Сперматозоиды. Морфология, количество, созревание, состав спермы

Мужские половые клетки

Онтогенез

Онтогенез - процесс индивидуального развития организма от момента оплодотворения и до момента смерти.

Периоды онтогенеза

I Пренатальный - период внутриутробного развития (длительность 280 суток) ;

а) начальный (ранний эмбрион) первая неделя

б) зародышевый (эмбрион) 2 - 8 неделя, образование первой полости, органогенез и сердцебиение на 21 день

в) плодный (до конца беременности), плацентация, дифференциация тканевых структур

II Постнатальный - период развития организма после рождения;

а) ранний постэмбриональный

б) дальнейшего формирования, развития и созревания организма, его старения и смерти.

Начальный период - имеет следующие стадии:

1) зигота - начало синтеза ДНК;

2) дробление - начало синтеза всех видов РНК;

3) морула - клетки тотипотентны;

4) бластоциста - потеря тотипотентности; клетки детерминированы к образованию зародышевых или внезародышевых структур;

5) гаструла - наличие зародышевых листков и стволовых клеток.

Онтогенезу всегда предшествует прогенез, так как без образования и созревания мужских и женских половых клеток невозможно образования нового организма.

ПРОГЕНЕЗ

Прогенез - образование, развитие и созревание мужских и женских половых клеток.

Половые клетки - гаметы, в отличие от соматических, имеют гаплоидный набор хромосом. Все хромосомы гамет, за исключением одной половой, называются аутосомами, половая гоносома .

Мужские половые клетки имеют половые хромосомы X или Y.

Женские половые клетки только Х.

Дифференцированные гаметы имеют невысокий уровень метаболизма и не способны к размножению.

Мужские половые клетки - сперматозоиды (спермии), развивается в очень их несколько тысяч миллионов. Они невелики по размерам (у человека около 70мкм), обладают способностью к активному движению со скоростью 30-50 мкм/сек. Сперматозоид имеет жгутиковую форму.

ЁПроцесс образования и созревания сперматозоидов - сперматогенез.

Сперматозоид состоит из двух частей: 1) головки; 2) хвоста.

Головка сперматозоида (caput spermatozoidi) содержит небольшое плотное ядро с гаплоидным набором хромосом. Для человека характерно наличие в ядре 22 аутосомы и 1 половой хромосом (гоносомы). В зависимости от того, какую половую хромосому имеет ядро сперматозоида Х или Y, они делятся на два вида:

1) андроспермии - содержат Y - хромосомы,

2) гинекоспермии - содержат Х - хромосомы.

ЁЯдро характеризуется высоким содержанием нуклеопротаминов и нуклеогистонов . Передняя часть ядра покрыта плоским мешочком, который образует чехлик сперматозоида. На переднем полюсе чехлика располагается акросома (от греч. acros - верхушка; soma - тело). Оба образования (чехлик и акросома) являются производными комплекса Гольджи.



Акросома содержит набор ферментов, среди которых важное место принадлежит гиалуронидазе и протеазам (трипсин), которые способны растворять оболочки яйцеклетки.

Головка снаружи покрыта клеточной мембраной.

Хвост (feagellum) сперматозоида состоит из:

а) связующей части (шейка) образованной двумя центиолями - проксимальной и дистальной, от дистальной берет начало осевая нить (аксонема);

б) промежуточной части образованной двумя центральными и 9 парами периферических микротрубочек, окруженных по спирали митохондриями (митохондриальное влагалище);

в) главной части, которая по строению напоминает ресничку. Окружена тонкофибриллярным влагалищем;

г) терминальной части, которая содержит единичные сократительные филаменты.

Также как и головка, хвост покрыт клеточной мембраной

Сперматозоид представляет собой половую клетку мужской особи, главное предназначение которой – оплодотворение яйцеклетки женщины. Строение сперматозоида, размеры, функционирование и форма во время его жизненного цикла вызывают живой интерес у людей. Ведь в таком маленьком резервуаре заложен весь набор информации, который будет передан от отца к его будущему ребенку.

Из каких элементов состоит мужская клетка

Размер сперматозоида настолько мал, что рассмотреть строение можно лишь при помощи хорошего микроскопа, измерение происходит в микронах. В длину он достигает 55 мкм и состоит из нескольких частей, каждая из которых выполняет свои функции:

  1. Головка.
  2. Шейка.
  3. Промежуточный отдел, или тело.
  4. Хвост.

Увеличенное в сотни раз фото сперматозоида позволяет рассмотреть его структуру. Полость головки заполнена хроматином – наследственным материалом. Иначе эту часть головки называют ядро. Информация ДНК, которая соединится с яйцеклеткой, и содержится в самой основной части мужской клетки, и эта часть – ядро. Его передний конец содержит акросому, где производится синтез ферментов, которыми будут растворены оболочки яйцеклетки. Это самая значительная форма гаметы. Размеры головки составляют: в высоту – 2,5 мкм, в ширину – 3,5 мкм, в длину – 5,0 мкм.

Шейка отличается спиралевидной формой, которая способствует функции выработки энергии, нужной для активного движения. Основная же масса энергии поступает за счет фруктозы, содержащейся в сперме в значительных количествах. Размер шейки в длину – 4,5 мкм.

Сперматозоид имеет сложное строение.

Схема строения сперматозоида включает центросому – форму, обеспечивающую работу двигательной функции хвоста. Расположена она в шейной части, за которой начинается средняя ее часть, называемая телом. Внутри нее находится так называемый скелет из микротрубочек.

Завершающую и самую подвижную часть в строении спермия называют хвостом. Он намного у́же и длиннее средней части. В длину он достигает 45 мкм. Перемещение происходит за счет кнутообразного движения хвостовой части. А его форму составляют микротрубочки: две из них – центральные и девять пар по бокам.

Ни смотря на свои микроскопические размеры, сперматозоид имеет функциональную структуру, каждый элемент которой активно участвует в процессе достижения цели.

Процесс созревания мужских клеток

Процесс образования и вызревания полноценных гамет называют сперматогенезом. Начинается он в период, когда наступает половое созревание, и продолжается всю дальнейшую жизнь. Возникает и развивается сперматозоид человека в специальной железе – яичках, которые являются частью структуры мужской половой системы мужчины.

Средний период развития спермия составляет около трех месяцев, это означает, что раз в 90 дней обновляются спермии. Сперматогенез – процесс довольно сложный, состоящий из различных этапов развития и деления.

Процесс управляется и регулируется с помощью функций гипофиза и гормонов яичек. Находясь в мужском организме, гаметы пребывают в состоянии покоя. Но во время выброса семенной жидкости к процессу подключается фермент простатического секрета, который и активирует движение.

В сперме содержится огромное количество гамет. Размеры сперматозоида настолько малы, что в одном миллилитре их может содержаться от 1.5 до 2 миллионов. Но для успешного оплодотворения количество особой роли не играет, важны их подвижность, активность и высокий процент качественных форм. При выполнении этих условий функции сперматозоида будут выполнены и достигнут результат.

Во время сперматогенеза происходит образования клеток двух форм: несущие X-хромосому или Y-хромосому. В первом случае происходит формирование эмбриона женского пола, во втором – мужского. При этом считается, что клетки, несущие X-хромосому, живут намного дольше. Этим и объясняется тот факт, что забеременеть мальчиком сложнее.

Для оплодотворения важна подвижность сперматозоидов.

Как происходит оплодотворение

Успешное оплодотворение яйцеклетки – основная функция сперматозоида, этот процесс достаточно сложный. Ооцит оплодотворяется лишь одним сперматозоидом. За возможность достичь цели первыми борьбу ведут миллионы сперматозоидов. Движение начинается сразу после попадания спермы в тело женщины. Спустя всего 2-3 часа большинство клеток гибнет, и виной тому – неблагоприятная форма влагалищной среды.

Выжившие продолжают двигаться, попадая поочередно в отдел шейки матки, а затем в матку. По пути к яйцеклетке гаметам приходится преодолевать препятствия в виде защитной слизи, которую будут разрушать ферментные соединения, содержащиеся в их головной части. Сама яйцеклетка также покрыта специальной мукополисахаридной оболочкой, которая будет разрушена в месте проникновения самого сильного спермия.

При использовании ферментов акросомы создается отверстие в оболочке, размером, достаточным для внедрения головки, при этом тело и хвост отпадают. Самый важный элемент сперматозоида человека несет половинную генетическую информацию. Слияние мужских и женских клеток завершается образованием диплоидной зиготы, содержащей 46 хромосом.

Во время эякуляции выбрасывается несколько миллионов сперматозоидов.

В конечном итоге функции яйцеклетки и сперматозоида сводятся к единой цели – успешному и здоровому оплодотворению. Поэтому наиболее значимой характеристикой для спермия является его активность. Благодаря строению и функциям сперматозоидов и яйцеклетки оплодотворение становится высоко вероятным. Наличие специфических рецепторов на внешней оболочке дает возможность распознать химические вещества, которые выделяет яйцеклетка. Функция и строение сперматозоида создают все необходимые условия для целенаправленного движения. После выброса семенной жидкости здоровые клетки, которые не погибли во влагалищной среде, продолжают движение к яйцеклетке. Это перемещение называют положительный хемотаксис.

Важно: длина сперматозоидов и их количество в сперме роли не играет. Успешному достижению цели способствует их хорошая подвижность.

Основные сведения о мужских гаметах

Скорость движения, учитывая форму сперматозоида, а особенно его размер, просто огромна. За одну минуту он способен преодолеть дистанцию в 4-5 мм. Можно представить, что это за расстояние, если его собственная длина, в переводе на миллиметры, составляет 0,055. Длина маточной трубы, в среднем, составляет 170 мм, а это значит, что для достижения цели сперматозоиду понадобится 44 минуты беспрерывного движения. Но в реальности это может занять несколько суток.

25% – такова статистика успешного оплодотворения во время выброса спермы. Это касается даже здоровых пар. Во время выброса спермы введение сперматозоида во влагалище происходит с очень большой скоростью. В среднем она составляет 70 км/ч.

По окончании этапа созревания сперматозоид может прожить в мужском организме месяц. Вне организма – около суток, на это влияют окружающие условия (температура, влажность, кислотный уровень). Сперма наполнена огромным количеством питательных веществ. Спермии занимают всего 5% всей семенной жидкости. Все оставшееся вещество в своем составе имеет элементы защитных и питательных веществ, которые должны поддерживать жизнеспособность клетки во время ее продвижения к цели.

Для того чтобы оплодотворение прошло успешно и будущий эмбрион развивался без отклонений, можно предпринять ряд мер по улучшению качества спермы. Среди них – воздержание от вредных привычек, употребление фруктов и овощей, пребывание на свежем воздухе. Не последнее место занимают контроль над весом и предпочтение в меню легкой пищи. Таким образом, все элементы строения сперматозоида будут хорошо функционировать, и клетки будут более активны.

сперматозоидов, кажется, что у людей всегда возникают вопросы. Кто-то хочет убить сперматозоиды, кто-то получить, либо продать, некоторые беспокоятся по поводу работы своих "маленьких помощников". В конце концов, мир без сперматозоидов был бы очень одиноким местом. Вот удивительные факты, которые вы возможно еще не знали о сперматозоидах.

1. Аномальные сперматозоиды - это нормально

Механизм производства сперматозоидов у людей довольно ленив. Как же еще объяснить тот факт, что 90 процентов сперматозоидов в семенной жидкости мужчины деформированы? Две головки, два хвоста, огромные головки, булавочная форма головки, спиральный хвост - поистине этот список деформаций сперматозоидов можно продолжать еще долго.

По правде говоря, это цена, которую мы заплатили за моногамию. У тех видов, где самке попадают сперматозоиды больше, чем одного самца, сперматозоиды имеют более однородный вид. У людей же, как правило, сперматозоиды двух мужчин не оказываются у одной женщины в одно и то же время.

2. Пол чайной ложки

Именно такой объем обычно выходит при эякуляции у мужчины. Это не много, но так или иначе, сперматозоидам удается выполнить свою работу.

3. Сперматозоиды крошечные

Хотите увидеть сперматозоид? Лучше обзаведитесь микроскопом, так как эти живчики очень мелкие, чтобы их можно было увидеть невооруженным взглядом. Насколько маленькими? Длина сперматозоида составляет примерно 0,05 мм от головки до хвоста.

Конечно, то, что сперматозоиды недобирают в длину, он восполняют своим количеством. Если бы можно было выстроить всех сперматозоидов, вышедших во время эякуляции, то они бы протянулись на 9,5 км.

4. Сперматозоид и сперма

Некоторые люди используют термин сперматозоид и сперма как взаимозаменяющие друг друга. Но сперматозоиды являются всего лишь компонентом спермы или семенной жидкости. В семенной жидкости также содержится вещества из предстательной железы, а также семенные пузырьки.

Сперматозоиды, которые производятся в яичках, требуют много топлива, чтобы двигать своим хвостиком. К счастью они получают это топливо из сахарной фруктозы, которой снабжают их семенные пузырьки.

Жидкость из предстательной железы или простаты содержит вещества, которые помогают семенной жидкости разжижаться, когда она попадает внутрь женщины. Без этого, сперматозоиды не смогли бы двигаться.

5. Одного яичка достаточно

Если мужчина теряет одно яичко по медицинским причинам, то другое, как правило, способно производить достаточно сперматозоидов, чтобы зачать ребенка. Возможно, самым известным примером этого стал известный американский велогонщик Лэнс Армстронг, который из-за рака потерял одно яичко и стал отцом пятерых детей.

6. 200 миллионов конкурентов

Нужен всего один сперматозоид, чтобы оплодотворить женскую яйцеклетку, но за честь сделать это идет жесткая конкуренция. На самом деле, в среднем в семенной жидкости содержится около 200 миллионов сперматозоидов.

7. Фабрика никогда не закрывается

Женщины рождаются с ограниченным числом яйцеклеток. Но дела обстоят совсем иначе для мужчин. Мужчины производят сперматозоиды весь день, каждый день на протяжении всей жизни.

По мере того, как мужчина стареет, сперматозоиды становятся медлительнее, а ДНК более фрагментированным, но фабрика никогда не закрывается.

8. У сперматозоидов крепкие каски

Конечно это не совсем каска, а овальная структура, называемая акросома. Она содержит сильные химические вещества, которые вырабатываются, когда сперматозоид крепится к яйцеклетке. Вещество растворяет внешнюю оболочку яйцеклетки, пробурив отверстие, через которое сперматозоид может проникнуть в яйцеклетку.

9. Сперматозоидам нужна защита

Сперматозоиды выглядят как любая другая клетка нашего организма, но ко времени, когда они покидают яички, у них остается вдвое меньше ДНК, чем у других клеток нашего тела. Все это выглядит подозрительно для иммунной системы. Чтобы предотвратить атаку иммунных клеток на сперматозоидов, семенники снабжают их специальными клетками, которые окружают их создавая ограду.

10. Мертвые сперматозоиды способны создать живых детей

Чтобы оплодотворить яйцеклетку традиционным способом, сперматозоидам нужно уметь плавать. Однако, дело обстоит иначе в случае экстракорпорального оплодотворения. В действительности, специалисты используют крошечные роботизированные стеклянные палочки, чтобы внедрить один сперматозоид в яйцеклетку. Иногда они даже ударяют сперматозоид, пока он не перестанет двигаться. Ведь главное, что нужно - это ДНК внутри сперматозоида.

11. Каким путем двигаться?

Сперматозоиды способны подгонять себя, но многим тяжело дается движение в одном направлении. На самом деле, только половине сперматозоидов удается это сделать. Остальные плавают кругами, другие раскачиваются с движениями семенной жидкости.

Но так как большинство из них стартуют, многие все же добираются до яйцеклетки. И это несмотря на факт, что трубы, соединяющие матку с яичниками, содержат мелкие клетки волосков, которые создают препятствия сперматозоидам. Если вы когда-нибудь видели, как плывет лосось против течения, то вы поймете, о чем идет речь.

12. Сперматозоид живет в течение нескольких дней

Как долго могут прожить сперматозоиды внутри женского тела? Около двух-трех дней.

13. Y не имеет равных

Как только сперматозоид соединяется с яйцеклеткой, хромосомы обмениваются кусочками ДНК, означая, что образуется смесь ДНК от матери и от отца. Но есть исключение: у хромосомы Y нет аналогов в ДНК яйцеклетки, и потому она передается практически без изменений от отца к сыну. Потому Y хромосома выглядит также, как хромосома отца, отца его отца и так далее через поколения.

14. Хранится в прохладе

Каким бы жарким не был секс, яички мужчины должны находиться в прохладе, то есть прохладнее, чем температура тела, что важно для производства здоровых сперматозоидов.

Тело мужчины поддерживает идеальную температуру мошонки с помощью вен, которые отгоняют тепло от мышц мошонки, приподнимающих и опускающих яички, чтобы либо приблизить, либо отодвинуть их от тепла тела.

Если мужчина скрещивает ноги, температура мошонки повышается. То же самое происходит, когда он носит трусы-плавки.

15. Два месяца чтобы создать сперматозоид

Сколько времени требуется для того, чтобы произвести сперматозоид? Согласно последним исследованиям, нужно около двух месяцев.

Производство сперматозоидов непрерывно, как и в случае с конвейером. Но также как и с конвейером, требуется время, чтобы пройти от начала до конца.

Размножение и созревание сперматозоидов (сперматогенез) представляет собой непрерывный процесс, начинающийся в период полового созревания и заканчивающийся в глубокой старости, если не происходит его нарушения под действием какого-либо заболевания или иного вредного воздействия. Сперматогенез осуществляется в мужских половых железах – тестикулах (яичках).

Анатомия яичек – фабрики сперматозоидов

Яички расположены в мошонке, которая вынесена за пределы полостей человеческого тела. Кожа мошонки обильно снабжена потовыми железами для предотвращения перегревания. Яички имеют в своем распоряжении мышечный аппарат, который позволяет поднимать тестикулы в брюшную полость (например, при понижении температуры окружающей среды, особенно при резком охлаждении). Спермограмма – это анализ спермы, при котором учитываются определенные показатели спермы. Сперма – это секрет половых желез (простаты, семенных пузырьков), в котором располагаются сперматозоиды. Процесс образования сперматозоидов называется сперматогенез. Рассмотрим подробнее весь механизм образования и созревания сперматозоидов.

Сперматогенез представляет собой непрерывный процесс, начинающийся в период полового созревания и заканчивающийся в глубокой старости, если не происходит его нарушения под действием какого-либо заболевания или иного вредного воздействия. Сперматогенез осуществляется в мужских половых железах – тестикулах (яичках).
ждении). Оба эти явления хорошо знакомы мужской части населения. Данные защитные механизмы осуществляются рефлекторно при участии вегетативной нервной системы, то есть не зависят от сознательной воли человека. Яички имеют овальную форму, слегка сплющены с боков, при нормальном развитии у мужчин зрелого возрасти становятся размером со сливу. Левое яичко всегда немного больше правого и располагается в мошонке ниже правого. Данное явление связано с анатомическими особенностями кровеносных сосудов, которые кровоснабжают левое и правое яичко. Таким образом, опасения некоторых подростков и части взрослых мужчин относительно асимметрии размеров и расположения яичек, напрасны.

Физиология яичек

Яички вырабатывают мужской половой гормон – тестостерон. Тестостерон продуцируется клетками Лейдига, которые также называются интерстициальными клетками. Параллельно процессу выработки тестостерона в семенных канальцах яичка происходит созревание сперматозоидов. Семенные канальцы очень протяженные – их длина достигает 150-300 м. Такая феноменальная протяженность семенных канальцев достигается их невероятной извитостью. По отводящим каналам, которых имеется 12-13 в каждом яичке, сперматозоиды попадают в чрезвычайно сильно извитый, длиной до 5 метров, проток придатка яичка (эпидидимус), где и заканчивается процесс их созревание. Далее сперматозоиды попадают в семявыносящий проток или же распадаются.

Развитие сперматозоида

Как происходит развитие сперматозоида? В начале развития мужская половая клетка – предшественник (сперматогоний) проходит несколько стадий митотического деления, при котором клетка делится на две с сохранением полного хромосомного набора. В результате образуется сперматоцит, который представляет собой очередной этап развития сперматозоида. Сперматоцит вступает в мейотические деления (в два этапа), при которых происходит разделение хромосомного набора пополам, и, в результате, образуются сперматиды. Сперматиды уже не делятся, а лишь проходят процесс созревания. В результате происходит образование зрелой мужской половой клетки – сперматозоида.

Какие условия нужны для нормального развития сперматозоидов?

При каких условиях осуществляется процесс развития и созревания мужских половых клеток? Оптимальная температура для сперматогенеза составляет 34 ºС, и длится этот процесс 72-74 дня. За сутки у здорового мужчины образуется около 100 миллионов сперматозоидов. Этот процесс происходит непрерывно – одни сперматозоиды завершают свое созревание, другие только начинают расти, а третьи находятся в средней стадии. В этот период воздействие на организм мужчины различных неблагоприятных факторов, может оказать отрицательное влияние на развитие, подвижность, строение, а, следовательно, и биологическую способность сперматозоидов.

Что неблагоприятно для развития сперматозоидов?

Какие же факторы приводят к нарушению сперматогенеза? Как мы уже говорили, это избыток тепла (как внешнего, так и внутреннего), длительная лихорадка, чрезмерно частое посещение сауны или бани с парилкой с высокой температурой, прием горячих ванн. Также отрицательное влияние на сперматогенез оказывают различные токсические химические вещества, ионизирующее излучение, электромагнитные волны, стресс , гипокальциемия, застойные явления в малом тазу, нарушение кровообращения в мошонке (длительное нахождение в положении сидя – у спортсменов-велосипедистов, профессиональных водителей, работников офисов), ношение слишком узкого нательного белья (трусов), переохлаждение органов таза (сидение на холодных предметах), инфекционные заболевания половой сферы (простатит), эндокринные заболевания (сахарный диабет , нарушение функции щитовидной железы).

Прием антибактериальных и сульфаниламидных препаратов, казалось бы, таких безобидных, как например, сульфасалазин, фурадонин, длительный прием транквилизаторов, антидепрессантов, алкоголя, табакокурение, кокаиновая наркомания, каннабизм (курение продуктов индийской конопли – марихуаны, гашиша), психические воздействия (сильный страх, например) – все эти факторы также нарушают нормальный ход созревания сперматозоидов.

Подробную информацию о простатите читайте в статье : Простатит

Как происходит оплодотворение?

Сперматозоиды несут половинный набор хромосом (гаплоидный) – 23 штуки, из которых 22 хромосомы являются соматическими и 1 хромосома – половой. Именно эта половая хромосома и определит пол будущего ребенка: если половая хромосома Х – ребенок будет женского пола, если же Y – ребенок будет мужского пола. Впоследствии в процессе оплодотворения гаплоидный набор хромосом сперматозоида соединятся с половинным набором хромосом яйцеклетки (женской половой клетки). Происходит слияние генетического материала обоих родителей и восстановление количества хромосомного аппарата до 46 хромосом (23 материнских и 23 отцовских).

Затем начинается деление и развитие будущего организма из этой единственной клетки, образовавшейся в результате соединения яйцеклетки и сперматозоида. Процесс оплодотворения изображен очень схематично, однако важно, что две половинки хромосомного набора соединились, как половинки любящих сердец. В действительности эти процессы довольно сложны и подвергаются очень тонкой регуляции. Регуляция процессов оплодотворения построена с многократной системой защиты и подстраховок, однако, и они бывают уязвимы.

Из чего состоит сперма?

Зрелый сперматозоид состоит из головки, тела и хвоста. Семявыносящие протоки каждый со своей стороны проходят в брюшную полость в составе семенного канатика, через паховый канал почти до мочевого пузыря, где располагаются семенные пузырьки, выделяющие белковый секрет, способствующий большей подвижности сперматозоидов, окутывая их своеобразной защитной оболочкой. Дальше семявыносящие протоки проходят через предстательную железу (простату), которая имеет форму каштана.

Простата вырабатывает секрет, способствующий усилению подвижности сперматозоидов. Свойство подвижности сперматозоидов обеспечивается большим числом ферментов и биологически активных веществ. Семявыносящие протоки впадают в мочеиспускательный канал, в него же впадают протоки куперовых желез, выделяющие свой секрет перед эякуляцией. На пике сексуального возбуждения происходит непроизвольное сокращение мышц стенок семявыносящих протоков, расширение их просвета, семя поступает из протоков яичка. Последующие сокращения мускулатуры выталкивают семенную жидкость, при этом мужчина испытывает ощущение оргазма.

Подробную информацию об анализе спермы читайте в статье:

Сперматозоид - это мужская половая клетка (гамета). Он обладает способностью к движению, чем в известной мере обеспечивается возможность встречи разнополых гамет . Размеры сперматозоида микроскопические: длина этой клетки у человека составляет 50-70 мкм (самые крупные они у тритона - до 500 мкм). Все сперматозоиды несут отрицательный электрический заряд, что препятствует их склеиванию в сперме. Количество сперматозоидов, образующихся у особи мужского пола, всегда колоссально. Например, эякулят здорового мужчины содержит около 200 млн сперматозоидов (жеребец выделяет около 10 млрд сперматозоидов).

Строение сперматозоида

По морфологии сперматозоиды резко отличаются от всех других клеток, но все основные органеллы в них имеются. Каждый сперматозоид имеет головку, шейку, промежуточный отдел и хвост в виде жгутика . Почти вся головка заполнена ядром, которое несет наследственный материал в виде хроматина. На переднем конце головки (на ее вершине) располагается акросома, которая представляет собой видоизмененный комплекс Гольджи. Здесь происходит образование гиалуронидазы - фермента, который способен расщеплять мукополисахариды оболочек яйцеклетки, что делает возможным проникновение сперматозоида внутрь яйцеклетки. В шейке сперматозоида расположена митохондрия, которая имеет спиральное строение. Она необходима для выработки энергии, которая тратится на активные движения сперматозоида по направлению к яйцеклетке. Большую часть энергии сперматозоид получает в виде фруктозы, которой очень богат эякулят. На границе головки и шейки располагается центриоль. На поперечном срезе жгутика видны 9 пар микротрубочек, еще 2 пары есть в центре. Жгутик является органоидом активного движения. В семенной жидкости мужская гамета развивает скорость, равную 5 см/ч (что применительно к ее размерам примерно в 1,5 раза быстрее, чем скорость пловца-олимпийца).

При электронной микроскопии сперматозоида обнаружено, что цитоплазма головки имеет не коллоидное, а жидкокристаллическое состояние. Этим достигается устойчивость сперматозоида к неблагоприятным условиям внешней среды (например, к кислой среде женских половых путей). Установлено, что сперматозоиды более устойчивы к воздействию ионизирующей радиации, чем незрелые яйцеклетки.

Сперматозоиды некоторых видов животных имеют акросомный аппарат, который выбрасывает длинную и тонкую нить для захвата яйцеклетки.

Установлено, что оболочка сперматозоида имеет специфические рецепторы, которые узнают химические вещества, выделяемые яйцеклеткой. Поэтому сперматозоиды человека способны к направленному движению по направлению к яйцеклетке (это называется положительным хемотаксисом).



При оплодотворении в яйцеклетку проникает только головка сперматозоида, несущая наследственный аппарат, а остальные части остаются снаружи.

Яйцо или яйцеклетка – это специально дифференцированная клетка , приспособленная к оплодотворению и дальнейшему развитию. В отличие от сперматозоидов яйцеклетки не способны к активному движению и имеют однообразную форму: у большинства животных они округлые, могут быть овальные или вытянутые. Ядро, как правило, повторяет форму яйцеклетки. Для нее характерно большое количество цитоплазмы, в которой, помимо обычных органоидов, содержится большое количество желтка – запасного питательного материала для развития зародыша. Яйцеклетки с большим количеством желтка, как правило, больших размеров (рыбы, рептилии, птицы), яйцеклетки с малым количеством желтка (ланцетник) или не содержащие вообще (млекопитающие) не больших размеров, но всегда крупнее сперматозоидов. Строение яиц определяется содержанием и местоположением желтка. По этим признакам можно выделить следующие типы яйцеклеток. Алецитальные яйцеклетки вообще не содержат желтка. Такие яйцеклетки характерны для плацентарных млекопитающих. Гомолецитальные яйцеклетки содержат небольшое количество желтка, более или менее равномерно распределенного по всей цитоплазме (ланцетник). Следующий тип – телолецитальные. Они характеризуются содержанием среднего или большого количества желтка, расположенного полярно. Этот тип подразделяется на два подтипа: «средне» телолецитальный и «крайне» телолецитальный. «Средне» телолецитальные яйцеклетки содержат среднее количество желтка, распложенного в вегетативной части (земноводные). «Крайне» телолецитальный тип содержит большое количество желтка также сконцентрированного в вегетативной части (костистые рыбы, рептилии, птицы). Центролецитальный тип яйцеклетки также характеризуется наличием большого количества желтка, который расположен в центре яйцеклетки (насекомые).



Наличие большого количества желтка обуславливает полярность яиц (исключение – центролецитальные клетки). Полярность яиц хорошо выражена у земноводных, рептилий, птиц. Верхняя часть яйца, бедная желтком, называется анимальным полюсом, а нижняя, содержащая большое количество желтка, – вегетативным. Мысленная линия соединяющая анимальный и вегетативный полюсы и проходящая через центр яйцеклетки, называется осью яйца.

Характерной особенностью для строения яйцеклеток является наличие у них оболочек. Оболочки сохраняют форму и строение яйца, предохраняют его содержимое от высыхания, защищают от механических и химических воздействий внешней среды.

Оболочки яйцеклеток подразделяют на три группы: первичные, вторичные и третичные.

Первичная оболочка яйцеклетки образуется самим яйцом и представляет собой ее поверхностный уплотненный слой, ее называют желточной оболочкой и образуется она до оплодотворения в процессе оогенеза.

Вторичные оболочки вырабатываются клетками, питающими яйцо. Примером могут служить фолликулярные клетки. Часто эти оболочки могут быть плотными и тогда у них имеются микропили – отверстия для проникновения сперматозоида.

Третичные оболочки служат для защиты яйца, они образуются во время прохождения яйцеклетки по яйцеводу. Примером третичных оболочек могут служить белковая, подскорлуповые и скорлуповая у птиц.

Яйцеклетки очень чувствительны к колебаниям температуры, ультрафиолетовым лучам, лучам Рентгена и радия.

При сравнительно небольшом повышении температуры, которое животные переносят безболезненно, яйцеклетки погибают. Повышение дозировки лучей Рентгена, радия, ультрафиолетовых лучей смертельно для яйцеклеток. Установлено, что если развитие и оплодотворение половых клеток ещё молодое, то оно более чувствительно к облучению.

Ткани растений

Клетки высших растений тоже дифференцированы и организованы в ткани. Ботаники различают четыре главных типа ткани: меристематическую, защитную, основную и проводящую.

Меристематическая ткань. Меристематические ткани состоят из мелких клеток с тонкими стенками и крупными ядрами; вакуолей в этих клетках мало или нет вовсе. Основной функцией клеток меристемы является рост; эти клетки делятся, дифференцируются и дают начало тканям всех других типов . Зародыш, из которого развивается растение, целиком состоит из меристемы; по мере развития большая часть меристемы дифференцируется в другие ткани, но даже в старом дереве есть участки меристемы, обеспечивающие дальнейший рост. Меристематические ткани мы находим в быстро растущих частях растения: в кончиках корней и стеблей и в камбии. Меристема в кончике корня или стебля, называемая верхушечной меристемой, осуществляет рост этих частей в длину, а меристема камбия, называемая боковой меристемой, делает возможным увеличение толщины стебля или корня.

Защитная ткань. Защитные ткани состоят из толстостенных клеток, предохраняющих лежащие глубже тонкостенные клетки от высыхания и механических повреждений. К защитным тканям относятся, например, эпидермис листьев и пробковые слои ствола и корней. Эпидермис листа выделяет воскообразный водонепроницаемый материал, называемый кутином, который препятствует потере воды с поверхности листа.

На поверхности листьев имеются замыкающие клетки - специализированные эпидермальные клетки, расположенные по две около каждого из устьиц - крошечных отверстий, ведущих внутрь листа. Тургорное давление в замыкающих клетках регулирует величину устьичных щелей, а тем самым и скорость прохождения через них кислорода, двуокиси углерода и водяных паров.

Некоторые из эпидермальных клеток корня имеют выросты, называемые корневыми волосками; эти выросты увеличивают поверхность, всасывающую воду и растворенные минеральные вещества из почвы. Стебли и корни покрыты слоями пробковых клеток, образуемых особым пробковым камбием. Пробковые клетки очень плотно «упакованы», и стенки их содержат другое водонепроницаемое вещество - суберин. Суберин препятствует проникновению воды в пробковые клетки; поэтому они живут недолго, и зрелая пробковая ткань состоит из мертвых клеток.

Основная ткань. Эта ткань образует главную массу тела растения: мягкие части листа, цветков и плодов, кору и сердцевину стеблей и корней. Главные функции этой ткани - выработка и накопление питательных веществ. Самый простой тип основной ткани - паренхима, состоящая из тонкостенных клеток с тонким слоем протоплазмы, окружающим центральную вакуоль. Хлоренхима - видоизмененная паренхима, содержащая хлоропласты, в которых происходит фотосинтез. Клетки хлоренхимы расположены рыхло и образуют большую часть внутренней ткани листьев и некоторых стеблей. Они характеризуются тонкими клеточными стенками, крупными вакуолями и наличием хлоропластов.

В некоторых основных тканях углы клеточных стенок утолщены, чтобы обеспечить растению опору. Такая ткань, называемая колленхимой, встречается в стеблях и черешках листьев под самым эпидермисом. В другой ткани - склеренхиме - сильно утолщена вся клеточная стенка; склеренхимные клетки, обеспечивающие механическую прочность, можно найти в стеблях и корнях многих растений. Иногда они имеют форму длинных тонких волокон. Веретенообразные склеренхимные клетки, называемые лубяными волокнами, встречаются во флоэме (лубе) стеблей многих растений. Округлые склеренхимные клетки, называемые каменистыми клетками, имеются в твердой скорлупе орехов.

Проводящие ткани. У растений есть два типа проводящей ткани: ксилема (древесина), которая проводит воду и растворенные соли, и флоэма (луб), по которой перемещаются растворенные питательные вещества, например глюкоза . У всех высших растений из клеток ксилемы первыми образуются длинные клетки, называемые трахеидами, с заостренными концами и с кольцевыми или спиральными утолщениями стенок. Позднее эти клетки соединяются между собой концами, образуя сосуды древесины. В процессе развития сосудов поперечные стенки растворяются, а боковые утолщаются, так что образуется длинная целлюлозная трубка для проведения воды. Эти сосуды могут достигать 3 м в длину. Как в трахеидах, так и в сосудах цитоплазма в конце концов отмирает и остаются пустые трубки, которые продолжают функционировать. Утолщение клеточных стенок, сопровождающееся отложением лигнина (вещества, обусловливающего твердость и деревянистость стволов и корней), позволяет ксилеме выполнять не только проводящие, но и опорные функции.

Аналогичное слияние клеток, примыкающих друг к другу концами, приводит к образованию ситовидных трубок флоэмы. Концевые стенки не исчезают, а сохраняются в виде пластинок с отверстиями - ситовидных пластинок. В отличие от трахеид и сосудов древесины ситовидные трубки остаются живыми и содержат большое количество цитоплазмы, но утрачивают ядра. К ситовидным трубкам примыкают «клетки-спутники», имеющие ядра; возможно, что они служат для регулирования функции ситовидных трубок. Круговое движение цитоплазмы существенно ускоряет проведение растворенных питательных веществ по этим трубкам. Ситовидные трубки встречаются в мягкой коре деревянистых стеблей, лежащей кнаружи от камбия.

Ткани животных

Биологи несколько расходятся во мнениях по вопросу о том, как следует классифицировать различные типы тканей и сколько вообще существует таких типов. Мы будем различать шесть типов животных тканей: эпителиальную, соединительную, мышечную, кровь, нервную и репродуктивную.

Эпителиальная ткань. Эта ткань состоит из клеток, которые образуют наружные покровы тела или выстилают его внутренние полости. Эпителиальная ткань может выполнять функции защиты, всасывания, секреции и восприятия раздражений (или одновременно несколько из этих функций). Эпителий защищает нижележащие клетки от механического повреждения, от вредных химических веществ и бактерий и от высыхания. Через клетки кишечного эпителия происходит всасывание пищи и воды. Другие эпителиальные ткани служат для выделения самых разнообразных веществ; некоторые из этих веществ представляют собой ненужные продукты обмена, а другие используются организмом. Наконец, поскольку тело сплошь покрыто эпителием, очевидно, что любое раздражение, чтобы быть воспринятым, должно пройти через эпителий. К эпителиальным тканям относятся, например, наружный слой кожи и ткани, выстилающие пищеварительный тракт, трахею, почечные канальцы. Эпителиальные ткани делятся на шесть подгрупп в зависимости от формы и функции их клеток.

Плоский эпителий состоит из уплощенных клеток, имеющих форму многоугольников. Он образует поверхностный слой кожи и выстилку ротовой полости, пищевода и влагалища. У человека и высших животных плоский эпителий обычно состоит из нескольких слоев плоских клеток, накладывающихся друг на друга; такая ткань называется многослойным плоским эпителием.

Кубический эпителий состоит из кубовидных клеток. Он выстилает почечные канальцы.

Клетки цилиндрического эпителия имеют продолговатую форму и напоминают столбики или колонны; ядро обычно расположено ближе к основанию клетки. Цилиндрическим эпителием выстланы желудок и кишечник.

Ресничный эпителий. Цилиндрические клетки могут иметь на своей свободной поверхности мельчайшие протоплазматические отростки, называемые ресничками, ритмическое биение которых продвигает находящийся у поверхности клеток материал в одном направлении. Большая часть дыхательных путей выстлана цилиндрическим ресничным эпителием, реснички которого служат для удаления частиц пыли и другого постороннего материала.

Чувствительный (сенсорный) эпителий содержит клетки, специализированные для восприятия раздражений. Примером может служить выстилка носовой полости - обонятельный эпителий, с помощью которого воспринимаются запахи.

Клетки железистого эпителия специализированы для секреции различных веществ, например молока, ушной серы или пота. Они имеют цилиндрическую или кубическую форму.

Соединительные ткани. Этот тип ткани, к которому относятся костная ткань, хрящ, сухожилия, связки и волокнистая соединительная ткань, поддерживает и соединяет между собой все остальные клетки тела. Для всех этих тканей характерно наличие большого количества неживого материала, который выделяют их клетки. Это так называемое основное вещество. Природа и функция соединительной ткани того или иного типа в значительной степени зависит от характера этого межклеточного основного вещества. Таким образом, клетки выполняют свои функции косвенным путем, выделяя основное вещество, которое и служит собственно связующим и опорным материалом.

В волокнистой соединительной ткани основное вещество представляет собой густую, беспорядочно и плотно переплетенную сеть волокон, которые окружают соединительнотканные клетки и состоят из материала, выделяемого этими клетками. Такая ткань встречается в организме повсюду: она связывает кожу с мышцами, удерживает в надлежащем положении железы и соединяет многие другие образования. Специализированными видами волокнистой соединительной ткани являются сухожилия и связки. Сухожилия - не эластичные, но гибкие тяжи, прикрепляющие мышцы к костям. Связки обладают некоторой упругостью и соединяют между собой кости. Особенно густое сплетение соединительнотканных волокон находится под самой кожей (именно этот слой после химической обработки - дубления - превращается в выделанную кожу).

Волокна соединительной ткани содержат белок, который называется коллагеном. При обработке этих волокон горячей водой коллаген превращается в растворимый белок - желатину. Коллаген и желатина имеют почти одинаковый аминокислотный состав. Макромолекулы коллагена, образующие волокна, представляют собой спиральные структуры из трех пептидных цепей, соединенных между собой водородными связями. Поскольку в организме человека очень много соединительной ткани, коллаген составляет в нем около трети всех белков.

Опорный скелет позвоночных состоит из хряща или кости. У зародышей всех позвоночных скелет образован из хряща, но у всех взрослых форм, за исключением акул и скатов, хрящевой скелет в основном замещается костным. У человека хрящи можно прощупать в ушной раковине и в кончике носа. Хрящ тверд, но обладает упругостью. Хрящевые клетки выделяют вокруг себя плотное, упругое основное вещество, образующее сплошной однородный межклеточный материал, среди которого в небольших полостях поодиночке или группами (по 2 или по 4) лежат сами клетки. Эти заключенные в основное вещество клетки остаются живыми; некоторые из них выделяют волокна, которые включаются в основное вещество и укрепляют его.

Костные клетки также остаются живыми и выделяют основное вещество кости в течение всей жизни человека. Основное вещество кости содержит соли кальция (в виде гидроксилапатита) и белки, главным образом коллаген. Соли кальция обеспечивают кости твердость, а коллаген препятствует ломкости; таким образом кость приобретает прочность, позволяющую ей выполнять опорные функции. На вид кость кажется сплошной, но в действительности это не так. У большинства костей в середине имеется обширная костномозговая полость, в которой может находиться желтый костный мозг, состоящий главным образом из жира, или красный костный мозг - ткань, образующая эритроциты и некоторые виды лейкоцитов.

В основном веществе кости имеются каналы (гаверсовы каналы), по которым проходят кровеносные сосуды и нервы, снабжающие костные клетки кровью и регулирующие их деятельность. Основное вещество отлагается в виде концентрических колец (костных пластинок), образующих стенки каналов, а клетки оказываются замурованными в полостях, имеющихся в основном веществе. Костные клетки связаны между собой и с гаверсовыми каналами своими протоплазматическими отростками, лежащими в тончайших канальцах в основном веществе. Через эти канальцы костные клетки получают кислород и различные необходимые им вещества и освобождаются от продуктов обмена. В костной ткани есть также клетки, разрушающие эту ткань, так что кости постепенно изменяют свою форму под влиянием испытываемых ими нагрузок и напряжений.

Мышечная ткань. Движения большинства животных обусловлены сокращением вытянутых, цилиндрических или веретенообразных клеток, каждая из которых содержит большое число тонких продольных, параллельно расположенных сократимых волокон, называемых миофибриллами . Сокращаясь, т. е. укорачиваясь и утолщаясь, мышечные клетки производят механическую работу; они могут только тянуть, но не толкать. В организме человека есть мышечная ткань трех типов: поперечнополосатые мышцы, гладкие мышцы и сердечная мышца. Сердечная мышца образует стенку сердца, гладкие мышцы находятся в стенках пищеварительного тракта и некоторых других внутренних органов, а поперечнополосатые мышцы образуют большие массы мышечной ткани, прикрепленной к костям. Волокна поперечнополосатых и сердечной мышц обладают характерной особенностью: в отличие от всех остальных клеток, имеющих только по одному ядру, каждое их волокно содержит по многу ядер. Кроме того, в поперечнополосатых волокнах ядра занимают необычное положение: они лежат на периферии, под самой клеточной мембраной; по-видимому, это имеет значение для увеличения силы сокращения. Эти волокна достигают необычайной для клеток длины - до 2 и даже 3 см. Некоторые исследователи полагают, что мышечные волокна тянутся от одного конца мышцы до другого.

Под микроскопом в волокнах поперечнополосатых и сердечной мышц можно видеть чередование светлых и темных поперечных полос, поэтому их и называют поперечнополосатыми. Эти полосы, очевидно, имеют отношение к механизму сокращения, так как при сокращении их относительная ширина изменяется: темные полосы практически не изменяются, а светлые становятся уже. Поперечнополосатые мышцы иногда называют произвольной мускулатурой, так как их движением мы можем управлять. Сердечная и гладкая мускулатура называется непроизвольной, так как человек не может управлять их функцией.

Кровь. Кровь состоит из эритроцитов и лейкоцитов (красные и белые кровяные тельца) и жидкой неклеточной части - плазмы. Многие биологи относят кровь к соединительной ткани, так как обе эти ткани образуются из сходных клеток.

Эритроциты позвоночных животных содержат гемоглобин - пигмент, способный легко присоединять и отдавать кислород. Соединяясь с кислородом, гемоглобин образует комплекс оксигемоглобин, который может легко освобождать кислород, доставляя его таким образом всем клеткам тела. Эритроциты млекопитающих имеют форму уплощенных двояковогнутых дисков и не содержат ядра; у других позвоночных эритроциты больше похожи на клетки; они имеют овальную форму и содержат ядро.

Существует пять типов лейкоцитов - лимфоциты, моноциты, нейтрофилы, эозинофилы и базофилы. Лейкоциты не содержат гемоглобина, они очень подвижны и могут легко захватывать бактерий. Они способны выходить сквозь стенки кровеносных сосудов в ткани, уничтожая находящиеся там бактерии. Жидкая часть крови, плазма, переносит разнообразные вещества из одних частей тела в другие. Одни вещества переносятся в растворенном состоянии, другие могут быть связаны каким-либо из белков плазмы. У некоторых беспозвоночных пигмент, переносящий кислород, находится не внутри клеток, а растворен в плазме, окрашивая ее в красноватый или голубоватый цвет. Кровяные пластинки (тромбоциты) представляют собой фрагменты особых крупных клеток находящихся в костном мозге; они участвуют в процессе свертывания крови.

Нервная ткань. Нервная ткань состоит из клеток, специализированных для проведения электрохимических импульсов и называемых нейронами. Каждый нейрон имеет тело - расширенную часть, содержащую ядро, - и два или большее число тонких нитевидных отростков, отходящих от тела клетки. Отростки состоят из цитоплазмы и покрыты клеточной мембраной; толщина их варьирует в пределах от нескольких микрометров до 30-40 мкм, а длина - от 1 или 2 мм до метра и более. Нервные волокна, идущие от спинного мозга к руке или ноге, могут достигать 1 м в длину. Нейроны связаны между собой в цепи для передачи в организме импульсов на большие расстояния.

В зависимости от направления, в котором отростки в нормальных условиях проводят нервный импульс, они делятся на два типа: аксоны и дендриты. Аксоны проводят импульсы от тела клетки к периферии, а дендриты - по направлению к телу клетки. Соединение между аксоном одного нейрона и дендритом следующего называется синапсом. В синапсе аксон и дендрит фактически не соприкасаются, между ними остается небольшой промежуток. Импульс может проходить через синапс только с аксона на дендрит, так что синапс служит как бы клапаном, препятствующим проведению импульсов в обратном направлении. Нейроны имеют весьма различные размеры и форму, но все они построены по одному основному плану.

Репродуктивная ткань. Эта ткань состоит из клеток, служащих для размножения, а именно из яйцеклеток у особей женского пола и сперматозоидов, или спермиев, у особей мужского пола. Яйцеклетки обычно имеют шаровидную или овальную форму и неподвижны. У большинства животных, за исключением высших млекопитающих, цитоплазма яйца содержит большое количество желтка, который служит для питания развивающегося организма с момента оплодотворения и до тех пор, пока он не становится способным добывать пищу каким-нибудь другим способом. Сперматозоиды гораздо мельче яйцеклеток; они утратили большую часть цитоплазмы и приобрели хвост, при помощи которого они двигаются. Типичный сперматозоид состоит из головки (в которой находится ядро), шейки и хвоста. Форма сперматозоидов у разных животных различна. Поскольку яйцеклетки и сперматозоиды развиваются из ткани яичников и семенников, имеющей эктодермальное происхождение, некоторые биологи относят их к эпителиальным тканям.