Сенсорные системы человека. Виды сенсорных систем

Сенсорной системой(анализатором) - называют часть нервной системы, состоящую из воспринимающих элементов - сенсорных рецепторов, нервных путей, передающих информацию от рецепторов в мозг и частей мозга, которые перерабатывают и анализируют эту информацию

В сенсорную систему входят 3 части

1. Рецепторы - органы чувств

2. Проводниковый отдел, связывающий рецепторы с мозгом

3. Отдел коры головного мозга, которая воспринимает и обрабатывает информацию.

Рецепторы - периферическое звено, предназначенное для восприятия раздражителей внешней или внутренней среды.

Сенсорные системы имеют общий план строения и для сенсорных систем характерна

Многослойность - наличие нескольких слоев нервных клеток, первый из которых связан с рецепторами, а последний с нейронами моторных областей коры большого мозга. Нейроны специализированы для переработки разных видов сенсорной информации.

Многоканальность - наличие множества параллельных каналов обработки и передачи информации, что обеспечивает детальность анализа сигналов и большую надежность.

Разное число элементов в соседних слоях , что формирует, так называемые, «сенсорные воронки»(суживающиеся или расширяющиеся) Они могут обеспечить устранение избыточности информации или, наоборот, дробный и сложный анализ признаков сигнала

Дифференциация сенсорной системы по вертикали и по горизонтали. Дифференциация по вертикали означает формирование отделов сенсорной системы, состоящих из нескольких нейронных слоев(обонятельные луковицы, кохлеарные ядра, коленчатые тела).

Дифференциация по горизонтали представляет наличие разных по свойствам рецепторов и нейронов в пределах одного слоя. Например палочки и колбочки в сетчатке глаза по-разному перерабатывают информацию.

Основной задачей сенсорной системы является восприятие и анализ свойств раздражителей, на основе которых возникают ощущения, восприятия, представления. Это составляет формы чувственного, субъективного отражения внешнего мира

Функции сенсорных систем

  1. Обнаружение сигналов. Каждая сенсорная система в процессе эволюции приспособилась к восприятию адекватных, присущих для данной системы раздражителей. Сенсорная система, например глаз, может получать разные - адекватные и неадекватные раздражения(свет или удар по глазу). Сенсорные системы воспринимают силу - глаз воспринимает 1 световой фотон(10 в -18 Вт). Удар по глазу(10 в -4 Вт). Электрический ток(10 в -11 Вт)
  2. Различение сигналов.
  3. Передача или преобразование сигналов . Любая сенсорная система работает, как преобразователь. Она преобразует одну форму энергию действующего раздражителя в энергию нервного раздражения. Сенсорная система не должна исказить сигнала раздражителя.
  • Может носить пространственный характер
  • Временные преобразования
  • ограничение избыточности информации(включение тормозных элементов, которые затормаживают соседние рецепторы)
  • Выделение существенных признаков сигнала
  1. Кодирование информации - в форме нервных импульсов
  2. Детектирование сигналов, т. е. выделение признаков раздражителя, имеющего поведенческое значение
  3. Обеспечивают опознание образов
  4. Адаптируются к действию раздражителей
  5. Взаимодействие сенсорных систем, которые формируют схему окружающего мира и одновременно позволяют нам соотносить нас самих с этой схемой, для нашего приспособления. Все живые организмы не могут существовать без восприятия информации из окружающей среды. Чем точнее организм получает такую информацию, тем будут выше его шансы в борьбе за существование

Сенсорные системы способны реагировать на неадекватные раздражители. Если попробовать клеммы батарейки, то это вызывает вкусовое ощущение - кислое, это действие электрического тока. Такая реакция сенсорной системы на адекватные и неадекватные раздражители, поставили перед физиологией вопрос - на сколько мы можем доверять нашим органам чувств.

Иоган Мюллер сформулировал в 1840 году закон специфической энергии органов чувств.

Качество ощущений не зависит от характера раздражителя, а определяется всецело заложенной в чувствительной системе специфической энергией, которая освобождается при действии раздражителя.

При таком подходе мы можем знать только, что заложено в нас самих, а не что в окружающем мире. Последующие исследования показали, что возбуждения в любой сенсорной системе возникают на основе одного источника энергии - АТФ.

Ученик Мюллера Гельмгольц создал теорию символов , в соответствии с которой он рассматривал ощущения, как символы и предметы окружающего мира. Теория символов отрицала возможность познания окружающего мира.

Эти 2 направления были названы физиологическим идеализмом. Что же собой представляет ощущение? Ощущение это субъективный образ объективного мира. Ощущения - это образы внешнего мира. Они существуют в нас и порождаются действием вещей на наши органы чувств. У каждого из нас этот образ будет являться субъективным, т.е. он зависит от степени нашего развития, опыта и каждый человек воспринимает окружающие предметы и явления по своему. Они будут являться объективными, т.е. это значит, то они существуют, независимо от нашего сознания. Раз имеется субъективность восприятия, то как решить, кто же наиболее правильно воспринимает? Где же будет истина? Критерием истины является практическая деятельность. Идет последовательное познание. На каждом этапе получается новая информация. Ребенок пробует игрушки на вкус, разбирает их на детали. Именно на основе этого глубоко опыта мы приобретаем более глубокие знания о мире.

Классификация рецепторов.

  1. Первичные и вторичные. Первичные рецепторы представляют собой рецепторное окончание, которое образовано самим первым чувствительным нейроном(Тельце Пачини, тельце Мейснера, диск Меркеля, Тельце Руффини). Этот нейрон лежит в спинальном ганглии. Вторичные рецепторы воспринимают информацию. За счет специализированных нервных клеток, которые затем передают возбуждение на нервное волокно. Чувствительные клетки органов вкуса, слуха, равновесия.
  2. Дистантные и контактные. Часть рецепторов воспринимает возбуждение при непосредственном контакте - контактные , а другие могут воспринимать раздражение на некотором расстоянии - дистантные
  3. Экстерорецепторы, интерорецепторы. Экстерорецепторы - воспринимают раздражение из внешней среды - зрение, вкус и др. и они обеспечивают на приспособление к окружающей среде. Интерорецепторы - рецепторы внутренних органов. Они отражают состояние внутренних органов и внутренней среды организма.
  4. Соматические - поверхностные и глубокие. Поверхностные - кожи, слизистых оболочек. Глубокие - рецепторы мышц, сухожилий, суставов
  5. Висцеральные
  6. Рецепторы ЦНС
  7. Рецепторы специальных чувств - зрительные, слуховые, вестибулярные, обонятельные, вкусовые

По характеру восприятия информации

  1. Механорецепторы(кожа, мышцы, сухожилия, суставы, внутренние органы)
  2. Терморецепторы(кожа, гипоталамус)
  3. Хеморецепторы(дуга аорты, каротидный синус, продолговатый мозг, язык, нос, гипоталамус)
  4. Фоторецептоыр(глаз)
  5. Болевые(ноцицептивные) рецепторы(кожа, внутренние органы, слизистые оболочки)

Механизмы возбуждения рецепторов

В случае первичных рецепторов, действие раздражителя воспринимается окончанием чувствительного нейрона. Действующий раздражитель может вызывать гиперполяризацию или деполяризацию поверхностной мембраны рецепторы в основном за счет изменения натриевой проницаемости. Повышение проницаемости к ионам натрия приводит к деполяризации мембраны и на мембране рецептора возникает рецепторный потенциал. Он существует до тех пор, пока действует раздражитель.

Рецепторный потенциал не подчиняется закону «Все или ничего», его амплитуда зависит от силы раздражителя. У него нет периода рефрактерности. Это позволяет суммироваться рецепторным потенциалам при действии последующих раздражителей. Он распространяется мелено, с угасанием. Когда рецепторный потенциал достигает критической пороговой величины, он вызывает появление потенциала действия в ближайшем перехвате Ранвье. В перехвате Ранвье возникает потенциал действия, который подчиняется закону «Все или ничего» Этот потенциал будет распространяющимся.

Во вторичном рецепторе действие раздражителя воспринимается рецепторной клеткой. В этой клетке возникает рецепторный потенциал, следствием которого будет являться выделение медиатора из клетки в синапс, который действует на постсинаптическую мембрану чувствительного волокна и взаимодействие медиатора с рецепторами приводит к образованию другого, локального потенциала, который называют генераторным . Он по своим свойства идентичен рецепторным. Его амплитуда определяется количеством выделившегося медиатора. Медиаторы - ацетилхолин, глутамат.

Потенциалы действия возникают периодически, т.к. для них характерен период рефрактерности, когда мембрана утрачивает свойство возбудимости. Потенциалы действия возникают дискретно и рецептор в сенсорной системе работает, как аналогово-дискретный преобразователь. В рецепторах наблюдается приспособление - адаптация к действию раздражителей. Есть быстроадаптирующиеся, есть медленно адаптирующиеся. При адаптация снижается амплитуда рецепторного потенциала и число нервных импульсов, которые идут по чувствительному волокну. Рецепторы кодируют информацию. Оно возможно по частоте потенциалов, по группировки импульсов в отдельные залпы и интервалами между залпами. Кодирование возможно по числу активированных рецепторов в рецептивном поле.

Порог раздражения и порог развлечения.

Порог раздражения - минимальная сила раздражителя, которая вызывает ощущение.

Порог развлечении - минимальная сила изменения раздражителя, при которой возникает новое ощущение.

Волосковые клетки возбуждаются при смещении волосков на 10 в -11 метра - 0,1 амстрема.

В 1934 году Вебер сформулировал закон, устанавливающий зависимость между первоначальной силой раздражения и интенсивностью ощущения. Он показал, что изменение силы раздражителя, етсь величина постоянная

∆I / Io = К Io=50 ∆I=52,11 Io=100 ∆I=104,2

Фехнер определили, что ощущение прямопропорционально логарифму раздражения

S=a*logR+b S-ощущение R- раздражение

S=KI в Aстепени I - сила раздражения, К и А - константы

Для тактильных рецепторов S=9,4*I d 0,52

В сенсорных системах есть рецепторы саморегуляции чувствительности рецепторов.

Влияние симпатической системы - симпатическая система повышает чувствительность рецепторов к действию раздражителей. Это полезно в ситуации опасности. Повышает возбудимость рецепторов - ретикулярная формация. В составе чувствительных нервов обнаружены эфферентные волокна, которые могут изменять чувствительность рецепторов. Такие нервные волокна есть в слуховом органе.

Сенсорная система слуха

У большинства людей, живущих в современной остановке слух прогрессивно падает. Это происходит с возрастом. Этому способствует загрязнение звуками окружающей среды - автотранспорт, дискотека и др. Изменения в слуховом аппарате становятся не обратимыми. Уши человека содержат 2 чувствительных органа. Слух и равновесие. Звуковые волны распространяются в форме сжатий и разряжений в упругих средах и при этом распространение звуков в плотных средах идет лучше, чем в газах. Звук обладает 3мя важными свойствами - высотой или частотой, мощностью, или интенсивностью и тембром. Высота звука зависит от частоты колебаний и ухо человека воспринимает с частотой от 16 до 20000 Гц. С максимальной чувствительностью от 1000 о 4000 Гц.

Основная частота звука гортани мужчины - 100 Гц. Женщины - 150 Гц. При разговоре возникают дополнительные высокочастотные звуки в форме шипения, свиста, которые исчезают при разговоре по телефону и это делает речь понятнее.

Мощность звука определяется амплитудой колебаний. Мощность звука выражают в Дб. Мощность представляет собой логарифмическую зависимость. Шепотная речь - 30 Дб, нормальная речь - 60-70 Дб. Звук транспорта - 80, шум мотора самолета - 160. Мощность звука 120 Дб вызывает дискомфорт, а 140 приводят к болезненным ощущениям.

Тембр определяется вторичными колебаниями на звуковых волнах. Упорядоченные колебания - создают музыкальные звуки. А беспорядочные колебания вызывают просто шум. Одна и та же нот звучит по разному на разных инструментах из за разных дополнительных колебаний.

Ухо человека имеет 3 составные части - наружное, среднее и внутренне ухо. Наружное ухо представлено ушной раковиной, которое действует как звука улавливающая воронка. Ухо человека менее совершенно улавливает звуки, чем у кролика, лошади, которые умеют управлять своими ушами. В основе ушной раковины - хрящ, за исключением мочки уха. Хрящевая ткань придает эластичность и форму уху. Если хрящ повреждается, то он восстанавливается разрастаясь. Наружный слуховой проход S образной формы - внутрь, вперед и вниз, длина 2,5 см. Слуховой проход покрыт кожей с малой чувствительностью наружной части и высокой чувствительностью внутренней. В наружной части слухового прохода имеются волосы, которые предупреждают попадание в слуховой проход частиц. Железы слухового прохода вырабатывают желтую смазку, которая тоже предохраняет слуховой проход. В конце прохода - барабанная перепонка, которая состоит из фиброзных волокон, покрытых снаружи кожей, а внутри - слизистой. Барабанная перепонка отделяет среднее от наружного уха. Она колеблется с частотой воспринимаемого звука.

Среднее ухо представлено барабанной полостью, объем которой равен примерно 5-6 капель воды и барабанная полость заполнена водухом, выстлана слизистой оболочкой и содержит 3 слуховые косточки: молоточек, наковальня и стремечко.среднее ухо сообщается с носоглоткой с помощью евстахиевой трубы. В состоянии покоя просвет евстахиевой трубы закрыт, что выравнивает давление. Воспалительные процессы, приводящие к воспалению этой трубы вызывают ощущение заложенности. Среднее ухо отделено от внутреннего овальным и круглым отверстием. Колебания барабанной перепонки через систему рычагов передаются стремечком на овальное окно, причем наружное ухо осуществляет передачу звуков воздушным способом.

Имеется различие площади барабанной перепонки и овального окна(площадь барабанной перепонки равна 70мм в кв. а у овального окна- 3.2мм в кв). При передаче колебания с перепонки на овальное окно амплитуда уменьшается а сила колебаний увеличивается в 20-22 раза. В частотах до 3000 Гц передается 60% Е на внутреннее ухо. В среднем ухе имеется 2 мышцы изменяющие колебания: мышца напрягающая барабанную перепонку(прикрепляется к центральной части барабанной перепонки и к рукоятке молоточка)- при увеличении силы сокращения уменьшается амплитуда; мышца стремечка- ее сокращения ограничивают колебания стремечка. Эти мышцы предупреждают травмы барабанной перепонки. Кроме воздушной передачи звуков есть и костная передача, но это сила звука не в состоянии вызвать колебания костей черепа.

Внутрее ухо

внутреннее ухо представляет собой лабиринт, состоящий из взаимосвязанных трубочек и расширений. Во внутреннем ухе располагается орган равновесия. Лабиринт имеет костную основу, а внутри располагается перепончатый лабиринт и там находится эндолимфа. К слуховой части относится улитка, она образует 2.5 оборота вокруг центральной оси и делится на 3 лестницы: вестибулярная, барабанная и перепончатая. Вестибулярный канал начинается мембраной овального окна, а заканчивается круглым окном. На вершине улитки эти 2 канала сообщаются с помощью геликокрема. А оба этих канала заполнены перилимфой. В среднем перепончатом канале располагается звуковоспринимающий аппарат — кортиев орган. Основная мембрана построена из эластических волокон, которые начинаются у основания(0.04мм) и до вершины (0.5мм). К вершине плотность волокон уменьшается в 500 раз. На основной мембране располагается кортиев орган. Он построен из 20-25 тысяч специальных волосковых клеток, расположенных на поддерживающих клетках. Волосковые клетки лежат в 3-4 ряда(наружный ряд) и в один ряд(внутренний). На вершине волосковых клеток имеются стереоцили или киноцили- самые большие стереоцили. К волосковым клеткам подходят чувствительные волокна 8 пары ЧМН от спирального ганглия. При этом 90% выделенных чувствительных волокон оказываются на внутренних волосковых клетках. На одну внутреннюю волосковую клетку конвергирует до 10 волокон. А в составе нервных волокон есть и эфферентные(оливо-улиточный пучок). Они образуют тормозные синапсы на чувствительных волокнах от спирального ганглия и иннервирует наружные волосковые клетки. Раздражение кортиевого органа связано с передачей колебаний косточек на овальное окно. Низкочастотные колебания распространяются от овального окна до вершины улитки (вовлекается вся основная мембрана).при низких частотах наблюдается возбуждение волосковых клеток лежащих на вершине улитки. Изучением распространения волн в улитке занимался Бекаши. Он обнаружил, что с увеличением частоты вовлекается меньший по протяженности столб жидкости. Высокочастотные звуки не могут вовлечь весь столб жидкости, поэтому чем больше частота, тем меньше колеблется перилимфа. Колебания основной мембраны могут возникать при передаче звуков через перепончатый канал. При колебании основной мембраны происходит смещение волосковых клеток вверх, что вызывает деполяризацию, а если вниз- волоски отклоняются внутрь, что приводит к гиперполяризации клеток. При деполяризации волосковых клеток открываются Са-каналы и Са способствует потенциалу действия, который несет информацию о звуке. Наружные слуховые клетки имеют эфферентную иннервацию и передача возбуждения идет с помощью Асh на наружных волосковых клетках. Эти клетки могут изменять свою длину: они укорачиваются при гиперполяризации и удлиняются при поляризации. Изменение длины наружных волосковых клеток влияет на колебательный процесс, что улучшает восприятие звука внутренними волосковыми клетками. Изменение потенциала волосковых клеток связано с ионным составом эндо- и перилимфы. Перилимфа напоминает ликвор, а эндолимфа имеет высокую концентрацию К(150 ммоль). Поэтому эндолимфа приобретает положительный заряд к перилифме.(+80мВ). Волосковые клетки содержат много К; они имеют мембранный потенциал и отрицательно заряженный внутри и положительный снаружи(МП=-70мВ), а разница потенциалов дает возможность проникновения К из эндолимфы внутрь волосковых клеток. Изменение положения одного волоска открывает 200-300 К- каналов и возникает деполяризация. Закрытие сопровождается гиперполяризацией. В кортиевом органе идет частотное кодирование за счет возбуждения разных участков основной мембраны. При этом было показано что звуки низкой частоты могут кодироваться числом нервных импульсов таким же количеством как и звуком. Такое кодирование возможно при восприятии звука до 500Гц. Кодирование информации звука достигается увеличением числа залпов волокон на более интенсивный звук и за счет числа активирующихся нервных волокон. Чувствительные волокна спирального ганглия оканичиваются в дорсальных и вентральных ядрах улитки продолговатого мозга. От этих ядер сигнал поступает в ядра оливы как своей так и противоположной стороны. От ее нейронов идут восходящие пути в составе латеральной петли которые подходят к нижним бугоркам четверохолмия и медиальному коленчатому телу зрительного бугра. От последнего сигнал идет в верхнюю височную извилину(извилина Гешля). Это соответствует 41 и 42 полям(первичная зона) и 22 поле(вторичная зона). В ЦНС существует топотоническая организация нейронов, то есть воспринимаются звуки с разной частотой и разной интенсивностью. Корковый центр имеет значение для восприятия, последовательности звука и пространственной локализации. При поражении 22 поля нарушается определение слов (рецептивная оппозия).

Ядра верхней оливы делят на медиальные и латеральные части. А латеральные ядра определяют неодинаковую интенсивность звуков, поступающих к обеим ушам. Медиальное ядро верхней оливы улавливает временные различия поступления звуковых сигналов. Обнаружено что сигналы от обоих ушей поступают в различные дендритные системы одного и того же воспринимающего нейрона. Нарушение слухового восприятия может проявляться звоном в ушах при раздражении внутреннего уха или слухового нерва и двумя типами глухоты: проводниковой и нервной. Первая связана с поражениями наружного и среднего уха(серная пробка).Вторая связана с дефектами внутреннего уха и поражениями слухового нерва. У пожилых людей утрачивается способность воспринимать высокочастотные голоса. За счет двух ушей можно определять пространственную локализацию звука. Это оказывается возможным, если звук отклоняется от средины положения на 3 градуса. При восприятии звуков возможно развитие адаптации за счет ретикулярной формации и эфферентных волокон(воздействием на наружные волосковые клетки.

Зрительная система.

Зрение - многозвеньевой процесс, начинающийся с проекции изображения на сетчатку глаза, затем идёт возбуждение фоторецепторов, передача и преобразование в нейронных слоях зрительной системы и заканчивается принятием высшими корковыми отделами решения о зрительном образе.

Строение и функции оптического аппарата глаза. Глаз имеет шарообразную форму, что важно для поворота глаза. Свет проходит через несколько прозрачных сред - роговицу, хрусталик и стекловидное тело, имеющие определённые преломляющие силы, выражающихся в диоптриях. Диоптрия равна преломляющей силе линзы с фокусным расстоянием 100 см. Преломляющая сила глаза при рассматривании далёких предметов - 59D, близких - 70,5D. На сетчатке образуется уменьшенное перевёрнутое изображение.

Аккомодация - приспособление глаза к ясному видению предметов на разных расстояниях. Хрусталик играет главную роль в аккомодации. При рассмотрении близких предметов ресничные мышцы сокращаются, циннова связка расслабляется, хрусталик становится более выпуклым в силу его эластичности. При рассмотрении дальних - мышцы расслаблены, связки натянуты и растягивают хрусталик, делая его более уплощённым. Ресничные мышцы иннервируются парасимпатическими волокнами глазодвигательного нерва. В норме дальняя точка ясного видения - в бесконечности, ближайшая - 10 см от глаза. Хрусталик с возрастом теряет эластичность, поэтому ближайшая точка ясного видения отодвигается и развивается старческая дальнозоркость.

Аномалии рефракции глаза.

Близорукость (миопия). Если продольная ось глаза слишком длинная или увеличивается преломляющая сила хрусталика, то изображение фокусируется перед сетчаткой. Человек плохо видит вдаль. Назначаются очки с вогнутыми стёклами.

Дальнозоркость (гиперметропия). Развивается при уменьшении преломляющих сред глаза или при укорочении продольной оси глаза. В результате изображение фокусируется за сетчаткой и чел плохо видит близкорасположенные предметы. Назначаются очки с выпуклыми линзами.

Астигматизм - неодинаковое преломление лучей в разных направлениях, обусловленное не строго сферической поверхностью роговой оболочки. Компенсируются очками с поверхностью, приближающейся к цилиндрической.

Зрачок и зрачковый рефлекс. Зрачок - отверстие в центре радужной оболочки, через которое лучи света проходят внутрь глаза. Зрачок повышает чёткость изображения на сетчатке, увеличивая глубину резкости глаза и за счёт устранения сферической аберрации. Если прикрыть глаз от света, а затем открыть его, то зрачок быстро сужается - зрачковый рефлекс. На ярком свету размер - 1,8 мм, при среднем - 2,4, в темноте - 7,5. Увеличение приводит к ухудшению качества изображения, но повышает чувствительность. Рефлекс имеет адаптационное значение. Расширяет зрачок симпатика, сужает - парасимпатика. У здоровых размеры обоих зрачков одинаковы.

Структура и функции сетчатки. Сетчатка - внутренняя светочувствительная оболочка глаза. Слои:

Пигментный - ряд отростчатых эпителиальных клеток чёрного цвета. Функции: экранирование (препятствует рассеиванию и отражению света, повышая чёткость), регенерация зрительного пигмента, фагоцитоз обломков палочек и колбочек, питание фоторецепторов. Контакт между рецепторами и пигментным слоем слабая, поэтому именно здесь происходит отслойка сетчатки.

Фоторецепторы. Колбы отвечают за цветовое зрение, их - 6-7 млн. Палки за сумеречное, их - 110-123 млн. Они расположены неравномерно. В центральной ямке - только колбы, здесь - наибольшая острота зрения. Палки чувствительнее колб.

Строение фоторецептора. Состоит из наружной воспринимающей части - наружного сегмента, с зрительным пигментом; соединительной ножки; ядерной части с пресинаптическим окончанием. Наружная часть состоит из дисков - двумембранная структура. Наружные сегменты постоянно обновляются. Пресинаптическое окончание содержит глутамат.

Зрительные пигменты. В палках - родопсин с поглощением в области 500 нм. В колбах - йодопсин с поглощениями 420 нм (синий), 531 нм (зелёный), 558 (красный). Молекула состоит из белка опсина и хромофорной части - ретиналя. Только цис-изомер воспринимает свет.

Физиология фоторецепции. При поглощении кванта света цис-ретиналь превращается в транс-ретиналь. Это вызывает пространственные изменения в белковой части пигмента. Пигмент обесцвечивается и переходит в метародопсин II, способный взаимодействовать с примембранным белком трансдуцином. Трансдуцин активируется и связывается с ГТФ, активируя фосфодиэстеразу. ФДЭ разрушает цГМФ. В результате концентрация цГМФ падает, что приводит к закрытию ионных каналов, при этом понижается концентрация натрия, приводя к гиперполяризации и возникновению рецепторного потенциала, распостраняющимся по клетке до пресинаптического окончания и вызывая уменьшение выделения глутамата.

Восстановление исходного темнового состояния рецептора. При утрате метародопсином способности взаимодействовать с трандуцином и активируется гуанилатциклаза, синтезирующая цГМФ. Гуанилатциклаза активируется падением концентрации кальция, выбрасываемого из клетки белком-обменником. В результате концентрация цГМФ повышается и она вновь связывается с ионным каналом, открывая его. При открытии в клетку идут натрий и кальций, деполяризуя мембрану рецептора, переводя его в темновое состояние, что вновь ускоряет выход медиатора.

Нейроны сетчатки.

Фоторецепторы синаптически связаны с биполярными нейронами. При действии света на медиатор уменьшается выделение медиатора, что приводит к гиперполяризации биполярного нейрона. От биполярного сигнал передаётся на ганглиозный. Импульсы от многих фоторецепторов конвергируют к одному ганглиозному нейрону. Взаимодействие соседних нейронов сетчатки обеспечивается горизонтальными и амакриновыми клетками, сигналы которых меняют синаптическую передачу межде рецепторами и биполярными (горизонтальные) и между биполярными и ганглиозными (амакриновые). Амакриновые клетки осуществляют боковое торможение между соседними ганглиозными клетками. В системе есть и эфферентные волокна, действующие на синапсы между биполярными и ганглиозными клетками, регулируя возбуждение меж ними.

Нервные пути.

1ый нейрон - биполярный.

2ой - ганглиозный. Их отростки идут в составе зрительного нерва, делают частичный перекрёст (необходимо для обеспечения каждого полушария информацией от каждого глаза) и идут в мозг в составе зрительного тракта, попадая в латеральное коленчатое тело таламуса (3ий нейрон). Из таламуса - в проекционную зону коры 17ое поле. Здесь 4ый нейрон.

Зрительные функции.

Абсолютная чувствительность. Для возникновения зрительного ощущения необходимо, чтобы световой раздражитель имел минимальную (пороговую) энергию. Палка может быть возбуждена одним квантом света. Палки и колбы мало различаются по возбудимости, но число рецепторов, посылающих сигналы на одну ганглиозную клетку различно в центре и на периферии.

Зрительная алаптация.

Приспособление зрительной сенсорной системы к условиям яркрй освещённости - световая адаптация. Обратное явление - темновая адаптация. Повышение чувствительности в темноте - поэтапное, обусловленное темновым восстановлением зрительных пигментов. Сначала восстанавливается йодопсин колб. Это мало влияет на чувствительность. Затем восстанавливается родопсин палок, что очень сильно повышает чувствительность. Для адаптации так же важны процессы изменения связей между элементами сетчатки: ослабление горизонтального торможения, приводящее к увеличению числа клеток, посылающее сигналы на ганглиозный нейрон. Влияние ЦНС тоже играет роль. При освещении одного глаза понижает чувствительность другого.

Дифференциальная зрительная чувствительность. По закону Вебера человек различит разницу в освещении, если оно будет сильнее на 1-1,5%.

Яркостной контраст происходит из-за взаимного латерального торможения зрительных нейронов. Серая полоска на светлом фоне кажется темнее серой на тёмном, так как клетки возбуждённые светлым фоном тормозят клетки, возбуждённые серой полоской.

Слепящая яркость света . Слишком яркий свет вызывает неприятное ощущение ослепления. Верхняя граница слепящей яркости зависит от адаптации глаза. Чем дольше была темновая адаптация, тем меньшая яркость вызывает ослепление.

Инерция зрения. Зрительное ощущение появляется и пропадает не сразу. От раздражения до восприятия проходит 0,03-0,1 с. Быстро следующие одно за другим раздражения сливаются в одно ощущение. Минимальная частота следования световых стимулов, при которой происходит слияние отдельных ощущений, называется критической частотой слития мельканий. На этом основано кино. Ощущения, продолжающиеся после прекращения раздражения - последовательные образы (образ лампы в темноте после её выключения).

Цветовое зрение.

Весь видимый спектр от фиолетового (400нм) до красного (700нм).

Теории. Трёхкомпонентная теория Гельмгольца. Цветовое ощущение обеспечиваемое тремя типами колб, чувствительных к одной части спектра (красной, зелёной или синей).

Теория Геринга. В колбах есть вещества чувствительные к бело-чёрному, красно-зелёному и жёлто-синему излучениям.

Последовательные цветовые образы. Если смотреть на окрашенный предмет, а затем на белый фон, то фон приобретёт дополнительный цвет. Причина - цветовая адаптация.

Цветовая слепота. Дальтонизм - расстройство, при котором невозможно различие цветов. При протанопии не различается красный цвет. При дейтеранопии - зелёный. При тританопии - синий. Диагностируется полихроматическими таблицами.

Полная потеря цветовосприятия - ахромазия, при которой всё видится в оттенках серого.

Восприятие пространства.

Острота зрения - максимальная способность глаза различать отдельные детали объектов. Нормальный глаз различает две точки, видимые под углом 1минута. Максимальная острота в области жёлтого пятна. Определяется специальными таблицами.

Для обеспечения нормальной жизнедеятельности организма* необходимы постоянство его внутренней среды, связь с непре­рывно меняющейся окружающей внешней средой и приспособ­ление к ней. Информацию о состоянии внешней и внутренней сред организм получает с помощью , которые анализируют (различают) эту информацию, обеспечивают фор­мирование ощущений и представлений, а также специфических форм приспособительного .

Представление о сенсорных системах было сформулировано И. П. Павловым в учении об анализаторах в 1909 г. при исследова­нии им . Анализатор - совокуп­ность центральных и периферических образований, воспринима­ющих и анализирующих изменения внешней и внутренней сред организма. Понятие «сенсорная система», появившееся позже, за­менило понятие «анализатор», включив механизмы регуляции раз­личных его отделов с помощью прямых и обратных связей. Наряду с этим по-прежнему бытует понятие «орган чувств» как перифе­рическое образование, воспринимающее и частично анализиру­ющее факторы окружающей среды. Главной частью являются , снабженные вспомогательными структура­ми, обеспечивающими оптимальное восприятие.

При непосредственном воздействии различных фак­торов окружающей среды с участием в организ­ме возникают ощущения, которые представляют собой отражения свойств предметов объективного мира. Особенностью ощущений является их модальность, т.е. совокупность ощущений, обеспечива­емых какой-либо одной сенсорной системой. Внутри каждой модаль­ности в соответствии с видом (качеством) сенсорного можно выделить разные качества, или валентности. Модальностя­ми являются, например, зрение, слух, вкус. Качественные типы модальности (валентности) для зрения - это различные цвета, для вкуса - ощущение кислого, сладкого, соленого, горького.

Деятельность сенсорных систем обычно связывают с возник-‘ новением пяти чувств - зрения, слуха, вкуса, обоняния и осяза­ния, с помощью которых осуществляется связь организма с внеш­ней средой. Однако в реальной действительности их значительно больше.

В основу классификации сенсорных систем могут быть положе­ны различные признаки: природа действующего раздражителя, характер возникающих ощущений, уровень чувствительности ре­цепторов, скорость адаптации и многое другое.

Наиболее существенной является классификация сенсорных систем, в основе которой лежит их назначение (роль). В связи с этим выделяют несколько видов сенсорных систем.

Внешние сенсорные системы воспринимают и анализируют из­менения внешней среды. Сюда следует включить зрительную, слу­ховую, обонятельную, вкусовую, тактильную и температурную сенсорные системы, которых воспринимается субъек­тивно в виде ощущений.

Внутренние (висцеральные) сенсорные системы воспринимают и анализируют изменения внутренней среды организма, показа­телей гомеостазиса. Колебания показателей внутренней среды в пределах физиологической нормы у здорового человека обычно не воспринимается субъективно в виде ощущений. Так, мы не можем субъективно определить величину артериального давления, особенно если оно нормальное, состояние сфинктеров и пр. Од­нако информация, идущая из внутренней среды, играет важную роль в регуляции функций внутренних органов, обеспечивая при­способление организма к различным условиям его жизнедеятель­ности. Значение этих сенсорных систем изучается в рамках курса физиологии (приспособительная регуляция деятельности внутрен­них органов). Но в то же время изменение некоторых констант внутренней среды организма может восприниматься субъективно в виде ощущений (жажда, голод, половое влечение), формирую­щихся на основе биологических . Для удовлетворе­ния этих потребностей включаются поведенческие реакции. На­пример, при возникновении чувства жажды вследствие возбужде­ния осмо- или волюморецепторов формируется , на­правленное на поиск и прием воды.

Сенсорные системы положения тела воспринимают и анализи­руют изменения положения тела в пространстве и частей тела друг относительно друга. К ним следует отнести вестибулярную и дви­гательную (кинестетическую) сенсорные системы. Поскольку мы оцениваем положение нашего тела или его частей друг относи­тельно друга, эта импульсация доходит до нашего сознания. Об этом свидетельствует, в частности, опыт Д. Маклоски, который ученый поставил на самом себе. Первичные афферентные волок­на от мышечных рецепторов раздражались пороговыми электри­ческими . Увеличение частоты импульсации этих не­рвных волокон вызывало у испытуемого субъективные ощущения изменения положения соответствующей конечности, хотя ее по­ложение в действительности не изменялось.

Ноцицептивную сенсорную систему следует выделить отдельно в связи с ее особым значением для организма - она несет информацию о повреждающих действиях. Болевые ощущения могут возникать при раздражении как экстеро-, так и интерорецепторов.

Взаимодействие сенсорных систем осуществляется на спинальном, ретикулярном, таламическом и корковом уровне. Особенно широка интеграция сигналов в . В коре мозга происходит интеграция сигналов высшего порядка. В результате множественных связей с другими сенсорными и неспецифическими системами многие корковые приобретают способность отвечать на сложные комбинации сигналов разной модальности. В особенности это свойственно нервным клеткам ассоциативных областей коры больших полушарий, которые обладают высокой пластичностью, что обеспечивает перестройку их свойств в процессе непрерывного обучения опознанию новых раздражителей. Межсенсорное (кросс-модальное) взаимодействие на корковом уровне создает условия для формирования «схемы мира» (или «карты мира») и непрерывной увязки, координации с ней собственной «схемы тела» данного организма.

С помощью сенсорных сис­тем организм познает свойства предметов и явлений окружающей среды, полезные и негативные стороны их воздействия на орга­низм. Поэтому нарушения функции внешних сенсорных систем, особенно зрительного и слухового, чрезвычайно сильно затруд­няют познание внешнего мира (очень беден окружающий мир для слепого или глухого). Однако только аналитические процессы в ЦНС не могут создать реального представления об окружающей среде. Способность сенсорных систем взаимодействовать между собой обеспечивает образное и целостное представление о пред­метах внешнего мира. Например, качество дольки лимона мы оце­ниваем с помощью зрительной, обонятельной, тактильной и вку­совой сенсорных систем. При этом формируется представление как об отдельных качествах - цвете, консистенции, вкусе, так и о свойствах объекта в целом, т.е. создается определенный целостный образ воспринимаемого объекта. Взаимодействие сенсор­ных систем при оценке явлений и предметов лежит также в основе компенсации нарушенных функций при утрате одной из сенсор­ных систем. Например, у слепых повышается чувствительность слу­ховой сенсорной системы. Такие люди могут определить местопо­ложение крупных предметов и обойти их, если нет посторонних шумов за счет отражения звуковых волн от находящегося впереди предмета. Американские исследователи наблюдали за слепым че­ловеком, который достаточно точно определял местоположение большой картонной пластинки. Когда испытуемому залепили уши воском, он не смог определить местоположение картона.

Взаимодействия сенсорных систем могут проявляться в виде влияния возбуждения одной системы на состояние возбудимости другой по доминантному принципу. Так, прослушивание музыки может вызвать обезболивание при стоматологических процедурах (аудиоаналгезия). Шум ухудшает зрительное восприятие, яркий свет повышает восприятие громкости звука. Процесс взаимодействия сенсорных систем может проявляться на различных уровнях. Осо­бенно большую роль в этом играют ретикулярная формация , кора большого мозга. Многие нейроны коры обладают споcобностью отвечать на сложные комбинации сигналов разной мо­дальности (мультисенсорная конвергенция), что очень важно для познания окружающей среды и оценки новых раздражителей

сенсорные системы - это специализированные части нервной системы, включающие периферические рецепторы (сенсорные органы, или органы чувств), отходящие от них нервные волокна (проводящие пути) и клетки центральной нервной системы, сгруппированные вместе (сенсорные центры). Каждая область мозга, в которой находится сенсорный центр (ядро) и осуществляется переключение нервных волокон, образует уровень сенсорной системы. В сенсорных органах происходит преобразование энергии внеш­него стимула в нервный сигнал - рецепция. Нервный сигнал (рецепторный потенциал) трансформируется в импульсную активность или потенциалы действия нейронов (кодирование). По проводящим путям потенциалы действия достигают сенсорных ядер, на клетках которых происходит переключение нервных волокон и преобразова­ние нервного сигнала (перекодирование) . На всех уровнях сенсорной системы, одновременно с кодированием и анализом стимулов осу­ществляется декодирование сигналов, т.е. считывание сенсорного кода. Декодирование осуществляется на основе связей сенсорных ядер с двигательными и ассоциативными отделами мозга. Нервные импульсы аксонов сенсорных нейронов в клетках двигательных сис­тем вызывают возбуждение (или торможение). Результатом этих процессов является движение - действие или остановка движения - бездействие. Конечным проявлением активации ассоциативных функций также является движение.

основными функциями сенсорных систем являются:

  1. ре­цепция сигнала;
  2. преобразование рецепторного потенциала в им­пульсную активность нервных путей;
  3. передача нервной активнос­ти к сенсорным ядрам;
  4. преобразование нервной активности в сенсорных ядрах на каждом уровне;
  5. анализ свойств сигнала;
  6. идентификация свойств сигнала;
  7. классификация и опознание сигнала (принятие решения).

12. Определение, свойства и виды рецепторов.

Рецепторы – это специальные клетки или специальные нервные окончания, предназначены для трансформации энергии (преобразовании) различных видов раздражителей в специфическую активность нервной системы (в нервный импульс).

Сигналы, поступающие в ЦНС с рецепторов, вызывают либо новые реакции, либо изменяют течение происходящей в данный момент деятельности.

Большинство рецепторов представлено клеткой, снабженной волосками или ресничками, которые представляют такие образования, которые действуют подобно усилителям по отношению к раздражителям.

Происходит либо механическое, либо биохимическое взаимодействие раздражителя с рецепторами. Пороги восприятия раздражителя очень низкие.

По действию стимулов рецепторы делятся:

1. Интерорецепторы

2. Экстерорецепторы

3. Проприорецепторы: мышечные веретена и сухожильные органы Гольджи (открыл И.М. Сеченов новый вид чувствительности – суставно-мышечное чувство).


Выделяют 3 вида рецепторов:

1. Фазные – это рецепторы, которые возбуждаются в начальный и конечный период действия раздражителя.

2. Тонические – действуют в течение всего периода действия раздражителя.

3. Фазно–тонические - у которых все время возникают импульсы, но в начале и в конце больше.

Качество воспринимаемой энергии называется модальностью .

Рецепторы могут быть:

1. Мономодальные (воспринимают 1 вид раздражителя).

2. Полимодальные (могут воспринимать несколько раздражителей).

Передача информации от перефирических органов происходит по сенсорным путям, которые могут быть специфические и неспецифические.

Специфические – это мономодальные.

Неспецифические – это полимодальные

Свойства

· Избирательность - чувствительность к адекватным раздражителям

· Возбудимость - минимальной величиной энергии адекватного раздражителя, которая необходима для возникновения возбуждения, т.е. порогом возбуждения.

· Низкая величина порогов для адекватных раздражителей

· Адаптация (может сопровождаться как понижением, так и повышением возбудимости рецепторов. Так, при переходе из светлого помещения в темное происходит постепенное повышение возбудимости фоторецепторов глаза, и человек начинает различать слабо освещенные предметы- это так называемая темновая адаптация.)

13. Механизмы возбуждения первично-чувствующих и вторично-чувствующих рецепторов.

Первично-чувствующие рецепторы : раздражитель действует на дендрит сенсорного нейрона, изменяется проницаемость клеточной мембраны к ионам (в основном к Na+), образуется локальный электрический потенциал (рецепторный потенциал), который электротонически распространяется вдоль мембраны к аксону. На мембране аксона образуется потенциал действия, передаваемый далее в ЦНС.

Сенсорный нейрон с первично-чувствующим рецептором представляет собой биполярный нейрон, на одном полюсе которого располагается дендрит с ресничкой, а на другом – аксон, передающий возбуждение в ЦНС. Примеры: проприорецепторы, терморецепторы, обонятельные клетки.

Вторично-чувствующие рецепторы : в них раздражитель действует на рецепторную клетку, в ней возникает возбуждение (рецепторный потенциал). На мембране аксона рецепторный потенциал активирует выделение нейромедиатора в синапс, в результате чего на постсинаптической мембране второго нейрона (чаще всего биполярного) образуется генераторный потенциал, который и приводит к образованию потенциала действия на соседних участках постсинаптической мембраны. Далее этот потенциал действия передается в ЦНС. Примеры: волосковые клетки уха, вкусовые рецепторы, фоторецепторы глаза.

!14. Органы обоняния и вкуса (локализация рецепторов, первое переключение, повторное переключение, проекционная зона).

Органы обоняния и вкуса возбуждаются при химическими раздражителями. Рецепторы обонятельного анализатора возбуждаются газообразными, а вкусового - растворенными химическими веществами. Развитие органов обоняния также зависит от образа жизни животных. Обонятельный эпителий располагается в стороне от главного дыхательного пути и вдыхаемый воздух поступает туда путем вихревых движений или диффузии. Такие вихревые движения возникают при “принюхивании” т.е. при коротких вдохах через нос и расширении ноздрей, что облегчает проникновению анализируемого воздуха в эти области.

Обонятельные клетки представлены биполярными нейронами аксоны которых образуют обонятельный нерв, заканчивающийся в обонятельной луковице, являющейся обонятельным центром и далее от него идут пути в другие вышележащие структуры мозга. На поверхности обонятельных клеток имеется большое количество ресничек, значительно увеличивающих - обонятельную поверхность.

Вкусовой анализатор служит для определения характера, вкусовых качеств корма, его пригодности к поеданию. Животным, живущим в воде вкусовой и обонятельный анализаторы помогают ориентироваться в окружающей среде, определять наличие пищи, самки. С переходом к жизни в воздушной среде значение вкусового анализатора уменьшается. У травоядных животных вкусовой анализатор развит хорошо, что бывает видно на пастбище и в кормушке, когда животные не всю подряд поедают траву и сено.

Периферический отдел вкусового анализатора представлен вкусовыми луковицами, расположенными на языке, мягком небе, задней стенке глотки, миндалинах и надгортаннике. Вкусовые луковицы расположены на поверхности грибовидных, листовидных и желобовидных сосочков

15. Кожный анализатор (локализация рецепторов, первое переключение, повторное переключение, проекционная зона).

В коже располагаются различные рецепторные образования. Наиболее простым типом сенсорного рецептора являются свободные нервные окончания. Более сложную организацию имеют морфологически дифференцированные образования, такие как осязательные диски (диски Меркеля), осязательные тельца (тельца Мейснера), пластинчатые тельца (тельца Пачини) - рецепторы давления и вибрации, колбы Краузе, тельца Руффини и др.

Большинству специализированных концевых образований присуща предпочтительная чувствительность к определенным видам раздражении и только свободные нервные окончания являются полимодальными рецепторами.

16. Зрительный анализатор (локализация рецепторов, первое переключение, повторное переключение, проекционная зона).

Наибольшее количество информации (до 90%) о внешнем мире человек получает с помощью органа зрения. Орган зре­ния - глаз - состоит из глазного яблока и вспомогательного аппарата. К вспомогательному аппарату относят веки, ресницы, слезные железы и мышцы глазного яблока. Веки образованы складками кожи, выстланны­ми изнутри слизистой оболочкой - конъюнктивой. Слезные железы на­ходятся в наружном верхнем углу глаза. Слезы омывают передний отдел глазного яблока и через носослезный канал попадают в полость носа. Мышцы глазного яблока приводят его в движение и направляют в сто­рону рассматриваемого предмета
17. Зрительный анализатор. Строение сетчатки. Формирование цветоощущения. Проводниковый отдел. Переработка информации .

Сетчатка имеет очень сложное строение. В ней находятся световоспринимающие клетки - палочки и колбочки. Палочки (130 млн.) более чувствительны к свету. Их называют аппаратом сумеречного зрения. Колбочки (7 млн.) - это аппарат дневного и цветового зрения. При раздражении световыми лучами этих клеток возникает возбуждение, кото­рое через зрительный нерв проводится в зрительные центры, располо­женные в затылочной зоне коры больших полушарий. Участок сетчатки, из которого выходит зрительный нерв, лишен палочек и колбочек и поэтому не способен к восприятию света. Его называют слепым пятном. Почти рядом с ним находится желтое пятно, образованное скоплением колбочек, - место наилучшего видения.

В состав оптической, или преломляющей, системы глаза входят: ро­говица, водянистая влага, хрусталик и стекловидное тело. У людей с нормальным зрением лучи света, проходящие через каждую из этих сред, преломляются и затем попадают на сетчатку, где образуют умень­шенное и перевернутое изображение видимых глазом предметов. Из этих прозрачных сред только хрусталик способен активно изменять свою кривизну, увеличивая ее при рассматривании близких предметов и уменьшая при взгляде на далекие объекты. Такая способность глаза к четкому видению разноудаленных предметов называется аккомодацией. Если при прохождении через прозрачные среды лучи преломляются слишком сильно, они фокусируются впереди сетчатки, в результате чего у человека возникает близорукость. У таких людей глазное яблоко либо удлинено, либо увеличена кривизна хрусталика. Слабое преломление этих сред приводит к фокусировке лучей позади сетчатки, что вызывает дальнозоркость. Она возникает из-за укороченности глазного яблока или уплощения хрусталика. Правильно подобранные очки позволяют испра­вить эти Проводящие пути зрительного анализатора.Первые , вторые и третьи нейроны проводящего пути зрительного анализатора расположены в сетчатке. Волокна третьих (ганглиозных) нейронов в составе зрительного нерва частично перекрещиваются образуя зрительный перекрест (хиазму). После перекреста образуются правый и левый зрительные тракты. Волокна зрительного тракта заканчиваются в промежуточном мозге (ядре латерального коленчатого тела и подушке таламуса), где расположены четвертые нейроны зрительного пути. Небольшое число волокон достигает среднего мозга в области верхних холмиков четверохолмия. Аксоны четвертых нейронов проходят через заднюю ножку внутренней капсулы и проецируются на кору затылочной доли полушарий большого мозга, где расположен корковый центр зрительного анализатора.недостатки зрения.

18. Слуховой анализатор (локализация рецепторов, первое переключение, повторное переключение, проекционная зона). Проводниковый отдел. Переработка информации. Слуховая адаптация.

Слуховой и вестибулярный анализаторы. Орган слуха и равновесия включает три отдела: наружное, среднее и внутреннее ухо. Наружное ухо состоит из ушной раковины и наружного слухового прохода. Ушная раковина представлена эластическим хрящом, покрытым кожей, и служит для улавливания звука. Наружный слуховой проход - канал дли­ной 3,5 см, который начинается наружным слуховым отверстием и за­канчивается слепо барабанной перепонкой. Он выстлан кожей и имеет железы, выделяющие ушную серу.

За барабанной перепонкой расположена полость среднего уха, со­стоящая из барабанной полости, заполненной воздухом, слуховых кос­точек и слуховой (евстахиевой) трубы. Слуховая труба связывает бара­банную полость с полостью носоглотки, что способствует уравниванию давления по обе стороны барабанной перепонки. Слуховые косточки - мо­лоточек, наковальня и стремечко соединены между собой подвижно. Молоточек рукояткой сращен с ба­рабанной перепонкой, головка моло­точка прилегает к наковальне, кото­рая другим концом соединяется со стремечком. Стремечко широким основанием соединяется с перепон­кой овального окна, ведущего во внутреннее ухо. Внутреннее ухо расположено в толще пирамиды височной кости; состоит из костного лабиринта и расположенного в нем перепончато­го лабиринта. Пространство между ними заполнено жидкостью – перилимфой, полость перепончатого ла­биринта - эндолимфой. Костный лабиринт содержит три отдела: пред­дверие, улитку и полукружные каналы. Улитка относится к органу слу­ха, остальные его части - к органу равновесия.

Улитка представляет собой костный канал, закрученный в виде спи­рали. Ее полость разделена тонкой перепончатой перегородкой - основ­ной мембраной. Она состоит из многочисленных (около 24 тыс.) соеди­нительнотканных волоконец разной длины. На основной мембране по­мещаются рецепторные волосковые клетки кортиева органа - перифери­ческого отдела слухового анализатора.

Звуковые волны через наружный слуховой проход достигают бара­банной перепонки и вызывают ее колебания, которые усиливаются (поч­ти в 50 раз) системой слуховых косточек и передаются перилимфе и эндолимфе, затем воспринимаются волокнами основной мембраны. Вы­сокие звуки вызывают колебания коротких волоконец, низкие - более длинных, расположенных у вершины улитки. Эти колебания возбужда­ют рецепторные волосковые клетки кортиева органа. Далее возбуждение передается по слуховому нерву в височную долю коры больших полу­шарий, где происходят окончательный анализ и синтез звуковых сигна­лов. Ухо человека воспринимает звуки частотой от 16 до 20 тыс. Гц.

Проводящие пути слухового анализатора.Первый нейрон про­водящих путей слухового анализатора - упомянутые выше бипо­лярные клетки. Их аксоны образуют улитковый нерв, волокна ко­торого входят в продолговатый мозг и оканчиваются в ядрах, где расположены клетки второго нейрона проводящих путей. Аксоны клеток второго нейрона доходят до внутреннего коленчатого тела, главным образом противоположной стороны. Здесь начинается третий нейрон, по которому импульсы достигают слуховой области коры больших полушарий.

Помимо основного, проводящего пути, связывающего перифери­ческий отдел слухового анализатора с его центральным, корковым отделом, существуют и другие пути, через которые могут осуще­ствляться рефлекторные реакции на раздражение органа слуха у животного и после удаления больших полушарий. Особое значение имеют ориентировочные реакции на звук. Они осуществляются при участии четверохолмия, к задним и отчасти передним буграм ко­торого идут коллатерали волокон, направляющихся к внутреннему коленчатому телу.

19. Вестибулярный анализатор (локализация рецепторов, первое переключение, повторное переключение, проекционная зона). Проводниковый отдел. Переработка информации .

Вестибулярный аппарат. Представлен преддверием и полукруж­ными каналами и является органом равновесия. В преддверии имеются два мешочка, заполненные эндолимфой. На дне и во внутренней стенке мешочков расположены рецепторные волосковые клетки, к которым примыкает отолитовая мембрана с особыми кристаллами - отолитами, содержащими ионы кальция. Три полукружных канала расположены в трех взаимно перпендикулярных плоскостях. Основания каналов в местах их соединения с преддверием образуют расширения - ампулы, в ко­торых расположены волосковые клетки.

Рецепторы отолитового аппарата возбуждаются при ускоряющихся или замедляющихся прямолинейных движениях. Рецепторы полукруж­ных каналов раздражаются при ускоренных или замедленных враща­тельных движениях за счет передвижения эндолимфы. Возбуждение рецепторов вестибулярного аппарата сопровождается рядом рефлектор­ных реакций: изменением тонуса мышц, способствующих выпрямлению тела и сохранению позы. Импульсы от рецепторов вестибулярного ап­парата по вестибулярному нерву поступают в ЦНС. Вестибулярный ана­лизатор связан с мозжечком, который регулирует его деятельность.

Проводящие пути вестибулярного аппарата.Проводящий путь статокинетического аппаратаосуществляет передачу импульсов при измене­нии положения головы и тела, участвуя совместно с други­ми анализаторами в ориентировочных реакциях организма относительно окружающего пространства. Первый нейрон статокинетического аппарата находится в преддверном ган­глии, залегающем на дне внутреннего слухового прохода. Дендриты биполярных клеток преддверного узла формиру­ют преддверный нерв, образованный 6 ветвями: верхними, нижними, боковыми и задними ампулярными, утрикулярными и саккулярными. Они контактируют с чувствитель­ными клетками слуховых пятен и гребешков, расположен­ных в ампулах полукружных каналов, в мешочке и маточке преддверия перепончатого лабиринта.

20. Вестибулярный анализатор. Формирование чувства равновесия. Автоматический и сознательный контроль равновесия тела. Участие вестибулярного аппарата в регуляции рефлексов .

Вестибулярный аппарат выполняет функции восприя­тия положения тела в пространстве, сохранения равнове­сия. При любом изменении положения головы раз­дражаются рецепторы вестибулярного аппарата. Импульсы передаются в мозг, из которого к скелетным мыш­цам поступают нервные импульсы с целью коррекции по­ложения тела и движений. Вестибулярный аппарат состоит из двух частей: преддве­рия и полукружных каналов, в которых находятся рецепторы статокинетического анализатора.

Все сенсорные системы построены по единому принципу и состоят из трех отделов: периферического, проводникового и центрального.

Периферический отдел представлен органом чувства. В его состав входят рецепторы - окончания чувствительных нервных волокон или специализированные клетки. Они обеспечивают преобразование энергии раздражителя в нервные импульсы.

Рецепторы различаются по месту расположения (внутренние и наружные), строению и особенностям восприятия энергии раздражителя (одни воспринимают механические, другие - химические, третьи - световые стимулы).

Помимо рецепторов органы чувств включают в себя вспомогательные структуры, выполняющие защитную, опорную и некоторые другие функции. Например, вспомогательный аппарат глаза представлен глазодвигательными мышцами, веками и слезными железами.

Проводниковый отдел сенсорной системы состоит из чувствительных нервных волокон, образующих в большинстве случаев специализированный нерв. Он доставляет информацию от рецепторов в центральный отдел сенсорной системы.

И наконец, центральный отдел расположен в коре больших полушарий головного мозга. Здесь находятся высшие сенсорные центры, обеспечивающие окончательный анализ поступившей информации и формирование соответствующих ощущений.

Таким образом, сенсорная система - это совокупность специализированных структур нервной системы, которые осуществляют процессы приема и обработки информации из внешней и внутренней среды, а также формируют ощущения.

Различают зрительную, слуховую, вестибулярную, вкусовую, обонятельную и другие сенсорные системы.

Зрительная сенсорная система

Ее периферическая часть представлена органом зрения (глазом), проводниковая - зрительным нервом, а центральная - зрительной зоной, расположенной в затылочной доле коры больших полушарий.

Световые лучи от рассматриваемых предметов действуют на светочувствительные клетки глаза и вызывают в них возбуждение. Оно передается по зрительному нерву в кору больших полушарий. Здесь в затылочных долях возникают зрительные ощущения формы, окраски, величины, расположения и направления движения предметов.

Слуховая сенсорная система играет очень важную роль. Ее деятельность лежит в основе обучения речи. Она представлена ухом - органом слуха (периферический отдел), слуховым нервом (проводниковый отдел) и слуховой зоной, расположенной в височной доле коры больших полушарий (центральный отдел).

Вестибулярная сенсорная система обеспечивает пространственную ориентацию человека. С ее помощью мы получаем информацию об ускорениях и замедлениях, возникающих при движении. Она представлена органом равновесия, вестибулярным нервом и соответствующей зоной в височных долях коры больших полушарий.

Ощущение положения тела в пространстве особенно необходимо летчикам, аквалангистам, акробатам и др. При повреждении органа равновесия человек не может уверенно стоять и ходить.

Вкусовая сенсорная система осуществляет анализ действующих на орган вкуса (язык) растворимых химических раздражителей. С ее помощью определяется пригодность пищи.

Наш язык покрыт слизистой оболочкой, складки которой содержат вкусовые почки (рис.). Внутри каждой почки расположены рецепторные клетки с микроворсинками.

Рецепторы связаны с нервными волокнами, которые входят в мозг в составе черепных нервов. По ним импульсы достигают задней части центральной извилины коры головного мозга, где и формируются вкусовые ощущения.

Различают четыре основных вкусовых ощущения: горькое, сладкое, кислое и соленое. Кончик языка проявляет наиболее высокую чувствительность к сладкому, края - соленому и кислому, а корень - к горьким веществам.

Обонятельная сенсорная система осуществляет восприятие и анализ химических раздражителей, находящихся во внешней среде.

Периферический отдел обонятельной сенсорной системы представлен эпителием носовой полости, в котором имеются рецепторные клетки с микроворсинками. Аксоны этих чувствительных клеток образуют обонятельный нерв, который направляется в полость черепа (рис.).

По нему возбуждение проводится к обонятельным центрам коры больших полушарий, где и осуществляется распознавание запахов.

Существенную роль в познании внешнего мира у человека играет осязание. Оно обеспечивает способность воспринимать и различать форму, размер и характер поверхности предмета. Рецепторы, участвующие в процессах восприятия раздражителей, действующих на кожу, весьма разнообразны. Они реагируют не только на прикосновения, но также на тепло, холод и болевые воздействия. Больше всего тактильных рецепторов на губах и ладонной поверхности пальцев рук, меньше всего - на туловище. Возбуждение от рецепторов по чувствительным нейронам передается в зону кожной чувствительности коры больших полушарий, где возникают соответствующие ощущения.

Лекция

Значение сенсорных систем для организма человека.

Зрительные и слуховые сенсорные системы:

Строение, функции и гигиена.

План

1. Значение сенсорных систем для организма человека.

2. Зрительная сенсорная система: строение, функции. Нарушения зрения.

3. Профилактика нарушения зрения у детей и подростков.

4. Эмбриология глаза. Возрастные особенности зрительных рефлекторных реакций.

5. Слуховая сенсорная система: строение, функции.

6. Болезни уха и гигиена слуха. Профилактика негативного влияния "школьного" шума на организм школьника.

7. Возрастные особенности слухового анализатора.

Основные понятия : органы чувств, анализатор, сенсорные системы, зрительный анализатор, слуховой анализатор, рецепторы, адаптация, глазное яблоко, вспомогательный аппарат глаза, фоторецепторы, слепое пятно, желтое пятно, аккомодация, дальнозоркость, близорукость, рефракция, рефракция, гиперметропия, эмметропия, миопия, астигматизм, офтальмотренаж, естественное и искусственное освещение, световой коэффициент, наружное ухо, среднее ухо, внутреннее ухо, Фонорецепторы, кортиев орган.

Литература

1. Даценко И.И. Гигиена и экология человека. Учебное пособие Львов: Афиша, 2000. С. 238-242.

2. Подоляк-Шумило Н.Г., Познанский С.С. Школьная гигиена. Учеб. пособие для пед. ин-тив.- К.: Высшая школа, 1981.- С. 48-53.

3. Попов С.В. Валеология в школе и дома (О физическом благополучии школьников) .- СПб.: СОЮЗ, 1997.-С. 80-92.

4. Советов С.Е. и др. Школьная гигиена. Учеб. пособие для студентов пед. ин-тив.- К.: Высшая школа, 1971.- С. 70-75.

5. Старушенко Л.1. Клиническая анатомия и физиология человека: Учебное пособие М.: УСМП, 2001. С. 231-237.

6. Присяжнюк М.С. Человек и его здоровье: Пробы, учеб. пособие.-М.: Феникс, 1998.-С. 59-71.

7. Хрипкова А.Г. и др. Возрастная физиология и школьная гигиена. Пособие для пед. ин-тов / А.Г.Хрипкова, М.В.Антропова, Д.А.Фарбер.- М.: Просвещение, 1990.- С. 79-96.

8. Хрипкова А.Г., Колесов Д.В. Гигиена и здоровье школьника.- М.: Просвещение, 1988.- С. 141-148.

Значение сенсорных систем для организма человека



Система, которая обеспечивает восприятие, передачу и переработку информации о явлениях окружающей среды, называют анализатором, или сенсорной системой . Учение об анализаторах разработано И.П. Павловым. Анализатор, по учению И.П. Павлова, состоит из трех неразрывно связанных отделов:

1) рецептора - периферического воспринимающего аппарата, который воспринимает раздражение и превращает его в нервный процесс возбуждения;

2) проводника возбуждения - центростремительного нервного волокна, которое передает возбуждение в головной мозг;

3) нервного центра - участка коры головного мозга, в котором происходит тонкий анализ возбуждения и возникают ощущения.

Таким образом, каждый анализатор состоит из периферического, проводникового и центрального отделов. К периферическому отделу относится рецепторный аппарат, к проводному - афферентные нейроны и проводящие пути, к центральному - участки коры полушарий большого мозга. Периферический отдел анализатора представляют органы чувств с заложенными в них рецепторами, с помощью которых человек познает окружающий мир, получает информацию о нем. Они называются органами внешнего чувств, или экстерорецепторы.

Экстерорецепторы - чувствительные образования, осуществляющих восприятие раздражений от окружающей среды. К ним относятся воспринимающие клетки сетчатки глаза, уши, рецепторы кожи (прикосновения и давления), органы обоняния, вкуса.

Интерорецепторы - чувствительные образования, воспринимающие изменения внутренней - среды организма.

Интерорецепторы расположены в тканях различных внутренних органов (сердца, печени, почек, кровеносных сосудов и др.) И воспринимают изменения внутренней среды организма и состояние внутренних органов. В результате поступления импульсов от рецепторов внутренних органов происходит саморегуляция дыхания, артериального давления, деятельности сердца.

Проприорецепторы - чувствительные образования, сигнализирующие о положении и движении тела содержатся в мышцах, суставах и воспринимают сокращение и растяжение мышц.

Таким образом, у человека есть такие органы чувств : зрения, слуха, ощущение положения тела в пространстве, вкуса, обоняния, кожной чувствительности, мышечно-суставного чувства.

По характеру взаимодействия с раздражителем рецепторы делятся на контактные и дистанционные; по виду энергии, трансформируется в рецепторы - механорецепторы, хеморецепторы, фоторецепторы и другие.

Контактные рецепторы могут получить информацию о свойствах предмета, явления, получить раздражение только при контакте, непосредственном соприкосновении с агентом среды. Это - хеморецепторы языка, осязательные рецепторы кожи.

Благодаря дистанционным рецепторам можно получить информацию на расстоянии: агент среды распространяет волновую энергию - световую, звуковую. Именно ее и улавливают дистанционные органы чувств, например, глаз, ухо.

Механорецепторы трансформируют механическую энергию в энергию нервного возбуждения (например, рецепторы осязания), хеморецепторы - мимической (рецепторы обоняния, вкуса), фоторецепторы - световую (рецепторы органа зрения), терморецепторы - тепловую (холодовые и тепловые рецепторы кожи).

Рецепторы отличаются очень высокой возбудимостью по адекватности раздражений. Специфические для определенного рецептора раздражители, к которым он специально приспособлен в процессе фило- и онтогенеза, называется называются адекватными. При действии адекватных раздражителей возникают ощущения, характерные для определенного органа чувств (глаз воспринимает только световые волны, но не воспринимает запахи, звук).

Кроме адекватных, существуют неадекватные раздражители, которые обуславливают только примитивные ощущения, присущие определенному анализатору. Например, от удара в ухо возникает звон в ушах.

Возбудимость рецепторов зависит как от состояния всего анализатора, так и от общего состояния организма. Наименьшая разница в силе двух раздражителей одного вида, которая может восприниматься органами чувств, называется порогом различения . Однако большинство импульсов от рецепторов внутренних органов, достигая коры большого мозга, не вызывает психических явлений. Такие импульсы называются субсенсорными: они ниже порога ощущений и потому не вызывают ощущений.

Рецепторы способны привыкать к силе раздражителя. Это свойство называют адаптацией, при которой уменьшается или увеличивается чувствительность рецепторов. Максимальная скорость адаптации для рецепторов, которые воспринимают прикосновение к коже, наименьшая - для рецепторов мышц. Медленнее адаптируются рецепторы кровеносных сосудов и легких, обеспечивает постоянную саморегуляцию артериального давления и дыхания. Обусловлена ​​адаптация, прежде всего, изменениями в корковых отделах анализаторов, а также процессами, которые осуществляются в самых рецепторах.

Проводниковый отдел сенсорных систем состоит из доцентровых (афферентных) нервных волокон в составе чувствительных нервов и некоторых подкорковых образований (ядер гипоталамуса, таламуса и ретикулярной формации). В этом отделе импульс от рецепторов не только проводится, но и кодируется и превращается.

В центральном отделе анализатора нервные импульсы приобретают новые качества и отражаются в сознании в виде ощущения. На основе ощущения возникают сложные субъективные образы:восприятия, представления.

У детей органы чувств еще несовершенны и находятся в процессе развития. Первыми развиваются органы вкуса и обоняния, а затем органы осязания. Для усовершенствования различных органов чувств у детей большое значение масс правильно поставленная тренировка их в процессе развития.