Заряженная черная дыра. Черная дыра – самый загадочный объект во Вселенной

Существующие представления о черных дырах основываются на теоремах, доказываемых средствами дифференциальной геометрии многообразий. Изложение результатов теории имеется в книгах , и мы не будем повторять их здесь. Отсылая читателя за подробностями к монографиям и сборникам , а также оригинальным статьям и обзорам , ограничимся кратким перечислением основных положений, лежащих в основе современных представлений о черных дырах.

Наиболее общее семейство вакуумных решений уравнений Эйнштейна, описывающих стационарные асимптотически плоские пространства-времена с несингулярным горизонтом событий и регулярные всюду вне горизонта, обладает осевой симметрией и совпадает с двухпараметрическим семейством Керра . Два независимых параметра и а задают массу и момент вращения черной дыры. Теоремы, подкрепляющие это утверждение, были сформулированы в работах для невращающейся черной дыры и обобщены на метрику Керра в . Описывающие черные дыры решения невакуумных уравнений Эйнштейна, могут характеризоваться большим числом параметров. Так, в случае системы уравнений Эйнштейна - Максвелла, перечисленными свойствами обладает семейство решений Керра - Ньюмена , имеющее четыре параметра где электрический, магнитный заряды, единственность этого семейства доказана в . Имеются решения системы уравнений Эйнштейна - Янга - Миллса, описывающие черные дыры, несущие калибровочные (цветовые) заряды , а также системы Эйнштейна - Янга - Миллса - Хиггса со спонтанно нарушенной симметрией, описывающие точечные гравитирующие монополи и дайоны, скрытые под горизонтом событий . В расширенной супергравитации найдены решения, описывающие экстремально заряженные черные дыры, обладающие фермионной структурой. Существенно, что все перечисленные решения известны для полей нулевой массы, массивных собственных внешних полей черной дыры иметь не могут .

Поле Керра - Ньюмена

Откладывая обсуждение решений с магнитными и калибровочными зарядами до § 18, рассмотрим подробнее решение Керра - Ньюмена, описывающее вращающуюся электрически заряженную

черную дыру . В координатах Бойера - Линдквиста квадрат интервала пространства-времени имеет вид

где введены стандартные обозначения

4-потенциал (-форма) электромагнитного поля, определяемый соотношением

при не отличается от потенциала точечного заряда в пространстве Минковского. Дополнительное слагаемое, пропорциональное а, на пространственной бесконечности совпадает с потенциалом магнитного диполя величины Отличные от нуля компоненты контравариантного метрического тензора равны (координаты нумеруем 0, 1, 2, 3)

Для метрики Керра - Ньюмена имеется тридцать ненулевых символов Кристоффеля, из которых двадцать два попарно равны

где обозначено

Символы Кристоффеля являются четными функциями разности и не обращаются в нуль в экваториальной плоскости метрики Керра. Остальные компоненты связности нечетны относительно отражения в плоскости где они принимают нулевые значения. Это полезно иметь в виду при решении уравнений движения частиц.

Отличные от нуля компоненты тензора электромагнитного поля равны

что соответствует при суперпозиции кулонова поля и поля магнитного диполя.

Линейный элемент (1) не зависит от координат поэтому векторы

являются векторами Киллинга, порождающими сдвиги по времени и вращения вокруг оси симметрии. Векторы Киллинга и не ортогональны между собой

Симметрия электромагнитного поля относительно преобразований, задаваемых векторами Киллинга, выражается в равенстве нулю производных Ли от 4-потенциала (3) вдоль векторных полей (8),

Вектор времениподобен в области, ограниченной неравенством

и становится изотропным на поверхности эргосферы

представляющей собой эллипсоид вращения. Внутри эргосферы вектор пространственноподобен, однако существует линейная комбинация векторов Киллинга

представляющая собой времениподобный вектор Киллинга внутри эргосферы, если выполняется неравенство

Поверхность, на которой сливаются, является горизонтом событий, ее положение определяется большим корнем уравнения

откуда находим где

Величина играет роль угловой скорости вращения горизонта; в согласии с общей теоремой она не зависит от угла

Горизонт событий представляет собой изотропную гиперповерхность, пространственное сечение которой имеет топологию сферы. Площадь двумерной поверхности горизонта вычисляется по формуле

что приводит к результату

Согласно теореме Хокинга площадь поверхности горизонта событий черной дыры, погруженной в материальную среду, тензор энергии-импульса которой удовлетворяет условиям энергодоминантности, не может убывать. Масса и момент вращения дыры по отдельности могут уменьшаться, при этом, полностью потеряв вращательный момент, черная дыра окажется имеющей массу не менее величины

которая была названа «неуменьшаемой» массой черной дыры . Закон неубывания площади горизонта событий имеет общую природу с законом возрастания энтропии, его можно связать с потерей информации о состоянии вещества, оказавшегося под горизонтом событий. Если бы черная дыра не обладала некоторой

энтропией, то при поглощении, скажем, нагретого газа во внешнем пространстве происходило бы убывание энтропии. Привлечение квантовых соображений устраняет опасность противоречия со вторым началом термодинамики, ибо оказывается, что в квантовой гравитации энтропия черной дыры действительно пропорциональна площади поверхности горизонта событий (21) в единицах квадрата планковской длины

Это отвечает и более ранним расчетам эффекта рождения частиц в черных дырах в рамках полуклассической теории . Суммарная энтропия черной дыры и поглощаемого вещества при этом не убывает, поскольку при поглощении увеличивается масса (а также, возможно, уменьшается вращательный момент) черной дыры, вследствие чего возрастает площадь поверхности горизонта событий. Следует отметить, что знаменатель в (23) крайне мал, поэтому при макроскопическом изменении площади горизонта энтропия черной дыры изменяется на весьма большую величину.

На горизонте событий постоянна линейная комбинация компонент 4-потенциала, имеющая смысл электростатического потенциала горизонта для наблюдателя, вращающегося вместе с горизонтом

Постоянна также величина, получившая название «поверхностной гравитации» черной дыры, которая равна ускорению (в единицах координатного времени) частицы, удерживаемой в покое на горизонте, в инвариантном виде

где вектор определяется формулой (14). при (т. е. является изотропным вектором, лежащим на гиперповерхности

Другой изотропный вектор, нормированный условием Для метрики Керра - Ньюмена поверхностная гравитация горизонта равна

Чему равен электрический заряд черной дыры? Для "нормальных" черных дыр астрономических масштабов этот вопрос глуп и бессмысленен, но для миниатюрных черных дыр он весьма актуален. Допустим, миниатюрная черная дыра съела чуть-чуть больше электронов, чем протонов, и приобрела отрицательный электрический заряд. Что будет, когда заряженная миниатюрная черная дыра окажется внутри плотной материи?

Для начала примерно прикинем электрический заряд черной дыры. Пронумеруем заряженные частицы, падающие в черную дыру начиная с самого начала тирьямпампации, приведшей к ее появлению, и начнем суммировать их электрические заряды: протон - +1, электрон - -1. Рассмотрим это как случайный процесс. Вероятность получить +1 на каждом шаге равна 0.5, так что мы имеем классический пример случайного блуждания , т.е. средний электрический заряд черной дыры, выраженный в элементарных зарядах, будет равен

Q = sqrt (2N/π)

где N – количество заряженных частиц, поглощенных черной дырой.

Возьмем нашу любимую 14-килотонную черную дыру и посчитаем, сколько она съела заряженных частиц

N = M/m протона = 1.4*10 7 /(1.67*10 -27) = 8.39*10 33
Отсюда q = 7.31*10 16 элементарных зарядов = 0.0117 Кл. Казалось бы, немного – такой заряд проходит за секунду через нить 20-ваттной лампочки. Но для статического заряда величина нехилая (кучка протонов с таким суммарным зарядом весит 0.121 нанограмма), а для статического заряда объекта величиной с элементарную частицу – величина просто охренительная.

Посмотрим, что происходит, когда заряженная черная дыра попадает внутрь относительно плотного вещества. Для начала рассмотрим самый простой случай – газообразный двухатомный водород. Давление будем считать атмосферным, температуру – комнатной.

Энергия ионизации атома водорода составляет 1310 кДж/моль или 2.18*10 -18 на атом. Энергия ковалентной связи в молекуле водорода равна 432 КДж/моль или 7.18*10 -19 Дж на одну молекулу. Расстояние, на которое нужно оттащить электроны от атомов, примем за 10 -10 м, вроде должно хватить. Таким образом, сила, действующая на пару электронов в молекуле водорода в процессе ионизации, должна быть равна 5.10*10 -8 Н. На один электрон – 2.55*10 -8 Н.

По закону Кулона

R = sqrt (kQq/F)

Для 14-килотонной черной дыры имеем R = sqrt (8.99*10 9 *0.0117*1.6*10 -19 /2.55*10 -8) = 2.57 см.

Электроны, вырванные из атомов, получают стартовое ускорение не менее 1.40*10 32 м/с 2 (водород), ионы – не менее 9.68*10 14 м/с 2 (кислород). Не вызывает сомнений, что все частицы нужного заряда очень быстро будут поглощены черной дырой. Интересно было бы посчитать, сколько энергии успеют выбросить в окружающую среду частицы противоположного заряда, но считать интегралы ломает:-(а как это сделать без интегралов – не знаю:-(Навскидку, визуальные эффекты будут варьироваться в пределах от очень маленькой шаровой молнии до вполне приличной шаровой молнии.

С другими диэлектриками черная дыра делает примерно то же самое. Для кислорода радиус ионизации равен 2.55 см, для азота - 2.32 см, неона - 2.21 см, гелия - 2.07 см. У жидкостей диэлектрическая проницаемость среды заметно больше единицы и у воды радиус ионизации 14-килотонной черной дырой составляет всего лишь 2.23 мм. У кристаллов диэлектрическая проницаемость разная в разных направлениях и зона ионизации будет иметь сложную форму. Для алмаза средний радиус ионизации (исходя из табличного значения константы диэлектрической проницаемости) составит 8.39 мм. Наверняка почти всюду наврал по мелочи, но порядок величин должен быть такой.

Итак, черная дыра, попав в диэлектрик, быстро теряет свой электрический заряд, не производя при этом особых спецэффектов, кроме превращения небольшого объема диэлектрика в плазму.

В случае попадания в металл или плазму неподвижная заряженная черная дыра нейтрализует свой заряд практически мгновенно.

А теперь посмотрим, как электрический заряд черной дыры влияет на происходящее с черной дырой в недрах звезды. В первой части трактата уже приводились характеристики плазмы в центре Солнца – 150 тонн на кубометр ионизированного водорода при температуре 15 000 000 К. Гелий пока нагло игнорируем. Тепловая скорость протонов в указанных условиях составляет 498 км/с, а вот электроны летают с почти релятивистскими скоростями – 21300 км/с. Поймать столь быстрый электрон гравитацией практически невозможно, поэтому черная дыра будет быстро набирать положительный электрический заряд до тех пор, пока не достигнется равновесие между поглощением протонов и поглощением электронов. Посмотрим, что это будет за равновесие.

На протон со стороны черной дыры действует сила притяжения

F п = (GMm п - kQq)/R 2

Первая "электрокосмическая" :-) скорость для такой силы получается из уравнения

mv 1 2 /R = (GMm п - kQq)/R 2

v п1 = sqrt((GMm п - kQq)/mR)

Вторая "электрокосмическая" скорость протона есть

v п2 = sqrt(2)v 1 = sqrt(2(GMm п - kQq)/(m п R))

Отсюда радиус поглощения протонов равен

R п = 2(GMm п - kQq)/(m п v п 2)

Аналогично радиус поглощения электронов равен

R э = 2(GMm э + kQq)/(m э v э 2)

Чтобы протоны и электроны поглощались с равной интенсивностью, эти радиусы должны быть равны, т.е.

2(GMm п - kQq)/(m п v п 2) = 2(GMm э + kQq)/(m э v э 2)

Заметим, что знаменатели равны, и сократим уравнение.

GMm п - kQq = GMm э + kQq

Уже удивительно – от температуры плазмы ничего не зависит. Решаем:

Q = GM(m п - m э)/(kq)

Подставляем цифирки и с удивлением получаем Q = 5.42*10 -22 Кл – меньше заряда электрона.

Подставляем это Q в R п = R э и с еще большим удивлением получаем R = 7.80*10 -31 - меньше радиуса горизонта событий для нашей черной дыры.

ПРЕВЕД МЕДВЕД

Вывод – равновесие в нуле. Каждый проглоченный черной дырой протон тут же приводит к проглатыванию электрона и заряд черной дыры снова становится нулевым. Замена протона на более тяжелый ион ничего принципиально не меняет – равновесный заряд будет не на три порядка меньше элементарного, а на один, ну и что с того?

Итак, общий вывод: электрический заряд черной дыры ни на что существенно не влияет. А выглядело так заманчиво...

В следующей части, если не надоест ни аффтару, ни читателям, мы рассмотрим миниатюрную черную дыру в динамике – как она носится по недрам планеты или звезды и пожирает материю на своем пути.

Мы переходим теперь к рассказу о том, как черная дыра может работать в качестве электрической машины (электромотора, динамомашины и т. д.).

Прежде всего мы должны познакомиться с удивительными свойствами границы черной дыры, которая, с

Рис. 5. Силовые линии электрического поля заряда вблизи черной дыры. Плюсами и минусами обозначены фиктивные поверхностные заряды на границе черной дыры

точки зрения внешнего наблюдателя, проявляется как «мембрана», наделенная определенными электрическими свойствами.

Чтобы понять, в чем здесь дело, рассмотрим электрическое поле заряда, расположенного вблизи невращающейся незаряженной черной дыры. Как мы уже говорили, трехмерное пространство в окрестности черной дыры искривлено, и поэтому силовые линии этого поля выглядят весьма необычно, как показано на рис. 5. Рисунок этот, разумеется, схематический, так как невозможно на плоском листке бумаги изобразить конфигурацию линий в искривленном пространстве. Мы видим, что часть силовых линий поля, искривляясь, уходит в пространство вдаль от черной дыры. Другие силовые линии упираются в черную дыру.

Если бы дело этим ограничивалось, то это означало бы, что черная дыра заряжена. Действительно, мы знаем, что закон Гаусса гласит: число силовых линий, пересекающих замкнутую поверхность, определяет полный заряд внутри нее. Но наша черная дыра в целом не заряжена; значит, если есть входящие в черную дыру силовые линии, то должны быть и линии, выходящие из нее. И в самом деле, мы видим на рисунке, что из черной дыры со стороны, противоположной заряду, выходят силовые линии электрического поля и уходят вдаль от черной дыры. Такая сложная конфигурация поля связана с сильной искривленностью пространства.

Силовые линии на рис. 5 выглядят так, как-будто поверхность черной дыры является электрически проводящей сферой и приближение к ней извне заряда вызывает поляризацию свободных зарядов в электрически проводящей сфере. Заряды, имеющие противоположный

Рис. 6. Фиктивный поверхностный ток на границе черной дыры. Черная дыра сплюснута из-за вращения

знак по сравнению с приближаемым, притягиваются им и собираются с одной стороны сферы. Заряды того же знака, что и приближаемый, отталкиваются и собираются с противоположной стороны (см. рис. 5). Такая аналогия позволяет условно считать, что на поверхности черной дыры имеются (фиктивные) заряды, на которых заканчиваются силовые линии внешнего электрического поля.

Рассмотрим подробнее процесс приближения электрического заряда к черной дыре. В ходе приближения заряда будет меняться распределение фиктивного поверхностного заряда черной дыры - заряды противоположного знака стягиваются к точке, расположенной прямо под приближающимся зарядом. Значит, можно считать, что на поверхности черной дыры течет (фиктивный) ток! Далее, можно связать силу этого тока с напряженностью электрического поля которое действует вдоль поверхности черной дыры при приближении заряда, как это видит далекий наблюдатель:

Это соотношение имеет вид хорошо знакомого закона Ома. Здесь мы обозначили через (фиктивное) поверхностное сопротивление черной дыры. Подробное рассмотрение показывает, что или в обычных единицах оно равно 377 Ом.

Итак, уже рассмотрение простейших электродинамических задач показывает, что поверхность черной дыры ведет себя как мембрана, наделенная определенными

Электрическими свойствами. Рассмотрение более сложных задач подтверждает эту точку зрения. Например, пусть в разные части поверхности черной дыры падают два потока зарядов противоположного знака (рис, 6), так что полный заряд черной дыры не меняется. Тогда можно считать, что от места падения положительных зарядов А к месту падения отрицательных зарядов В течет поверхностный электрический ток, как показано на рис. 6.

Мы должны еще раз напомнить читателю, что в действительности никаких поверхностных зарядов и токов (как и самой материальной поверхности) у черной дыры нет. Если какой-то наблюдатель падает в черную дыру, то он не встречает при пересечении горизонта никакой материальной поверхности, никаких зарядов, никаких токов. Введение этих фиктивных величин является просто наглядным методом представления поведения силовых линий электрического (и как мы увидим, так же и магнитного) поля вблизи границы черной дыры, с точки зрения наблюдателя, расположенного «дали от черной дыры. Такое представление очень удобно, наглядно и позволяет работать нашей интуиции, привыкшёй к анализу лабораторных экспериментов с проводящими сферами. Это позволяет нам, не обращаясь к сложным представлениям и расчетам, касающимся искривленного четырехмерного пространства-времени, с которым имеет дело общая теория относительности, сравнительно просто представить себе поведение черной дыры в тех или иных условиях.

В дальнейшем мы будем использовать описанное представление, не оговаривая каждый раз фиктивности понятий поверхностных зарядов и токов для черной дыры.

Обратимся теперь к рассмотрению того, как черная дыра может играть роль разных элементов электрической цепи и электрических машин. Это направление исследований сейчас активно разрабатывается американским физиком Кипом Торном и его коллегами. Разумеется, мы не будем останавливаться на технических деталях конструкций, а представим только общие схемы.

Когда человек начал изучать космос, он столкнулся с загадочным явлением. Оно получило название "черная дыра". Оказывается, в пространстве-времени есть некая область, обладающая высоким гравитационным притяжением. В результате из нее не могут выбраться даже объекты, движущиеся со скоростью света.

Речь идет в том числе и о квантах самого света. Эти области действительно являются черными, поглощающими все вокруг и никогда уже не выпускающими. Мы может только гадать об их природе и возможностях, а недостаточность информации об этом явлении порождает и некоторые мифы.

Мифы о черных дырах

Первым о существовании черных дыр заявил Альберт Эйнштейн. Казалось бы, кому, как не этому великому ученому, теоретику времени и пространства и заявить о существовании черных дыр? На самом деле первым такое предположение сделал вовсе не он, а Джон Митчелл. Произошло это еще в 1783 году, тогда как Эйнштейн свою теорию создал в 1916 году. Однако в те времена теория оказалась невостребованной, английский священник Митчелл попросту не нашел ей применения. Сам он начал думать о черных дырах, приняв учение Ньютона о природе света. В те времена полагали, что он состоит из мельчайших материальных частиц, фотонов. Думая об их перемещении, Митчелл понял, что оно полностью зависит от гравитационного поля той звезды, откуда частицы начинают свой путь. Ученый задумался о том, что произойдет с фотонами, если гравитационное поле будет таким большим, что не выпустит свет вообще. Интересно, что именно Митчелл считается основателем сейсмологии в таком виде, как мы ее знаем. Английский священник первым предположил. Что землетрясения распространяются по поверхности подобно волнам.

Черные звезды не поглощают пространства. Космос можно представить в виде листа резины. Тогда планеты будут некими шариками, которые оказывают на него давление. В итоге происходит деформация, а прямые линии исчезают. Так и появляется гравитация, которая объясняет движение планет вокруг звезд. При возрастании массы деформация только увеличивается. Появляются дополнительные возмущения поля, которые и определяют силу притяжения. Орбитальные скорости увеличиваются, что подразумевает все более и более быстрое движение тел вокруг объекта. Например, планета Меркурий движется вокруг Солнца со скоростью 48км/с, а звезды перемещаются в пространстве неподалеку от черных дыр в 100 раз быстрее! В случае сильной силы притяжения возможно столкновение спутника и объектов большего размера. А вся эта масса стремится в центр - в черную дыру.

Все черные дыры одинаковые. Многим из нас кажется, что этот термин принадлежит одинаковым по своей сути объектам. Однако астрономы пришли к мнению, что черные дыры имеют несколько разновидностей. Бывают дыры вращающиеся, некоторые обладают электрическим зарядом, а есть и такие, кто обладает и теми, и другими чертами. Обычно такие объекты появляются путем поглощения материи, вращающаяся же черная дыра появляется при слиянии двух обычных. Такие образования из-за возросшего возмущения пространства начинают расходовать намного больше энергии. Заряженная черная дыра превращается в один огромный ускоритель частиц. Классическим примером объекта такого класса является GRS 1915+105. Эта черная дыра крутится со скоростью 950 оборотов в секунду, а находится она на расстоянии в 35тысяч световых лет от нашей планеты.

Плотность черных дыр невысокая. Этим объектам при своих размерах надо быть очень тяжелыми, чтобы генерировать силу притяжения для удерживания внутри себя света. Так, если массу Земли сжать до плотности черной дыры, то получится шарик диаметром в 9 миллиметров. Темный объект, превышающий своей массой Солнце в 4 миллиона раз, может поместиться между Меркурием и нашей звездой. Те черные дыры, которые находятся в центре галактик, могут весить в 10-30 миллионов раз больше Солнца. Такая грандиозная масса в сравнительно небольшом объеме означает, что у черных дыр огромная плотность и происходящие внутри процессы очень сильные.

Черная дыра очень тихие. Трудно представить, что огромный темный объект, засасывающий в себя все вокруг, еще и шумел. На самом деле все, что попадает в эту бездну, движется с постоянным ускорением. В итоге на границе пространства-времени, которую мы все еще можем ощущать из-за конечности скорости света, частицы разгоняются практически до световых скоростей. Когда материя начинается двигаться до предельных скоростей, появляется булькающий звук. Он является следствием трансформации энергии движения в звуковые волны. В итоге черная дыра оказывается весьма шумным объектом. В 2003 году астрономы, работавшие в космической рентгеновской обсерватории Чандра, смогли зафиксировать звуковые волны, исходящие от массивной черной дыры. А ведь та располагается на расстоянии в 250 миллионов световых лет от нас, что лишний раз свидетельствует о шумности таких объектов.

От притяжения черных дыр ничто не может ускользнуть. Это утверждение является верным. Ведь когда какие-то крупные или мелкие объекты оказываются вблизи черной дыры, они непременно оказываются в плену ее гравитационного поля. При этом это может бать, как мелкая частица, так и планета, звезда или даже галактика. Однако если на этот объект действует сила, большая притяжения черной дыры, то он сможет избежать смертельного плена. Это может быть, например, ракета. Но это возможно до того, как объект достигнет горизонта событий, когда свет еще может вырваться из плена. После этой границы вырваться из объятий всепоглощающего космического монстра будет уже невозможно. Ведь чтобы вырваться за пределы горизонта, надо развить скорость больше, чем скорость света. А такое невозможно даже теоретически. Так что черные дыры являются по настоящему черными - так как свет никогда не может выбраться наружу, мы не может заглянуть внутрь этого загадочного объекта. Ученые считают, что даже небольшая черная дыра разорвет невольного наблюдателя на частицы еще до достижения горизонта событий. Сила притяжения растет не только с приближением к центру планеты и звезды, но и к черной дыре. Если лететь к ней вперед ногами, то сила притяжения в ступнях окажется намного выше, чем в голове, и приведет к моментальному разрыву тела.

Черная дыра не меняют время. Свет огибает горизонт событий, но в итоге он проникает внутрь и уходит в небытие. Так что же произойдет с часами, если те упадут в черную дыру и продолжат там свою работу? Приближаясь к горизонту событий, они начнут замедляться, пока окончательно не остановятся. Такая остановка времени связана с гравитационным его замедлением, что объясняет теория относительности Эйнштейна. В черной дыре настолько великая сила притяжения, что она может замедлять время. С точки зрения часов ничего не изменится, однако они пропадут из поля зрения, а свет от них будет растягиваться под действием тяжелого объекта. Свет начнем переходить в красный спектр, длина его волны будет увеличиваться. В результате он окончательно станет невидимым.

Черная дыра не производят никакой энергии. Известно, что эти объекты затягивают в себя всю окружающую массу. Ученые предполагают, что внутри все сжимается настолько сильно, что уменьшается даже пространство между атомами. В результате рождаются субатомные частицы, которые могут вылетать наружу. В этом им помогают линии магнитного поля, которые пересекают горизонт событий. В итоге выделение таких частиц порождает энергию, а сам способ оказывается довольно эффективным. Переход массы в энергию в данном случае дает в 50 раз большую отдачу, чем в ходе ядерного синтеза. Сам же черная дыра предстает огромным реактором.

Нет никакой зависимости звезд и числа черных дыр. Как-то раз Карл Саган, известный астрофизик, заявил, что звезд во Вселенной больше, чем песчинок на пляжах всего мира. Ученые полагают, что это число все же конечно и составляет 10 в степени 22. При чем же тут черные дыры? Именно они их число и определяет количество звезд. Оказывается, потоки частиц, выпускаемые черными объектами, расширяются до неких пузырей, которые могут распространяться через места формирования звезд. Эти области находятся в газовых облаках, которые при охлаждении и порождают светила. А потоки частиц нагревают газовые облака и не дают появиться новым звездам. В итоге существует постоянное равновесие между активностью черных дыр и количеством звезд во Вселенной. Ведь если в галактике будет слишком много звезд, то она окажется слишком горячей и взрывоопасной, жизни сложно там будет зародиться. И, напротив, малое число звезд также не поможет зародиться жизни.

Черная дыра состоят из другого материала, нежели мы. Ряд ученых полагает, что черные дыры помогают при рождении новых элементов. И это можно понять, учитывая расщепление материи на мельчайшие субатомные частицы. Они затем участвуют в образовании звезд, что со временем ведет к появлению элементов тяжелее гелия. Речь идет об углероде и железе, необходимых для появления твердых планет. В итоге эти элементы и входят в состав всего, что обладает массой, то есть и самого человека. Вполне вероятно, что истинным строителем нашего тела является какая-нибудь далекая черная дыра.