожуха спектрального аппарата.

Спектральный состав излучения веществ весьма разнообразен. Но, несмотря на это, все спектры, как показывает опыт, можно разделить на три типа.

Спектр электромагнитных излучений

Свойства электромагнитных излучений. Электромагнитные излучения с различными длинами волн имеют довольно много различий, но все они, от радиоволн и до гамма-излучения, одной физической природы. Все виды электромагнитного излучения в большей или меньшей степени проявляют свойства интерференции, дифракции и поляризации, характерные для волн. Вместе с тем все виды электромагнитного излучения в большей или меньшей мере обнаруживают квантовые свойства.

Общим для всех электромагнитных излучений являются механизмы их возникновения: электромагнитные волны с любой длиной волны могут возникать при ускоренном движении электрических зарядов или при переходах молекул, атомов или атомных ядер из одного квантового состояния в другое. Гармонические колебания электрических зарядов сопровождаются электромагнитным излучением, имеющим частоту, равную частоте колебаний зарядов.

Радиоволны. При колебаниях, происходящих с частотами от 10 5 до 10 12 Гц, возникают электромагнитные излучения, длины волн которых лежат в интервале от нескольких километров до нескольких миллиметров. Этот участок шкалы электромагнитных излучений относится к диапазону радиоволн. Радиоволны применяются для радиосвязи, телевидения, радиолокации.

Инфракрасное излучение. Электромагнитные излучения с длиной волны, меньшей 1-2 мм, но большей 8*10 -7 м, т.е. лежащие между диапазоном радиоволн и диапазоном видимого света, называются инфракрасным излучением.

Область спектра за красным его краем впервые экспериментально была исследована в 1800г. английским астрономом Вильямом Гершелем (1738 – 1822 гг.). Гершель поместил термометр с зачерненным шариком за красный край спектра и обнаружил повышение температуры. Шарик термометра нагревался излучением, невидимым глазом. Это излучение назвали инфракрасными лучами.

Инфракрасное излучение испускают любые нагретые тела. Источниками инфракрасного излучения служат печи, батареи водяного отопления, электрические лампы накаливания.

С помощью специальных приборов инфракрасное излучение можно преобразовать в видимый свет и получать изображения нагретых предметов в полной темноте. Инфракрасное излучение применяется для сушки окрашенных изделий, стен зданий, древесины.

Видимый свет. К видимому свету (или просто свету) относятся излучения с длиной волны примерно от 8*10 -7 до 4*10 -7 м, от красного до фиолетового света.

Значение этого участка спектра электромагнитных излучений в жизни человека исключительно велико, так как почти все сведения об окружающем мире человек получает с помощью зрения.

Свет является обязательным условием развития зеленых растений и, следовательно, необходимым условием для существования жизни на Земле.

Ультрафиолетовое излучение . В 1801 году немецкий физик Иоганн Риттер (1776 – 1810), исследуя спектр, открыл, что за его фиолетовым краем имеется область, создаваемая невидимыми глазом лучами. Эти лучи воздействуют на некоторые химические соединения. Под действием этих невидимых лучей происходит разложения хлорида серебра, свечение кристаллов сульфида цинка и некоторых других кристаллов.

Невидимое глазом электромагнитное излучение с длиной волны меньше, чем у фиолетового света, называют ультрафиолетовым излучением. К ультрафиолетовому излучению относят электромагнитные излучения в диапазоне длин волн от 4*10 -7 до 1*10 -8 м.

Ультрафиолетовое излучение способно убивать болезнетворных бактерий, поэтому его широко применяют в медицине. Ультрафиолетовое излучение в составе солнечного света вызывает биологические процессы, приводящие к потемнению кожи человека – загару.

В качестве источников ультрафиолетового излучения в медицине используются газоразрядные лампы. Трубки таких ламп изготавливают из кварца, прозрачного для ультрафиолетовых лучей; поэтому эти лампы называют кварцевыми лампами.

Рентгеновские лучи . Если в вакуумной трубке между нагретым катодом, испускающим электрон, и анодом приложить постоянное напряжение в несколько десятков тысяч вольт, то электроны будут сначала разгоняться электрическим полем, а затем резко тормозиться в веществе анода при взаимодействии с его атомами. При торможении быстрых электронов в веществе или при переходах электронов на внутренних оболочках атомов возникают электромагнитные волны с длиной волны меньше, чем у ультрафиолетового излучения. Это излучение было открыто в 1895 году немецким физиком Вильгельмом Рентгеном (1845-1923). Электромагнитные излучения в диапазоне длин волн от 10 -14 до 10 -7 м называются рентгеновскими лучами.

Рентгеновские лучи невидимы глазом. Они проходят без существенного поглощения через значительные слои вещества, непрозрачного для видимого света. Обнаруживают рентгеновские лучи по их способности вызывать определенное свечение некоторых кристаллов и действовать на фотопленку.

Способность рентгеновских лучей проникать через толстые слои вещества используется для диагностики заболеваний внутренних органов человека. В технике рентгеновские лучи применяются для контроля внутренней структуры различных изделий, сварных швов. Рентгеновское излучение обладает сильным биологическим действием и применяется для лечения некоторых заболеваний.

Гамма-излучение . Гамма-излучением называют электромагнитное излучение, испускаемое возбужденными атомными ядрами и возникающее при взаимодействии элементарных частиц.

Гамма-излучение – самое коротковолновое электромагнитное излучение (l< 10 -10 м). Его особенностью являются ярко выраженные корпускулярные свойства. Поэтому гамма-излучение обычно рассматривают как поток частиц – гамма-квантов. В области длин волн от 10 -10 до 10 -14 и диапазоны рентгеновского и гамма-излучений перекрываются, в этой области рентгеновские лучи и гамма-кванты по своей природе тождественны и отличаются лишь происхождением.

Заключение

В начале XIX в. было обнаружено, что выше (по длине волны) красной части спектра видимого света находится невидимый глазом инфракрасный участок спектра, а ниже фиолетовой части спектра видимого света находится невидимый ультрафиолетовый участок спектра.

Длины волны инфракрасного излучения заключены в пределах от

3·10 -4 до 7,6·10 -7 м. Наиболее характерным свойством этого излучения является его тепловое действие. Источником инфракрасного является любое тело. Интенсивность этого излучения тем выше, чем больше температура тела. Инфракрасное излучение исследуют с помощью термопар и болометров. На использование инфракрасного излучения основан принцип действия приборов ночного видения.

Длины волн ультрафиолетового излучения заключены в пределах от

4·10 -7 до 6·10 -9 м. Наиболее характерным свойством этого излучения является его химическое и биологическое действие. Ультрафиолетовое излучение вызывает явление фотоэффекта, свечение ряда веществ (флуоресценцию и фосфоресценцию). Оно убивает болезнетворных микробов, вызывает появление загара и т.д.

В науке инфракрасное и ультрафиолетовое излучения используются для исследования молекул и атомов вещества.

На экране за преломляющей призмой монохроматические цвета в спектре располагаются в следующем порядке: красный (имеющий наибольшую среди волн видимого света длину волны l к =7,6·10 -7 м и наименьший показатель преломления), оранжевый, желтый, зеленый, голубой, синий и фиолетовый (имеющий наименьшую в видимом спектре длину волны l ф =4·10 -7 м и наибольший показатель преломления).

Итак, спектральный анализ применяется почти во всех важнейших сферах человеческой деятельности: в медицине, в криминалистике, в промышленности и других отраслях, которые существуют для блага человечества. Таким образом спектральный анализ является одним из важнейших аспектов развития не только научного прогресса, но и самого уровня жизни человека.

Список использованной литературы

1. Физический практикум «Электричество и магнетизм» под редакцией профессора В.И. Ивероновой. Издательство «Наука», М.– 1968г.

2. Д.В. Сивухин, «Общий курс физики. Атомная и ядерная физика. Часть 1. Атомная физика». Издательство «Наука», Москва – 1986г.

3. Н.Н. Евграфова, В.Л. Каган «Курс физики для подготовительных отделений вузов». Издательство «Высшая школа», Москва – 1978г.

4. Б.М. Яворский, Ю.А.Селезнев «Справочное руководство по физике для поступающих в вузы и самообразования». Издательство «Наука», Москва – 1984г.

5. О.Ф. Кабардин «Физика». Издательство «Просвещение», М. – 1991г.

В семнадцатом веке, обозначающее совокупность всех значений какой-либо физической величины. Энергии, массы, оптического излучения. Именно последнее зачастую имеется в виду, когда мы говорим о спектре света. Конкретно спектр света представляет собой совокупность полос оптического излучения разной частоты, часть из которых мы можем видеть повседневно в окружающем мире, часть же их недоступна для невооруженного глаза. В зависимости от возможности восприятия человеческим глазом, спектр света разделяют на видимую часть и невидимую. Последнюю, в свою очередь, - на инфракрасный и ультрафиолетовый свет.

Виды спектров

Существуют также разные виды спектров. Таких выделяют три, в зависимости от спектральной плотности интенсивности излучения. Спектры могут быть непрерывные, линейчатые и полосатые. Виды спектров определяют с помощью

Непрерывный спектр

Непрерывный спектр образуется нагретыми до высокой температуры твердыми телами или газами высокой плотности. Всем известная радуга семи цветов является прямым примером непрерывного спектра.

Линейчатый спектр

Также представляет виды спектров и исходит от любого вещества, находящегося в газообразном атомарном состоянии. Здесь важно отметить, что именно в атомарном, а не молекулярном. Такой спектр обеспечивает крайне низкое взаимодействие атомов друг с другом. Поскольку взаимодействия нет, атомы излучают волны перманентно одинаковой длины. Примером такого спектра является свечение газов, нагретых до высокой температуры.

Полосатый спектр

Полосатый спектр визуально представляет собой отдельные полосы, четко разграниченные достаточно темными промежутками. При этом каждая из этих полос не является излучением строго определенной частоты, а состоит из большого количества близко расположенных друг к другу световых линий. Примером таких спектров, как и в случае с линейчатым, является свечение паров при высокой температуре. Однако они создаются уже не атомами, а имеющими крайне тесную общую связь молекулами, что и обуславливает подобное свечение.

Спектр поглощения

Однако на этом виды спектров все-таки не заканчиваются. Дополнительно выделяют еще такой вид, как спектр поглощения. При спектральном анализе спектр поглощения - это темные линии на фоне непрерывного спектра и, по существу, спектр поглощения - это выражение зависимости от показателя поглощения вещества, который может быть более или менее высоким.

Хотя существует широкий диапазон экспериментальных подходов к измерению спектров поглощения. Наиболее распространенным является эксперимент, когда генерируемый пучок излучения пропускается через охлажденный (для отсутствия взаимодействия частиц и, следовательно, свечения) газ, после чего определяется интенсивность излучения, проходящего через него. Переданная энергия вполне может быть использована для вычисления поглощения.

Не так давно товарищ Makeman описывал , как с помощью спектрального анализа можно разложить некоторый звуковой сигнал на слагающие его ноты. Давайте немного абстрагируемся от звука и положим, что у нас есть некоторый оцифрованный сигнал, спектральный состав которого мы хотим определить, и достаточно точно.

Под катом краткий обзор метода выделения гармоник из произвольного сигнала с помощью цифрового гетеродинирования, и немного особой, Фурье-магии.

Итак, что имеем.
Файл с отсчетами оцифрованного сигнала. Известно, что сигнал представляет собой сумму синусоид со своими частотами, амплитудами и начальными фазами, и, возможно, белый шум.

Что будем делать.
Использовать спектральный анализ для того, чтобы определить:

  • количество гармоник в составе сигнала, а для каждой: амплитуду, частоту (далее в контексте числа длин волн на длину сигнала), начальную фазу;
  • наличие/отсутствие белого шума, а при наличии, его СКО (среднеквадратическое отклонение);
  • наличие/отсутствие постоянной составляющей сигнала;
  • всё это оформить в красивенький PDF отчёт с блэкджеком и иллюстрациями.

Будем решать данную задачу на Java.

Матчасть

Как я уже говорил, структура сигнала заведомо известна: это сумма синусоид и какая-то шумовая составляющая. Так сложилось, что для анализа периодических сигналов в инженерной практике широко используют мощный математический аппарат, именуемый в общем «Фурье-анализ» . Давайте кратенько разберём, что же это за зверь такой.
Немного особой, Фурье-магии
Не так давно, в 19 веке, французский математик Жан Батист Жозеф Фурье показал, что любую функцию, удовлетворяющую некоторым условиям (непрерывность во времени, периодичность, удовлетворение условиям Дирихле) можно разложить в ряд, который в дальнейшем получил его имя - ряд Фурье .

В инженерной практике разложение периодических функций в ряд Фурье широко используется, например, в задачах теории цепей: несинусоидальное входное воздействие раскладывают на сумму синусоидальных и рассчитывают необходимые параметры цепей, например, по методу наложения.

Существует несколько возможных вариантов записи коэффициентов ряда Фурье, нам же лишь необходимо знать суть.
Разложение в ряд Фурье позволяет разложить непрерывную функцию в сумму других непрерывных функций. И в общем случае, ряд будет иметь бесконечное количество членов.

Дальнейшим усовершенствованием подхода Фурье является интегральное преобразование его же имени. Преобразование Фурье .
В отличие от ряда Фурье, преобразование Фурье раскладывает функцию не по дискретным частотам (набор частот ряда Фурье, по которым происходит разложение, вообще говоря, дискретный), а по непрерывным.
Давайте взглянем на то, как соотносятся коэффициенты ряда Фурье и результат преобразования Фурье, именуемый, собственно, спектром .
Небольшое отступление: спектр преобразования Фурье - в общем случае, функция комплексная, описывающая комплексные амплитуды соответствующих гармоник. Т.е., значения спектра - это комплексные числа, чьи модули являются амплитудами соответствующих частот, а аргументы - соответствующими начальными фазами. На практике, рассматривают отдельно амплитудный спектр и фазовый спектр .


Рис. 1. Соответствие ряда Фурье и преобразования Фурье на примере амплитудного спектра.

Легко видно, что коэффициенты ряда Фурье являются ни чем иным, как значениями преобразования Фурье в дискретные моменты времени.

Однако, преобразование Фурье сопоставляет непрерывной во времени, бесконечной функции другую, непрерывную по частоте, бесконечную функцию - спектр. Как быть, если у нас нет бесконечной во времени функции, а есть лишь какая-то записанная её дискретная во времени часть? Ответ на этот вопрос даёт дальнейшей развитие преобразования Фурье - дискретное преобразование Фурье (ДПФ) .

Дискретное преобразование Фурье призвано решить проблему необходимости непрерывности и бесконечности во времени сигнала. По сути, мы полагаем, что вырезали какую-то часть бесконечного сигнала, а всю остальную временную область считаем этот сигнал нулевым.

Математически это означает, что, имея исследуемую бесконечную во времени функцию f(t), мы умножаем ее на некоторую оконную функцию w(t), которая обращается в ноль везде, кроме интересующего нас интервала времени.

Если «выходом» классического преобразования Фурье является спектр – функция, то «выходом» дискретного преобразования Фурье является дискретный спектр. И на вход тоже подаются отсчёты дискретного сигнала.

Остальные свойства преобразования Фурье не изменяются: о них можно прочитать в соответствующей литературе.

Нам же нужно лишь знать о Фурье-образе синусоидального сигнала, который мы и будем стараться отыскать в нашем спектре. В общем случае, это пара дельта-функций, симметричная относительно нулевой частоты в частотной области.


Рис. 2. Амплитудный спектр синусоидального сигнала.

Я уже упомянул, что, вообще говоря, мы рассматриваем не исходную функцию, а некоторое её произведение с оконной функцией. Тогда, если спектр исходной функции - F(w), а оконной W(w), то спектром произведения будет такая неприятная операция, как свёртка этих двух спектров (F*W)(w) (Теорема о свёртке).

На практике это означает, что вместо дельта-функции, в спектре мы увидим что-то вроде этого:


Рис. 3. Эффект растекания спектра.

Этот эффект именуют также растеканием спектра (англ. spectral leekage). А шумы, появляющиеся вследствие растекания спектра, соответственно, боковыми лепестками (англ. sidelobes).
Для борьбы с боковыми лепестками применяют другие, непрямоугольные оконные функции. Основной характеристикой «эффективности» оконной функции является уровень боковых лепестков (дБ). Сводная таблица уровней боковых лепестков для некоторых часто используемых оконных функций приведена ниже.

Основной проблемой в нашей задаче является то, что боковые лепестки могут маскировать другие гармоники, лежащие рядом.


Рис. 4. Отдельные спектры гармоник.

Видно, что при сложении приведённых спектров, более слабые гармоники как бы растворятся в более сильной.


Рис. 5. Чётко видна лишь одна гармоника. Нехорошо.

Другой подход к борьбе с растеканием спектра состоит в вычитании из сигнала гармоник, создающих это самое растекание.
То есть, установив амплитуду, частоту и начальную фазу гармоники, можно вычесть её из сигнала, при этом мы уберём и «дельта-функцию», соответствующую ей, а вместе с ней и боковые лепестки, порождаемые ей. Другой вопрос состоит в том, как же точно узнать параметры нужной гармоники. Недостаточно просто взять нужные данные из комплексной амплитуды. Комплексные амплитуды спектра сформированы по целым частотам, однако, ничто не мешает гармонике иметь и дробную частоту. В этом случае, комплексная амплитуда как бы расплывается между двумя соседними частотами, и точную её частоту, как и другие параметры, установить нельзя.

Для установления точной частоты и комплексной амплитуды нужной гармоники, мы воспользуемся приёмом, широко применяемым во многих отраслях инженерной практики – гетеродинирование .

Посмотрим, что получится, если умножить входной сигнал на комплексную гармонику Exp(I*w*t). Спектр сигнала сдвинется на величину w вправо.
Этим свойством мы и воспользуемся, сдвигая спектр нашего сигнала вправо, до тех пор, пока гармоника не станет ещё больше напоминать дельта-функцию (то есть, пока некоторое локальное отношение сигнал/шум не достигнет максимума). Тогда мы и сможем вычислить точную частоту нужной гармоники, как w 0 – w гет, и вычесть её из исходного сигнала для подавления эффекта растекания спектра.
Иллюстрация изменения спектра в зависимости от частоты гетеродина показана ниже.


Рис. 6. Вид амплитудного спектра в зависимости от частоты гетеродина.

Будем повторять описанные процедуры до тех пор, пока не вырежем все присутствующие гармоники, и спектр не будет напоминать нам спектр белого шума.

Затем, надо оценить СКО белого шума. Хитростей здесь нет: можно просто воспользоваться формулой для вычисления СКО:

Автоматизируй это

Пришло время для автоматизации выделения гармоник. Повторим ещё разочек алгоритм:

1. Ищем глобальный пик амплитудного спектра, выше некоторого порога k.
1.1 Если не нашли, заканчиваем
2. Варируя частоту гетеродина, ищем такое значение частоты, при которой будет достигаться максимум некоторого локального отношения сигнал/шум в некоторой окрестности пика
3. При необходимости, округляем значения амплитуды и фазы.
4. Вычитаем из сигнала гармонику с найденной частотой, амплитудой и фазой за вычетом частоты гетеродина.
5. Переходим к пункту 1.

Алгоритм не сложный, и единственный возникающий вопрос - откуда же брать значения порога, выше которого будем искать гармоники?
Для ответа на этот вопрос, следует оценить уровень шума еще до вырезания гармоник.

Построим функцию распределения (привет, мат. cтатистика), где по оси абсцисс будет амплитуда гармоник, а по оси ординат - количество гармоник, не превышающих по амплитуде это самое значение аргумента. Пример такой построенной функции:


Рис. 7. Функция распределения гармоник.

Теперь построим еще и функцию - плотность распределения. Т.е., значения конечных разностей от функции распределения.


Рис. 8. Плотность функции распределения гармоник.

Абсцисса максимума плотности распределения и является амплитудой гармоники, встречающейся в спектре наибольшее число раз. Отойдем от пика вправо на некоторое расстояние, и будем считать абсциссу этой точки оценкой уровня шума в нашем спектре. Вот теперь можно и автоматизировать.

Посмотреть на кусок кода, детектирующий гармоники в составе сигнала

public ArrayList detectHarmonics() { SignalCutter cutter = new SignalCutter(source, new Signal(source)); SynthesizableComplexExponent heterodinParameter = new SynthesizableComplexExponent(); heterodinParameter.setProperty("frequency", 0.0); Signal heterodin = new Signal(source.getLength()); Signal heterodinedSignal = new Signal(cutter.getCurrentSignal()); Spectrum spectrum = new Spectrum(heterodinedSignal); int harmonic; while ((harmonic = spectrum.detectStrongPeak(min)) != -1) { if (cutter.getCuttersCount() > 10) throw new RuntimeException("Unable to analyze signal! Try another parameters."); double heterodinSelected = 0.0; double signalToNoise = spectrum.getRealAmplitude(harmonic) / spectrum.getAverageAmplitudeIn(harmonic, windowSize); for (double heterodinFrequency = -0.5; heterodinFrequency < (0.5 + heterodinAccuracy); heterodinFrequency += heterodinAccuracy) { heterodinParameter.setProperty("frequency", heterodinFrequency); heterodinParameter.synthesizeIn(heterodin); heterodinedSignal.set(cutter.getCurrentSignal()).multiply(heterodin); spectrum.recalc(); double newSignalToNoise = spectrum.getRealAmplitude(harmonic) / spectrum.getAverageAmplitudeIn(harmonic, windowSize); if (newSignalToNoise > signalToNoise) { signalToNoise = newSignalToNoise; heterodinSelected = heterodinFrequency; } } SynthesizableCosine parameter = new SynthesizableCosine(); heterodinParameter.setProperty("frequency", heterodinSelected); heterodinParameter.synthesizeIn(heterodin); heterodinedSignal.set(cutter.getCurrentSignal()).multiply(heterodin); spectrum.recalc(); parameter.setProperty("amplitude", MathHelper.adaptiveRound(spectrum.getRealAmplitude(harmonic))); parameter.setProperty("frequency", harmonic - heterodinSelected); parameter.setProperty("phase", MathHelper.round(spectrum.getPhase(harmonic), 1)); cutter.addSignal(parameter); cutter.cutNext(); heterodinedSignal.set(cutter.getCurrentSignal()); spectrum.recalc(); } return cutter.getSignalsParameters(); }

Практическая часть

Я не претендую на звание эксперта Java, и представленное решение может быть сомнительным как по части производительности и потреблению памяти, так и в целом философии Java и философии ООП, как бы я ни старался сделать его лучше. Написано было за пару вечеров, как proof of concept. Желающие могут ознакомиться с исходным кодом на

Применение спектрального анализа

Методом, дающим ценные и наиболее разнообразные сведения о небесных светилах, является спектральный анализ. Он позволяет установить из анализа света качественный и количественный химический состав светила, его температуру, наличие и напряженность магнитного поля, скорость движения по лучу зрения и многое другое.

Спектральный анализ основан на разложении белого света на составные части. Если пучок света пустить на боковую грань трехгранной призмы, то, преломляясь в стекле по-разному, составляющие белый свет лучи дадут на экране радужную полоску, называемую спектром. В спектре все цвета расположены всегда в определенном порядке.

Как известно, свет распространяется в виде электромагнитных волн. Каждому цвету соответствует определенная длина электромагнитной волны. Длина волны в спектре уменьшается от красных лучей к фиолетовым примерно от 0,7 до 0,4 мкм. За фиолетовыми лучами спектра лежат ультрафиолетовые лучи, невидимые глазом, но действующие на фотопластинку. Еще более короткую длину волны имеют рентгеновские лучи. Рентгеновское излучение небесных светил, важное для понимания их природы, атмосфера Земли задерживает.

За красными лучами спектра находится область инфракрасных лучей. Они невидимы, но и они действуют на специальные фотопластинки. Под спектральными наблюдениями понимают обычно наблюдения в интервале от инфракрасных до ультрафиолетовых лучей.

Для изучения спектров применяют приборы, называемые спектроскопом и спектрографом. В спектроскоп спектр рассматривают, а спектрографом его фотографируют. Фотография спектра называется спектрограммой.

Существуют следующие виды спектров:

Сплошной или непрерывный, спектр в виде радужной полоски дают твердые и жидкие раскаленные тела (уголь, нить электролампы) и достаточно плотные массы газа.

Линейчатый спектр излучения дают разреженные газы и пары при сильном нагревании или под действием электромагнитного разряда. Каждый газ излучает строго определенный набор длин волн и дает характерный для данного химического элемента линейчатый спектр. Сильные изменения состояния газа или условий его свечения, например нагрев или ионизация, вызывают определенные изменения в спектре данного газа.

Составлены таблицы с перечнем линий каждого газа и с указанием яркости каждой линии. Например, в спектре натрия особенно ярки две желтые линии.

Установлено, что спектр атома или молекулы связан с их строением и отражает определенные изменения, происходящие в них в процессе свечения.

Линейчатый спектр поглощения дают газы и пары, когда за ними находится ярки и более горячий источник дающий непрерывный спектр. Спектр поглощения представляет собой непрерывный спектр, перерезанный темными линиями, которые находятся в тех самых местах, где должны быть расположены яркие линии, присущие данному газу.

Излучение спектров позволяет производить анализ химического состава газов, излучающих свет или поглощающих его, независимо от того, находятся ли они в лаборатории или на небесном светиле. Количество атомов или молекул, лежащих на нашем луче зрения, излучающих или поглощающих, определяется по интенсивности линий. Чем больше атомов, тем ярче линия или тем она темнее в спектре поглощения. Солнце и звезды окружены газовыми атмосферными линиями поглощения, возникающими при прохождении света через атмосферу звезд. Поэтому спектры Солнца и звезд - это спектры поглощения.

Нужно помнить, что спектральный анализ позволяет определять химический состав только самосветящихся или поглощающих излучение газов. Химический состав твердого тела при помощи спектрального анализа определить нельзя.

Современная наука и техника немыслимы без знания химического состава веществ, которые являются объектами деятельности человека. Минералы, найденные геологами, и новые вещества и материалы, полученные химиками, прежде всего характеризуются по химическому составу. Для правильного ведения технологических процессов в самых различных отраслях народного хозяйства необходимо точное знание химического состава исходного сырья, промежуточных и готовых продуктов.

Бурное развитие техники предъявляет все новые требования к методам анализа вещества. Еще сравнительно недавно можно было ограничиться определением примесей, присутствующих в концентрации до 10-2–10-3%. Появление и быстрое развитие в послевоенные годы промышленности атомных материалов, а также производства твердых, жаропрочных и других специальных сталей и сплавов потребовало повышения чувствительности аналитических методов до 10-4– 10-6%, так как было установлено, что присутствие примесей даже в таких малых концентрациях существенно влияет на свойства материалов и ход некоторых технологических процессов.

В последнее время в связи с развитием промышленности полупроводниковых материалов к чистоте веществ, а следовательно, и к чувствительности аналитических методов предъявляются еще более высокие требования – необходимо определять примеси, содержание которых совершенно ничтожно (10-7–10-9%). Конечно, подобная сверхвысокая чистота веществ нужна только в отдельных случаях, но в той или иной степени повышение чувствительности анализа стало необходимым требованием почти во всех областях науки и техники.

При производстве полимерных материалов концентрация примесей в исходных веществах (мономерах) была весьма большой – часто десятые доли и даже целое число процентов. Недавно обнаружено, что качество многих готовых полимеров очень сильно зависит от их чистоты. Поэтому в настоящее время исходные непредельные соединения и некоторые другие мономеры проверяют на присутствие примесей, содержание которых не должно превышать 10-2– 10-4%. В геологии все шире используются гидрохимические методы разведки рудных месторождений. Для их успешного применения необходимо определять соли металлов в природных водах при концентрации 10-4– 10-8 г/л и даже меньше.

Повышенные требования предъявляются в настоящее время не только к чувствительности анализа. Внедрение в производство новых технологических процессов обычно тесно связано с разработкой методов, обеспечивающих достаточно высокую скорость и точность анализа. Наряду с этим от аналитических методов требуется высокая производительность и возможность автоматизации отдельных операций или всего анализа. Химические методы анализа далеко не всегда отвечают требованиям современной науки и техники. Поэтому все шире внедряются в практику физикохимические и физические методы определения химического состава, которые обладают рядом ценных характеристик. Среди этих методов одно из главных мест по праву занимает спектральный анализ.

Благодаря высокой избирательности спектрального анализа можно с помощью одной и той же принципиальной схемы, на одних и тех же приборах анализировать самые различные вещества, выбирая в каждом отдельном случае только наиболее благоприятные условия для получения максимальной скорости, чувствительности и точности анализа. Поэтому несмотря на громадное число аналитических методик, предназначенных для анализа различных объектов, все они основаны на общей принципиальной схеме.

В основе спектрального анализа лежит изучение строения света, который излучается или поглощается анализируемым веществом. Методы спектрального анализа делятся на эмиссионные (эмиссия – испускание) и абсорбционные (абсорбция – поглощение).

Рассмотрим схему эмиссионного спектрального анализа (рис. 6.8а). Для того чтобы вещество излучало свет, необходимо передать ему дополнительную энергию. Атомы и молекулы анализируемого вещества переходят тогда в возбужденное состояние. Возвращаясь в обычное состояние, они отдают избыточную энергию в виде света. Характер света, излучаемого твердыми телами или жидкостями, обычно очень мало зависит от химического состава и поэтому его нельзя использовать для анализа. Совсем другой характер имеет излучение газов. Оно определяется составом анализируемой пробы. В связи с этим при эмиссионном анализе перед возбуждением вещества его необходимо испарить.

Рис. 6.8.

а – эмиссионного: б – абсорбционного: 1 – источник света; 2 – осветительный конденсор; 3 – кювета для анализируемой пробы; 4 – спектральный аппарат; 5 – регистрация спектра; 6 – определение длины волны спектральных линий или полос; 7 – качественный анализ пробы с помощью таблиц и атласов; 8 – определение интенсивности линий или полос; 9 – количественный анализ пробы по градуировочному графику; λ – длина волны; J – интенсивность полос

Испарение и возбуждение осуществляют в источниках света, в которые вводится анализируемая проба. В качестве источников света используют высокотемпературное пламя или различные типы электрического разряда в газах: дугу, искру и др. Для получения электрического разряда с нужными характеристиками служат генераторы.

Высокая температура (тысячи и десятки тысяч градусов) в источниках света приводит к распаду молекул большинства веществ на атомы. Поэтому эмиссионные методы служат, как правило, для атомного анализа и только очень редко для молекулярного.

Излучение источника света складывается из излучения атомов всех элементов, присутствующих в пробе. Для анализа необходимо выделить излучение каждого элемента. Это осуществляют с помощью оптических приборов – спектральных аппаратов, в которых световые лучи с разными длинами волн отделяются в пространстве друг от друга. Излучение источника света, разложенное по длинам волн, называется спектром.

Спектральные аппараты устроены таким образом, что световые колебания каждой длины волны, попадающие в прибор, образуют одну линию. Сколько различных волн присутствовало в излучении источника света, столько линий получается в спектральном аппарате.

Атомные спектры элементов состоят из отдельных линий, так как в излучении атомов имеются только некоторые определенные волны (рис. 6.9а). В излучении раскаленных твердых или жидких тел присутствует свет любой длины волны. Отдельные линии в спектральном аппарате сливаются друг с другом. Такое излучение имеет сплошной спектр (рис. 6.9е). В отличие от линейчатого спектра атомов, молекулярные спектры испускания веществ, которые не распались при высокой температуре, являются полосатыми (рис. 6.96). Каждая полоса образована большим числом близко расположенных линий.

Свет, разложенный в спектральном аппарате в спектр, можно рассматривать визуально или зарегистрировать с помощью фотографии или фотоэлектрических приборов. Конструкция спектрального аппарата зависит от метода регистрации спектра. Для визуального наблюдения спектров служат спектроскопы стилоскопы и стилометры. Фотографирование спектров осуществляют с помощью спектрографов. Спектральные аппараты – монохроматоры – позволяют выделять свет одной длины волны, после чего он может быть зарегистрирован с помощью фотоэлемента или другого электрического приемника света.

Рис. 6.9.

а – линейчатый; 6 – полосатый; видны отдельные линии, составляющие полосу; в – сплошной. Наиболее темным местам в спектре соответствует наибольшая интенсивность света (негативное изображение); λ – длина волны

При качественном анализе необходимо определить, к излучению какого элемента относится та или иная линия в спектре анализируемой пробы. Для этого нужно найти длину волны линии по ее положению в спектре, а затем с помощью таблиц определить ее принадлежность тому или иному элементу. Для рассмотрения увеличенного изображения спектра на фотографической пластинке и определения длины волны служат измерительные микроскопы , спектропроекторы и другие вспомогательные приборы.

Интенсивность спектральных линий растет с увеличением концентрации элемента в пробе. Поэтому для проведения количественного анализа нужно найти интенсивность одной спектральной линии определяемого элемента. Интенсивность линии измеряют или по ее почернению на фотографии спектра (спектрограмме ) или сразу по величине светового потока, выходящего из спектрального аппарата. Величину почернения линий на спектрограмме определяют на микрофотометрах.

Связь между интенсивностью линии в спектре и концентрацией элемента в анализируемой пробе устанавливают с помощью эталонов – образцов, подобных анализируемым, но с точно известным химическим составом. Эту связь обычно выражают в виде градуировочных графиков.

Схема проведения абсорбционного спектрального анализа (рис. 6.8б) отличается от уже рассмотренной схемы только в своей начальной части. Источником света служит нагретое твердое тело или другой источник сплошного излучения, т.е. излучения с любой длиной волны. Анализируемую пробу помещают между источником света и спектральным аппаратом. Спектр вещества составляют тс длины волн, интенсивность которых уменьшилась при прохождении сплошного света через это вещество (рис. 6.10). Спектр поглощения веществ удобно изображать графически, откладывая по оси абсцисс длину волны, а по оси ординат – величину поглощения света веществом.

Рис. 6.10.

а – фотографическое; б – графическое; I – спектр источника сплошного света; II – спектр того же излучения после прохождения через анализируемую пробу

Спектры поглощения получают с помощью спектральных аппаратов – спектрофотометров, в состав которых входят источник сплошного света, монохроматор и регистрирующее устройство.

В остальном схемы проведения абсорбционного и эмиссионного анализа совпадают.

Спектральный анализ по спектрам испускания или поглощения включает следующие операции.

  • 1. Получение спектра анализируемой пробы.
  • 2. Определение длины волны спектральных линий или полос. После этого с помощью таблиц или атласов устанавливают их принадлежность к определенным элементам или соединениям, т.е. находят качественный состав пробы.
  • 3. Измерение интенсивности спектральных линий или полос, принадлежащих определенным элементам или соединениям, что позволяет найти их концентрацию в анализируемой пробе по предварительно построенным с помощью эталонов градуировочным графикам, т.е. найти количественный состав пробы.

Весь процесс выполнения спектрального анализа состоит, как мы видели, из нескольких этапов. Эти этапы можно изучать последовательно, независимо друг от друга, а затем рассмотреть их взаимосвязь.

С помощью спектрального анализа можно определять как атомный (элементарный), так и молекулярный состав вещества. Спектральный анализ позволяет проводить качественное открытие отдельных компонентов анализируемой пробы и количественное определение их концентраций.

Вещества с очень близкими химическими свойствами, которые трудно или даже невозможно анализировать химическими методами, легко определяются спектрально. Например, относительно просто выполняется анализ смеси редкоземельных элементов или смеси инертных газов. С помощью спектрального анализа можно определять изомерные органические соединения с очень близкими химическими свойствами.

Методы атомного спектрального анализа, качественного и количественного, в настоящее время разработаны значительно лучше, чем молекулярного, и имеют более широкое практическое применение. Атомный спектральный анализ используют для анализа самых разнообразных объектов. Область его применения очень широка: черная и цветная металлургия, машиностроение, геология, химия, биология, астрофизика и многие другие отрасли науки и промышленности.

Следует отмстить, что широта и объем практических применений молекулярного спектрального анализа, особенно в последнее время, быстро и непрерывно растут. Это связано прежде всего с разработкой и выпуском спектрально-аналитической аппаратуры для этого метода.

Область использования молекулярного спектрального анализа охватывает главным образом органические вещества, хотя можно с успехом анализировать и неорганические соединения. Молекулярный спектральный анализ внедряется главным образом в химической, нефтеперерабатывающей и химико-фармацевтической промышленности.

Чувствительность спектрального анализа очень высока. Минимальная концентрация определяемого вещества, которая может быть обнаружена и измерена спектральными методами, колеблется в широких пределах в зависимости от свойств этого вещества и состава анализируемой пробы. Прямым анализом при определении большинства металлов и ряда других элементов сравнительно легко достигается чувствительность 10-3–а для некоторых веществ даже 10-5–1-6%. И только в особо неблагоприятных случаях чувствительность уменьшается до 10-1–10-2%. Применение предварительного отделения примесей от основы пробы позволяет сильно (часто в тысячи раз) повысить чувствительность анализа. Благодаря высокой чувствительности атомный спектральный анализ широко применяется для анализа чистых и особо чистых металлов, в геохимии и почвоведении для определения микроконцентраций различных элементов, в том числе редких и рассеянных, в промышленности атомных и полупроводниковых материалов.

Чувствительность молекулярного спектрального анализа для различных веществ изменяется в еще более широких пределах. В ряде случаев с трудом удается определять вещества, содержание которых в анализируемом образце составляет проценты и десятые доли процента, но можно привести примеры и очень высокой чувствительности молекулярного анализа 10-7–10-8%. Точность атомного спектрального анализа зависит от состава и структуры анализируемых объектов. При анализе образцов, близких по своей структуре и составу, можно легко достигнуть высокой точности. Ошибка в этом случае не превышает ±1–3% по отношению к определяемой величине. Поэтому, например, точным является серийный спектральный анализ металлов и сплавов. В металлургии и машиностроении спектральный анализ стал в настоящее время основным аналитическим методом.

Значительно ниже точность анализа веществ, состав и структура которых сильно меняется от пробы к пробе, но в последнее время и в этой области положение заметно улучшилось. Стал возможным количественный спектральный анализ руд, минералов, горных пород, шлаков и тому подобных объектов. Хотя полностью задача еще не решена, количественный анализ неметаллических проб сейчас широко применяется во многих отраслях промышленности – в металлургии, геологии, при производстве огнеупоров, стекол и других видов продукции.

Относительная ошибка определения при атомном спектральном анализе мало зависит от концентрации. Она остается почти постоянной как при анализе малых примесей и добавок, так и при определении основных компонентов образца. Точность химических методов анализа существенно снижается при переходе к определению примесей. Поэтому атомный спектральный анализ точнее химического в области малых концентраций. При средних концентрациях (0,1–1%) определяемых веществ точность обоих методов примерно одинакова, но в области высоких концентраций точность химического анализа, как правило, выше. Молекулярный спектральный анализ дает обычно более высокую точность определения, чем атомный, и не уступает в точности химическому даже при больших концентрациях.

Скорость спектрального анализа значительно превышает скорость выполнения анализа другими методами. Это объясняется тем, что при спектральном анализе не требуется предварительного разделения пробы на отдельные компоненты. Кроме того, сам анализ выполняется очень быстро. Так, при применении современных методов спектрального анализа точное количественное определение нескольких компонентов в сложном образце занимает всего несколько минут с момента доставки пробы в лабораторию до получения результатов анализа. Продолжительность анализа, конечно, возрастает, когда для повышения точности или чувствительности требуется предварительная обработка пробы.

С высокой скоростью проведения спектрального анализа тесно связана его большая производительность, что очень существенно при массовых анализах. Благодаря большой производительности и малому расходу реактивов и других материалов стоимость одного анализа при применении спектральных методов обычно мала, несмотря на значительные первоначальные затраты на приобретение спектральноаналитического оборудования. Больше того, как правило, чем выше первоначальные затраты и сложнее предварительная подготовка аналитической методики, тем быстрее и дешевле выполнение массовых анализов.

По своему существу спектральный анализ является приборным методом. При использовании современной аппаратуры число операций, требующих вмешательства спектроскописта, невелико. Установлено, что и эти оставшиеся операции могут быть автоматизированы. Таким образом, спектральный анализ позволяет подойти к полной автоматизации определения химического состава вещества.

Спектральный анализ является универсальным. С его помощью можно определять практически любые элементы и соединения в самых разнообразных твердых, жидких и газообразных аналитических объектах.

Для спектрального анализа характерна высокая избирательность. Это означает, что почти каждое вещество может быть качественно и количественно определено в сложной пробе, без ее разделения.