Нарушения аминокислотного обмена с накоплением метаболитов в тканях. Нарушение обмена соединительной ткани

Нарушение трансаминирования и окислительного дезаминирования. Процессы трансаминирования и дезаминирования имеют универсальное значение для всех живых организмов: трансаминирование способствует синтезу аминокислот, дезаминирование - их разрушению.

Суть реакции трансаминирования состоит в обратном переносе аминогруппы с аминокислоты в α-кетокислоту без промежугочного образования свободного иона аммония. Реакция катализируется специфическими ферментами аминотрансферазами (трансаминазами), кофакторами которых являются фосфорилированные формы пиридоксина (пиридоксальфосфат и пиридоксаминфосфат).

Нарушения реакций трансаминирования могут возникать по нескольким причинам, прежде всего - в результате дефицита пиридоксина (беременность, угнетение сульфаниламидными препаратами кишечной микрофлоры, торможение синтеза пиридоксальфосфата при лечении фтивазидом). Снижение активности аминотрансфераз происходит также в случае угнетения синтеза белков (голодание, тяжелая патология печени). Если в некоторых органах возникает некроз (инфаркт миокарда или легких, панкреатит, гепатит и др.), то вследствие разрушения клеток тканевые аминотрансферазы поступают в кровь, и повышение их активности в крови при такой патологии является одним из диагностических критериев. В изменении скорости трансаминирования важную роль играют нарушение соотношения субстратов реакции, а также влияние гормонов, особенно глюкокортикоидов и гормонов щитовидной железы, стимулирующих этот процесс.

Угнетение процесса окислительного дезаминирования, в результате которого распадаются неиспользованные аминокислоты, обусловливает повышенную концентрацию их в крови - гипераминоацидемию . Последствиями этого являются усиленная экскреция аминокислот почками (аминоацидурия ) и изменение соотношения отдельных аминокислот в крови, что создает неблагоприятные условия для синтеза белковых молекул. Дезаминирование нарушается при дефиците компонентов, которые прямо или косвенно принимают участие в этой реакции (пиридоксин, рибофлавин, никотиновая кислота), а также при гипоксии, голодании (белковая недостаточность).

Нарушение декарбоксилирования. Этот процесс является важным, хотя и не универсальным направлением белкового обмена, и происходит с образованием углекислого газа и биогенных аминов. Декарбоксилированию подвергаются лишь некоторые аминокислоты: гистидин преобразуется в гистамин, тирозин - в тирамин, γ-глугаминовая кислота - в γ-аминомасляную кислоту (ГАМК), 5-гидрокситриптофан - в серотонин, производные тирозина (3,4-диоксифенилаланин) и цистина (L-цистеиновая кислота - соответственно в 3,4-диоксифенилэтиламин (дофамин) и таурин.

Биогенные амины, как известно, имеют специфическую биологическую активность, и увеличение их количества может вызвать определенные патологические изменения в организме. Большое количество биогенных аминов может быть результатом не только усиленного декарбоксилирования соответствующих аминокислот, но и угнетения окисления аминов и нарушения связывания их белками. Например, при гипоксии, ишемии и деструкции тканей (травма, облучение и т. п.) замедляются окислительные процессы, тем самым способствуя усилению декарбоксилирования. Избыток биогенных аминов (особенно гистамина и серотонина) в тканях может обусловить значительное нарушение местного кровообращения, повышение проницаемости сосудистой стенки и повреждение нервного аппарата.

Наследственные нарушения обмена некоторых аминокислот

Метаболизм аминокислот детерминируется определенным количеством и активностью соответствующих ферментов. Наследственные нарушения синтеза ферментов приводят к тому, что необходимая аминокислота не включается в метаболизм, а накапливается в биологических средах организма: крови, моче, кале, поту, спинномозговой жидкости. Клиническая картина в таких случаях обусловлена, во-первых, наличием достаточно большого количества вещества, которое должно было метаболизоваться с помощью заблокированного фермента; во-вторых - дефицитом вещества, которое должно было образоваться.

Генетически обусловленных нарушений обмена аминокислот известно довольно много, все они наследуются по аутосомно-рецессивному типу. Некоторые из них приведены в табл. 2.

Нарушение обмена фенилаланина. В норме фенилаланин преобразуется в тирозин. Если в печени нарушается синтез необходимого для этого фермента фенила-ланингидроксилазы (схема 4), то окисление фенилаланина происходит посредством образования фенилпировиноградной и фенилмолочной кислот - развивается фенилкетонурия. Однако этот путь имеет малую “пропускную” способность, поэтому большое количество фенилаланина накапливается в крови, тканях и спинномозговой жидкости, что в первые же месяцы жизни новорожденного проявляется тяжелым поражением ЦНС и неизлечимым слабоумием. Вследствие недостаточного синтеза тирозина угнетается образование меланина, который обусловливает осветление кожи и волос. Кроме того, в результате повышенного образования фенилпировиноградной кислоты тормозится активность фермента дофамингидроксилазы, необходимого для синтеза катехоламинов (адреналина, норадреналина). Тяжесть наследственной патологии определяется комплексом всех этих нарушений. Больные умирают в детстве, если не проводится специальное лечение, заключающееся в постоянном, но осторожном (контроль аминокислотного состава крови) ограничении поступления фенилаланина с пищей. Раннюю диагностику заболевания нужно проводить сразу после рождения ребенка. Для этого применяют различные биохимические тест-системы.

Нарушение обмена тирозина. Обмен тирозина происходит несколькими путями. В случае недостаточного преобразования тирозина в гомогентизиновую кислоту (см. схему 4), что может быть обусловлено дефектом различных ферментов, тирозин накапливается в крови и выводится с мочой. Это нарушение называется тирозинозом и сопровождается печеночной и почечной недостаточностью и ранней смертью ребенка или лишь задержкой психомоторного развития. Если нарушение обмена тирозина происходит в момент окисления гомогентизиновой кислоты (см. схему 4), развивается алкаптонурия. Фермент, окисляющий гомогентизиновую кислоту (гомогентизиноксидаза), образуется в печени. В норме он настолько быстро разрывает ее гидрохиноновое кольцо, что кислота “не успевает” попасть в кровь, а если и попала, то быстро выделяется почками. В случае наследственного дефекта этого фермента гомогентизиновая кислота в большом количестве накапливается в крови и моче. Моча больных алкаптонурией на воздухе или после добавления щелочи становится черной. Это объясняется окислением гомогентизиновой кислоты кислородом воздуха и образованием в ней алкаптона (от лат. alcapton - захватывающий щелочь). Гомогентизиновая кислота с током крови поступает в ткани - хрящевую, сухожилия, связки, внутренний слой стенки аорты, вследствие чего образуются темные пятна в области ушей, носа, щек, на склерах. Алкаптон делает хрящи и сухожилия хрупкими, что иногда приводит к тяжелым изменениям в суставах.

Также тирозин - это исходный продукт для образования пигмента меланина, содержащегося в коже и волосах. Если преобразование тирозина в меланин замедленно вследствие наследственного дефицита тирозиназы (см. схему 4), возникает альбинизм , который сопровождается повышением чувствительности кожи к солнечному свету и нарушением зрения.

И наконец, тирозин является предшественником тироксина. В случае недостаточного синтеза фермента, который катализирует взаимодействие тирозина со свободным йодом, нарушается образование гормонов щитовидной железы.

Нарушение обмена триптофана. Основной путь метаболизма триптофана, как и никотиновой кислоты, обеспечивает синтез никотинамидадениндинуклеотида (НАД) и НАДФ, которые играют важную роль в жизнедеятельности организма, будучи коферментами многих реакций обмена, а значительный дефицит этих веществ служит причиной развития пеллагры . Нарушение обмена триптофана также может сопровождаться изменением количества образующегося из него серотонина.

Большая часть аминокислот в организме связана в белках, зна­чительно меньшая может выполнять функцию нейромедиаторов (глицин, у-аминомасляная кислота), служить предшественниками гормонов (фенилаланин, тирозин, триптофан, глицин), коферментов, пигментов, пуринов и пиримидинов.

Современные представления о врожденных болезнях метабо­лизма основываются на результатах изучения нарушений обмена аминокислот. В настоящее время известно более 70 врожденных аминоацидопатий. Каждое из этих нарушений встречается редко. Их частота колеблется от 1:10 000 (фенилкетонурия) до 1:200 000 (алкаптонурия). При одних дефектах определяется избыток амино­кислоты-предшественника, при других накапливаются продукты ее распада. Характер нарушения зависит от места ферментативного блока, обратимости реакций, протекающих выше поврежденного зве­на, и существования альтернативных путей «утечки» метаболитов.

Аминоацидопатиям свойственна биохимическая и генетическая гетерогенность: различают 4 формы гиперфенилаланинемии, 3 ва­рианта гомоцистинурии, 5 типов метилмалоновой ацидемии. Кли­нические проявления многих аминоацидопатий можно предотвра­тить или ослабить при ранней диагностике и своевременном нача­ле адекватного лечения: ограничение белка и аминокислот в диете, добавка витаминов. Вот почему среди новорожденных проводится скрининг на аминоацидопатий с использованием разнообразных химических и микробиологических методов анализа крови или мочи. Кроме того, для диагностики врожденных нарушений обмена аминокислот используют:

Прямой ферментный метод, используя экстракты лейкоци­тов, эритроцитов, культуру фибробластов;

ДНК-ДНК-блотгибридизацию с использованием культуры клеток амниотической жидкости.

К числу наиболее распространенных аминоацидопатий отно­сится фенилкетонурия - одна из разновидностей гиперфенилала­нинемии, обусловленной нарушением превращения фенилаланина в тирозин вследствие снижения активности фенилаланингидрокси-лазы. Дефект наследуется аутосомно-рецессивно, широко распрост­ранен среди европеоидов и жителей Востока. В заметных количе­ствах фенилаланингидроксилаза обнаружена только в печени и ночках. Прямым следствием нарушения гидроксилирования фени­лаланина является накопление его в крови и моче и снижение об­разования тирозина.

Концентрация фенилаланина в плазме дости­гает уровня, достаточно высокого (более 200 мг/л) для активации альтернативных путей обмена с образованием фенилпирувата, фе. нилацетата, фениллактата и других производных, которые подвер­гаются почечному клиренсу и выводятся с мочой. Избыток фенила ланина в жидких средах организма тормозит всасывание в желудочно-кишечном тракте других аминокислот, а это лишает голов ной мозг других аминокислот, необходимых для синтеза белка, сопровождается нарушением образования или стабилизации полири­босом, снижением синтеза миелина и недостаточным синтезом норадреналина и серотонина.

Фенилаланин - конкурентный ингибитор тирозиназы, являю­щейся ключевым ферментом на пути синтеза меланина. Блокада этого пути наряду с уменьшением доступности предшественника меланина (тирозина) обусловливает недостаточную пигментацию волос и кожи.

У новорожденных никаких отклонений от нормы не отмечают, однако дети, оставленные без лечения с классической фенилкетонурией, отстают в развитии; у них прогрессируют нарушения функ­ций головного мозга. Гиперактивность и судороги, прогрессирую­щая дисфункция головного мозга и базальных ганглиев обуславливают резкое отставание в психическом развитии, хорею, гипотензию, регидность мышц. Вследствие накопления фенилаланина является «мышиный» запах кожи, волос и мочи, склонность к гипопигментации и экземе. Несмотря на ранний диагноз и стандартное лечение дети погибают в первые несколько лет жизни от вторичной инфекции.

У новорожденного содержание фенилаланина в плазме может быть в пределах нормы при всех 4 типах гиперфеиилаланинемии но после начала кормления белком уровень фенилаланина в крови быстро увеличивается и уже обычно на 4-й день превышает норму.

Классическую фенилкетонурию можно диагностировать прена-тально по полиморфизму длины рестрикционных фрагментов, идентифицируемому с помощью ДНК-ДНК-блотгибридизации, и после рождения ребенка по определению концентрации фенилала­нина в крови по методу Гутри (ингибирование роста бактерий).

Резкое нарушение катаболизма тирозина вследствие недостаточности фермента оксидазы гомогентизиновой кислоты обусловливает развитие алкаптонурии (алкаптон - окрашенный поли мер продуктов окисления гомогентизиновой кислоты). Дефект го фермента вызывает повышенную экскрецию гомогентизиновой кислоты с мочой и накопление окисленной гомогентизиновой лоты в соединительной ткани (охроноз). Со временем охроноз обусловливает развитие дегенеративного артрита.

Гомогентизиновая кислота - это промежуточный продукт пре­вращения тирозина в фумарат и ацетоацетат. При снижении ак­тивности оксидазы гомогентизиновой кислоты в печени и почках нарушается раскрытие фенольного кольца тирозина с образовани­ем малеилацетоуксусиой кислоты. Вследствие этого в жидких сре­дах и клетках организма накапливается гомогентизиновая кислота. Эта кислота и особенно ее окисленные полимеры связываются кол­лагеном, что приводит к усилению накопления серого или сине-чер­ного пигмента (охроноз) с развитием дистрофических изменений в хрящах, межпозвоночных дисках и других соединительнотканных образованиях.

Заболевание наследуется аутосомно-рецессивно.

Алкаптонурия может оставаться нераспознанной вплоть до развития дистрофических повреждений суставов. Такие симпто­мы, как способность мочи больных темнеть при стоянии и легкое изменение окраски склер и ушных раковин, долгое время могут оказываться незамеченными, хотя это самые ранние внешние при­знаки заболевания. Затем появляются очаги серо-коричневой пиг­ментации склер и генерализованное потемнение ушных раковин, противозавитка и завитка. Ушные хрящи фрагментируются и утолщаются. Появляется охронозный артрит с болевыми симпто­мами и тугоподвижностью, особенно в тазобедренных, коленных и плечевых суставах.

Аминокислота тирозин, поступающая с белками пищи и обра­зующаяся из фенилаланина, может превращаться:

1) в фенилпируват после переаминирования с а-кетоглютаратом, окисление которого приводит к образованию гомогентизино­вой кислоты; последняя, окисляясь, превращается в фумаровую, за­тем ацетоуксусную кислоту, которая включается в цикл Кребса;

2) ДОФА (n-диоксифенилаланин) при участии тирозиназы в норадреналин и меланин;

3) в тетра- и грийодтиронин после йодирования;

4) подвергаться декарбоксилированию.

Нарушение различных стадий окислительного превращения тирозина при участии тирозиназы и, следовательно, образование из него меланина обусловливает развитие альбинизма. Задержка окисления тирозина на стадии оксифенилпировиноградной кислоты (при недостатке витамина С и поражении паренхимы печени) индуцирует тирозиноз, который проявляется в повышенной экскреции с мочой оксифенилпирувата. Межуточный обмен триптофана характеризуется тем, что он сравнительно мало вовлекается в реакции переаминирования и дезаминирования. Большая часть триптофана превращается в никотиновую кислоту (витамин РР), и на этом этапе образуется ряд про­межуточных продуктов: кинуренин, ксантуреновая кислота, оксиант-раниловая кислота и другие. Повышение их концентрации в крови оказывает общее токсическое действие; ксантуреновая кислота нару­шает образование инсулина. Патология обмена триптофана может быть связана с недостаточностью специфических ферментов, коферментов и витамина В6, участвующих в его обмене, а также при оча­говых и диффузных поражениях печени, при инфекционных заболе­ваниях, при лечении противотуберкулезными препаратами.

Своеобразным нарушением обмена аминокислот является аминоацидурия - повышенное их выделение с мочой. Причины аминоацидурии: нарушение дезаминирования аминокислот при пораже­нии печени и нарушение реабсорбции аминокислот в почечных ка­нальцах при поражении почек.

При острой дистрофии печени или терминальной стадии цир­роза потеря с мочой аминокислот весьма значительна. Аминоацидурия возникает и при других патологических процессах (кахексия, обширные травмы, мышечная атрофия, гипертиреоз), течение кото­рых характеризуется усиленным распадом тканевых белков и уве­личением содержания аминокислот в крови.

Иногда в моче отмечается увеличенное содержание цистина - цистинурия как врожденная аномалия обмена, для которой харак­терно образование цистиновых камней в мочевыводящих путях. Более тяжелое нарушение обмена цистина - цистиноз, который сопровождается общей аминоацидурией, отложением кристаллов цистина в тканях и характеризуется ранним летальным исходом.

В целом, в основе нарушения межуточного обмена аминокис­лот лежит патология ферментативных систем (врожденные анома­лии синтеза ферментов, общая белковая недостаточность, дистро­фические процессы) или недостаточность тех или иных витаминов, гипоксия, сдвиг рН и др.

Патофизиологическое значение нарушений межуточного звена белкового обмена состоит в том, что при этих нарушениях появля­ются токсические продукты обмена и нарушаются количественные соотношения между аминокислотами, что в конечном итоге создает условия для нарушения процессов синтеза белка, образования и эк­скреции конечных продуктов белкового обмена.

Нарушение трансаминирования и окислительного дезаминирования. Процессы трансаминирования и дезаминирования имеют универсальное значение для всех живых организмов и всех аминокислот: трансаминирование приводит к образованию аминокислот, дезаминирование - к их разрушению.

Сущность реакции трансаминирования заключается в обратимом переносе аминогруппы от аминокислоты на а-кетокислоту без промежуточного образования свободного аммиака. Реакция катализируется специфическими ферментами: аминотрансферазами или трансаминазами, кофакторами которых являются фосфорилированные формы пиридоксина (пиридоксальфосфат и пиридок-саминофосфат).

Нарушения реакции трансаминирования могут возникать по нескольким причинам: это прежде всего недостаточность пиридоксина (беременность, подавление сульфаниламидными препаратами кишечной флоры, частично синтезирующей витамин, торможение синтеза пиридоксальфосфата во время лечения фтивазидом). Снижение активности трансаминаз происходит также при ограничении синтеза белков (голодание, тяжелые заболевания печени). Если в отдельных органах возникает некроз (инфаркт миокарда или легких, панкреатит, гепатит и др.), то вследствие разрушения клеток тканевые трансаминазы поступают в кровь и повышение их активности в крови при данной патологии является одним из диагностических тестов. В изменении скорости трансаминирования существенная роль принадлежит нарушению соотношения между субстратами реакции, а также гормонам, особенно гликокортикоидам и гормону щитовидной железы, оказывающим стимулирующее влияние на этот процесс.

Угнетение окислительного дезаминирования, приводящее к накоплению неиспользованных аминокислот, может вызвать повышение концентрации аминокислот в крови - гипераминоацидемию . Следствием этого является усиленная экскреция аминокислот почками (аминоацидурия ) и изменение соотношения отдельных аминокислот в крови, создающие неблагоприятные условия для синтеза белковых структур. Нарушение дезаминирования возникает при недостатке компонентов, прямо или косвенно участвующих в этой реакции (недостаток пиридоксина, рибофлавина, никотиновой кислоты; гипоксия; белковая недостаточность при голодании).

Нарушения декарбоксилирования. Являясь очень важным, хотя и не универсальным, направлением белкового обмена, декарбоксилирование протекает с образованием CO 2 и биогенных аминов. Декарбоксилированию подвергаются только некоторые аминокислоты: гистидин - с образованием гистамина, тирозин - тирамина, 1-глутаминовая кислота - γ-аминомасляной кислоты , 5-гидрокситриптофан - серотонина , производные тирозина (3,4-диоксифенилаланин) и цистина (1-цистеиновая кислота) - соответственно 3,4-диоксифенилэтиламина (дофамин ) и таурина .


Биогенные амины, как известно, обладают специфической биологической активностью и увеличение их количества может вызвать ряд патологических явлений в организме. Причиной такого увеличения может быть не только усиление декарбоксилирования соответствующих аминокислот, но и угнетение окисления аминов и нарушение их связывания белками. Так, например, при гипоксических состояниях, ишемии и деструкции тканей (травмы, облучение и др.) ослабляются окислительные процессы, что способствует усилению декарбоксилирования. Появление большого количества биогенных аминов в тканях (особенно гистамина и серотонина) может вызвать значительное нарушение местного кровообращения, повышение проницаемости сосудов и повреждение нервного аппарата.

Наследственные нарушения обмена некоторых аминокислот. Прохождение аминокислот через определенные метаболические пути детерминируется наличием и активностью соответствующих ферментов. Наследственное нарушение синтеза ферментов приводит к тому, что соответствующая аминокислота не включается в метаболизм, а накапливается в организме и появляется в биологических средах: моче, кале, поте, цереброспинальной жидкости. Клиническая картина такого заболевания определяется, во-первых, появлением слишком большого количества вещества, которое должно было метаболизироваться при участии заблокированного фермента, а во-вторых, дефицитом вещества, которое должно было образоваться.

Таких генетически обусловленных нарушений обмена аминокислот известно довольно много; все они наследуются рецессивно. Некоторые из них представлены в табл. 4.

Леон Е. Розенберг (Leon E. Rosenberg)

Ряд врожденных нарушений обмена веществ характеризуется отложением или накоплением в тканях избыточного количества отдельных метаболитов. Чаще всего это отражает нарушение процессов распада вещества, но в некоторых случаях механизм заболевания остается неизвестным. При многих заболеваниях накапливаются крупные молекулы, такие как гликоген, сфинголипиды, муколипиды, эфиры холестерина и мукополисахариды (см. гл. 313, 315 и 316), при других- металлы, например железо и медь (см. гл. 310 и 311). Наконец, существует группа болезней, при которых накапливаются сравнительно небольшие органические молекулы. К этой группе относится подагра (см. гл. 309), а также ряд нарушений аминокислотного обмена.

Алкаптонурия

Определение. Алкаптонурия представляет собой редкое нарушение катаболизма тирозина. Недостаточность фермента оксидазы гомогентизиновой кислоты приводит к экскреции больших количеств этой кислоты с мочой и накоплению пигмента (окисленная гомогентизиновая кислота) в соединительной ткани (охроноз). Через много лет охроноз обусловливает развитие особой формы дегенеративного артрита.

Этиология и патогенез. Гомогентизиновая кислота - это промежуточный продукт превращения тирозина в фумарат и ацетоацетат. У больных с алкаптонурией в печени и почках снижена активность оксидазы гомогентизиновой кислоты - фермента, катализирующего раскрытие фенольного кольца с образованием малеилацетоуксусной кислоты. В результате в клетках и жидких средах организма накапливается гомогентизиновая кислота. Количество последней в крови больных увеличивается незначительно, поскольку она очень быстро выводится почками. За сутки с мочой может выделяться до 3-7 г гомогентизиновой кислоты, что практически не имеет патофизиологического значения. Однако гомогентизиновая кислота и ее окисленные полимеры связываются коллагеном, что приводит к усилению накопления серого или сине-черного пигмента. При этом механизмы развития дистрофических изменений в хрящах, межпозвонковых дисках и других соединительнотканных образованиях неизвестны, но могли бы заключаться в простом химическом раздражении соединительной ткани или нарушении ее метаболизма.

Алкаптонурия была первым заболеванием человека с установленным аутосомным рецессивным наследованием. Больные гомозиготы встречаются с частотой примерно 1:200 000. Гетерозиготные носители клинически здоровы и не экскретируют гомогентизиновую кислоту с мочой даже после нагрузки тирозином.

Клинические проявления. Алкаптонурия может оставаться нераспознанной вплоть до зрелого возраста, когда у большинства больных развивается дистрофическое повреждение суставов. До того времени способность мочи больных темнеть при стоянии, равно как и легкое изменение окраски склер и ушных раковин, может не привлекать к себе внимания. Последние проявления (изменение окраски) служат обычно самыми ранними внешними признаками заболевания и появляются в возрасте после 20-30 лет. Характерны очаги серо-коричневой пигментации склер и генерализованное потемнение ушных раковин, противозавитка и, наконец, завитка. Ушные хрящи могут фрагментироваться и утолщаться. Охронозный артрит проявляется болью, тугоподвижностью и некоторым ограничением амплитуды движений в тазобедренных, коленных и плечевых суставах. Появляются непостоянные приступы острого артрита, которые могут напоминать ревматоидные, но мелкие суставы обычно остаются интактными. Часто поздние проявления сводятся к ограничению подвижности и анкилозу пояснично-крестцового отдела позвоночника. Присоединяется пигментация сердечных клапанов, гортани, барабанной перепонки и кожи. Иногда у больных в почках или предстательной железе образуются пигментированные камни. У больных старшего возраста чаще определяются дистрофические изменения сердечно-сосудистой системы.

Диагностика. Алкаптонурию следует подозревать у лиц, моча которых при стоянии темнеет до черноты, но в условиях пользования современными ватерклозетами этот признак удается наблюдать нечасто. Диагноз ставят обычно на основании триады симптомов: дегенеративного артрита, охронозной пигментации и почернении мочи после ее подщелачивания. Присутствие гомогентизиновой кислоты в моче можно предположить и на основании других тестов: при добавлении хлористого железа моча приобретает фиолетово-черный цвет, реагента Бенедикта - коричневую окраску, а насыщенного раствора нитрата серебра - в черную. Результаты этих скрининг-тестов можно подтвердить хроматографическими, ферментативными или спектрофотометрическими определениями гомогентизиновой кислоты. Патогномоничные признаки выявляются с помощью рентгенографии поясничного отдела позвоночника. На рентгенограммах обнаруживают дегенерацию и плотную кальцинацию межпозвонковых дисков, а также сужение межпозвонковых пространств.

Лечение. Специфического лечения при охронозном артрите не существует. Симптоматику со стороны суставов можно было бы ослабить, уменьшив накопление и отложение гомогентизиновой кислоты путем ограничения потребления с пищей фенилаланина и тирозина, но продолжительность заболевания не позволяет предпринимать подобных попыток. Поскольку окислению и полимеризации гомогентизиновой кислоты in vitro препятствует аскорбиновая кислота, предполагалась возможность ее использования в качестве средства, снижающего образование и отложение пигмента. Эффективность этого метода лечения не установлена. Симптоматическое лечение сходно с таковым при остеоартрите (гл. 274).

Цистиноз

Определение. Цистиноз - это редкое заболевание, характеризующееся накоплением свободного цистина в лизосомах разных тканей организма. Это приводит к появлению кристаллов цистина в роговице, конъюнктиве, костном мозге, лимфатических узлах, лейкоцитах и внутренних органах. Известны три формы болезни: инфантильная (нефропатическая), обусловливающая развитие синдрома Фанкони и почечной недостаточности в течение первых 10 лет жизни, ювенильная (промежуточная), при которой поражение почек проявляется в течение второго 10-летия жизни, и взрослая (доброкачественная), характеризующаяся отложениями цистина в роговице, но не в почках.

Этиология и патогенез. Главный дефект при цистинозе заключается в нарушении «оттока» цистина из лизосом, а не в нарушении его распада. Этот «отток» представляет собой активный АТФ-зависимый процесс. При инфантильной форме содержание цистина в тканях может превышать норму более чем в 100 раз, а при взрослой форме - более чем в 30 раз. Внутриклеточный цистин локализуется в лизосомах и не обменивается с другими внутри- и внеклеточными пулами аминокислоты. Концентрация цистина в плазме и моче существенно не увеличивается.

Степень накопления кристаллов цистина у разных больных варьирует в зависимости от формы заболевания и способов обработки проб ткани. Накопление цистина в почках при инфантильной и ювенильной формах болезни сопровождается почечной недостаточностью. Почки становятся бледными и сморщенными, их капсула сливается с паренхимой, исчезает граница между корковым и мозговым слоем. При микроскопии обнаруживается нарушение целостности нефрона; клубочки гиалинизированы, прослойка соединительной ткани увеличена, нормальный эпителий канальцев замещен кубовидными клетками. Сужение и укорочение проксимальных канальцев обусловливает их деформацию в виде лебединой шеи, что характерно, но не патогномонично для цистиноза. При инфантильной и ювенильной формах болезни иногда отмечают очаговую депигментацию и дегенерацию периферических отделов сетчатки глаз. Кристаллы цистина могут откладываться также в конъюнктиве и сосудистой оболочке глаз.

Любая форма цистиноза наследуется, по-видимому, как аутосомный рецессивный признак. Облигатные гетерозиготы по внутриклеточному содержанию цистина занимают промежуточное положение между здоровыми и больными, но клинические симптомы у них отсутствуют.

Клинические проявления. При инфантильной форме болезни нарушения проявляются обычно в возрасте 4-6 мес. Рост ребенка задерживается, у него появляются рвота, лихорадочное состояние, присоединяются резистентный к витамину D рахит, полиурия, дегидратация и метаболический ацидоз. Генерализованная дисфункция проксимальных канальцев (синдром Фанкони) приводит к гиперфосфатурии и гипофосфатемии, почечной глюкозурии, общей аминоацидурии, гипоурикемии и зачастую к гипокалиемии. На прогрессирование клубочковой недостаточности могут влиять пиелонефрит и интерстициальный фиброз. Смерть от уремии или случайной инфекции наступает обычно в возрасте до 10 лет. В течение нескольких первых лет жизни отмечается фотофобия из-за отложений цистина в роговице, еще раньше может проявиться дегенерация сетчатки.

В отличие от этого при взрослой форме болезни развивается лишь глазная патология. К основным симптомам относятся фотофобия, головная боль и чувство жжения или зуда в глазах. Функция клубочков и канальцев почек, а также целостность сетчатки сохраняются. Признаки ювенильной формы болезни занимают промежуточное положение между этими крайними формами. У этих больных в процесс вовлекаются как глаза, так и почки, но последние незначительно страдают до второго 10-летия жизни. Однако, хотя почки страдают меньше, чем при инфантильной форме болезни, больные умирают в конце концов именно от почечной недостаточности.

Диагностика. Цистиноз следует подозревать у любого ребенка с резистентным к витамину D рахитом, синдромом Фанкони или клубочковой недостаточностью. Гексагональные или прямоугольные кристаллы цистина можно обнаружить в роговице (при исследовании с помощью щелевой лампы), в лейкоцитах периферической крови или костного мозга или в биоптатах слизистой оболочки прямой кишки. Диагноз подтверждают путем количественного определения цистина в лейкоцитах периферической крови или в культуре фибробластов. Инфантильная форма болезни диагностируется пренатально по повышенному уровню цистина в культуре клеток амниотической жидкости.

Лечение. Взрослая форма протекает доброкачественно и не требует лечения. Симптоматическое лечение при болезни почек при инфантильной или ювенильной форме цистиноза не отличается от такового при других видах хронической почечной недостаточности: обеспечение адекватного потребления жидкости во избежание дегидратации, коррекция метаболического ацидоза и потребление дополнительных количеств кальция, фосфата и витамина D, что направлено на борьбу с рахитом. Эти мероприятия могут в течение определенного времени поддерживать рост, развитие и хорошее самочувствие больных детей. Предпринимались попытки использования двух видов более специфического лечения, но они не сопровождались большим успехом. Обедненная цистином диета не предотвращала прогрессирования почечной патологии. Точно так же применение сульфгидрильных реагентов (пеницилламин, димеркапрол) и восстановителей (витамин С) не сопровождалось долговременным эффектом.

Наиболее перспективным видом лечения нефропатического цистиноза служит пересадка почки. Этот метод был применен при лечении более чем 20 детей с последней стадией почечной недостаточности. У больных, перенесших операцию и избежавших иммунологических проблем, функция почки нормализовалась. В трансплантированных почках не развивались типичные для цистиноза функциональные нарушения (например, синдром Фанкони или клубочковая недостаточность). Однако в них иногда вновь накапливалось некоторое количество цистина, вероятно, из-за миграции интерстициальных или мезангиальных клеток организма-хозяина.

Первичная гипероксалурия

Определение. Первичная гипероксалурия - это общее название двух редких нарушений, характеризующихся хронической экскрецией с мочой избыточных количеств щавелевой кислоты, почечными камнями из оксалата кальция и нефрокальцинозом. Как правило, при той и другой форме болезни уже в ранние годы жизни развивается почечная недостаточность и больные умирают от уремии. При аутопсии как в почках, так и во внепочечных тканях обнаруживают распространенные очаги отложений оксалата кальция. Это состояние называют оксалозом.

Этиология и патогенез. Метаболическая основа первичной гипероксалурии лежит в нарушении путей обмена глиоксилата. При гипероксалурии I типа повышена экскреция с мочой оксалата, а также окисленных и восстановленных форм глиоксилата. Ускоренный синтез этих веществ объясняется блокадой альтернативного пути обмена глиоксилата. В печени, почках и селезенке снижена активность?-кетоглутаратглиоксилаткарболигазы, катализирующей образование?-гидрокси-?-кетоадипиновой кислоты. Возникающее в результате увеличение глиоксилатного пула приводит к усилению как окисления глиоксилата в оксалат, так и восстановления его в гликолат. Обе эти двууглеродные кислоты экскретируются с мочой в избыточном количестве. При гипероксалурии II типа повышена экскреция с мочой не только оксалата, но и L-глицериновой кислоты. При этом в лейкоцитах (и, вероятно, в других клетках) отсутствует активность дегидрогеназы D-глицериновой кислоты - фермента, катализирующего восстановление гидроксипирувата в D-глицериновую кислоту в катаболических реакциях обмена серина. Накапливающийся гидроксипируват вместо этого восстанавливается лактатдегидрогеназой в L-изомер глицерата, который и экскретируется с мочой. Восстановление гидроксипирувата каким-то образом сопряжено с окислением глиоксилата в оксалат, т. е. с образованием повышенных количеств последнего. Оба нарушения наследуются, по-видимому, как аутосомные рецессивные признаки. У гетерозигот клиническая симптоматика отсутствует.

Патогенез камнеобразования в почках, нефрокальциноза и оксалоза непосредственно связан с нерастворимостью оксалата кальция. Вне почек большие скопления оксалата выявляются в сердце, стенках артерий и вен, мочеполовых путях у мужчин и в костях.

Клинические проявления. Нефролитиаз и оксалоз могут проявляться уже на первом году жизни. У большинства больных почечные колики или гематурия возникают в возрасте 2-10 лет, а уремия развивается в возрасте до 20 лет. С появлением уремии у больных могут возникать резкие спазмы периферических артерий и некроз их стенок, что приводит к сосудистой недостаточности. По мере снижения функции почек экскреция оксалата уменьшается. При позднем появлении симптомов больные могут достигать возраста 50-60 лет, несмотря на рецидивирующий нефролитиаз.

Диагностика. У здоровых детей или взрослых лиц суточная экскреция оксалата не достигает 60 мг на 1,73 м2 поверхности тела. У больных с гипероксалурией I или II типа этот показатель превышает норму в 2-4 раза. Дифференцировать два типа первичной гипероксалурии можно по результатам определения других органических кислот: для I типа характерна экскреция гликолевой кислоты, а для II - L-глицериновой кислоты. Необходимо исключить недостаточность пиридоксина или хронический процесс в подвздошной кишке, так как эти состояния также могут сопровождаться экскрецией избыточных количеств оксалата.

Лечение. Удовлетворительного лечения не существует. Уровень оксалата в моче удается временно снизить путем увеличения скорости мочеотделения. Он может снижаться и после введения больших доз пиридоксина (100 мг/сут), но его длительный эффект выражен слабо. Частота приступов почечной колики уменьшается, по-видимому, при соблюдении диеты с высоким содержанием фосфата, но экскреция оксалата при этом не изменяется. Не помогает и пересадка почки, так как отложение оксалата кальция нарушает функцию трансплантированного органа.

Аминокислоты поступают в кровь и ткани из пищеварительного тракта; кроме того, они обра­зуются при деструкции тканевых белков под действием внутриклеточных катепсинов (проте­иназ).

Основная часть аминокислот используется в организме в качестве строительных блоков при синтезе белков. Кроме того, аминокислоты ис­пользуются для синтеза пуриновых и пирими-диновых оснований, гормонов, тема, различных биологически активных пептидов (интерлейки-ны, факторы роста и т.д.), меланина, глюкозы, жирных кислот и ряда других веществ. Глицин и глутамат играют роль нейромедиаторов в ЦНС. Аминокислоты, не использованные для выше­упомянутых целей, подвергаются окислению до СО 2 и Н 2 О с освобождением энергии. В норме при окислении аминокислот освобождается 10-15% образующейся в организме энергии. Окис­ление аминокислот усиливается при избыточном поступлении их в организм, при голодании, са­харном диабете, гипертиреозе, снижении синте­за белков и некоторых других состояниях.

Окислению аминокислот предшествует от­щепление от них аминогруппы и превращение в а-кетокислоты. Согласно существующим пред­ставлениям дезаминирование аминокислот осу­ществляется в два этапа. Первоначально проис­ходит перенос аминогруппы аминокислоты на сс-кетоглутаровую кислоту (трансаминирова-ние). В результате образуются глутаминовая кислота и та или иная кетокислота (например, из аланина - пировиноградная).

СООН Алании


Процесс трансаминирования катализируется трансаминазами, коферментом которых являет­ся пиридоксальфосфат. Образовавкгаяся при этом процессе глутаминовая кислота подвергается окислительному дезаминированию, т.е. отщеп­лению аминогруппы под действием глутаматде-гидрогеназы с образованием иона аммония (NH (") и а-кетоглутаровой кислоты, которая может сно­ва вступить в реакцию трансаминирования или окислиться в цикле трикарбоновых кислот. Ке-токислоты, образующиеся при трансаминирова-нии (например, пировиноградная), также могут окислиться до СО 2 и Н 2 О подобно глюкозе и жирным кислотам. Поскольку реакции транса­минирования и окислительного дезаминирова-ния могут идти как в прямом, так и в обратном направлении, то они играют роль не только в превращении аминокислот в кетокислоты, но и в образовании из кетокислот ряда заменимых аминокислот в том случае, если организм испы­тывает в них потребность. Кроме того, кетокис­лоты могут быть использованы для синтеза глю­козы.

Нарушение процесса трансаминирования в целом организме происходит при гиповитами­нозе В 6 , при недостатке а-кетокислот (голодание, сахарный диабет). Нарушение трансаминирова­ния в отдельных органах, например в печени, происходит при некрозе клеток, что сопровож­дается выходом трансаминаз в кровь. Такое же явление имеет место при инфаркте миокарда. В поврежденных клетках может быть нарушен синтез белковой части трансаминаз.

Процесс окислительного дезаминирования снижается не только в связи с ослаблением трансаминирования, но и при гипоксии, гипо-витаминозах В 2 , РР, С, белковом голодании.

Нарушение процессов трансаминирования и окислительного дезаминирования аминокислот ограничивает их использование для синтеза глю­козы, жирных кислот, заменимых аминокислот, а также их окисление с освобождением энергии. При этом повышается содержание свободных аминокислот в сыворотке крови и в моче (ги-пераминоацидемия и гипераминоацидурия), снижается синтез мочевины. Такие нарушения особенно выражены при обширных повреждени­ях гепатоцитов (вирусные и токсические гепа­титы и др.), так как в этих клетках метаболизм аминокислот происходит наиболее интенсивно.

Наряду с вышеупомянутой внепочечной ги-пераминоацидурией, обусловленной усиленным


поступлением аминокислот из крови в мочу, су­ществует почечная форма гипераминоациду-

рии, связанная с нарушением реабсорбции ами­нокислот в почечных канальцах, при этом со­держание аминокислот в сыворотке крови нор­мально или даже понижено (см. гл. 18). Гипер-аминоацидурия (физиологическая) может наблю­даться у детей раннего возраста в связи с функ­циональной неполноценностью (незрелостью) эпителия почечных канальцев; у беременных женщин повышается экскреция с мочой гисти-дина и ряда других аминокислот.

Одним из путей метаболизма аминокислот является их декарбоксилирование, которое со­стоит в отщеплении от аминокислоты СО 2 . В ре­зультате образуются биогенные амины: гиста-мин - из гистидина, серотонин - из 5-окситрип-тофана, тирамин - из тирозина, у-аминомасля-ная кислота (ГАМК) - из глутаминовой, дофа­мин - из диоксифенилаланина и некоторые дру­гие.

NH,
| Фермент

НС=С-СН„-С - СООН- НС = С-СН, -СН г

-со г

L-гистидин

Этот процесс катализируется декарбоксила-зами, коферментом которых является пиридок­сальфосфат (витамин В с); при его дефиците об­разование биогенных аминов снижается. В час­тности, уменьшается образование у-аминомасля-ной кислоты, которая является основным тор­мозным нейромедиатором, как следствие этого наблюдается частое развитие судорог. Биогенные амины обладают высокой физиологической ак­тивностью. Наряду с ГАМК, серотонин и дофа­мин являются также нейромедиаторами в ЦНС, их повышенное или пониженное содержание в ткани мозга играет роль в патогенезе некоторых форм нейропатологии (нервной депрессии, пар­кинсонизма, шизофрении). Повышенное образо­вание в организме серотонина, наиболее выра­женное при карциноиде (опухоль, развивающа­яся из энтерохромафинных клеток кишечника), сопровождается спазмом мускулатуры бронхов и кишечника, диареей, усилением агрегации тромбоцитов; кроме того, серотонин является мощным вазоконстриктором. Хорошо известна роль гистамина в появлении болевых ощущений,

развитии воспаления и аллергических реакции, в том числе анафилактического шока.

Устранение избытка биогенных аминов про­исходит при участии аминооксидаз, которые катализируют превращение их в альдегиды пос­ле отщепления аминогруппы в виде NH. r Серо-тонин превращается в оксииндолилуксусную кислоту, которая выделяется с мочой.

Наследственные нарушения обмена некото­рых аминокислот. Существуют многочисленные заболевания, обусловленные нарушением мета­болизма аминокислот. С расстройствами мета­болизма фенилаланина связано заболевание фе-нилкетонурией. К этому приводит мутация гена, необходимого для образования фермента фенил-аланингидроксилазы, при участии которой про­исходит превращение фенилаланина в тирозин. При отсутствии данного фермента наблюдается накопление в организме фенилаланина и проме­жуточных продуктов его метаболизма - фенил-пировиноградной, фенилуксусной и фенилмолоч-ной кислот, которые оказывают токсическое дей­ствие на мозг ребенка. Фенилпируват выделяет­ся с мочой, где его можно обнаружить. Основ­ные проявления фенилкетонурии - умственная отсталость, психозы, судорожные припадки, эк­зема, мышиный запах [Марри Р. и соавт., 1993]. Предотвратить развитие болезни можно только ранним переводом ребенка на диету с очень низ­ким содержанием фенилаланина. Болезнь насле­дуется по аутосомно-рецессивному типу.

Одним из заболеваний, обусловленных нару­шением метаболизма тирозина, является алкап-тонурия. Развитие ее связано с генетически обус­ловленным дефицитом фермента оксидазы гомо-гентизиновой кислоты, которая является одним из продуктов метаболизма тирозина. В связи с указанным дефектом гомогентизиновая кислота в большом количестве выделяется с мочой, при­давая ей темно-коричневую окраску. Кроме того, гомогентизиновая кислота накапливается в со­единительной и хрящевой тканях, также обус­ловливая их темное окрашивание (охроноз). Может развиться артрит. Передача дефектного гена осуществляется по аутосомно-рецессивно­му типу. Нарушением метаболизма тирозина обусловлены и такие заболевания, как тирози-ноз (тирозинемия) и альбинизм.

Гистидинемия - заболевание, связанное с за­медлением превращения гистидина в уроканат вследствие дефицита фермента гистидазы. В


крови и моче обнаруживается повышенное со­держание гистидина. Большинство больных ги-стидинемией характеризуются умственной отста­лостью и дефектами речи. Заболевание наследу­ется по аутосомно-рецессивному типу.

Цистиноз - наследственное заболевание, ха­рактеризующееся отложением кристаллов цис-тина во многих тканях и органах, что связыва­ют с нарушением функции лизосом. В моче по­вышено содержание всех аминокислот. Леталь­ный исход наступает в раннем детском возрасте вследствие развития острой почечной недоста­точности.

11.6.5. Нарушение конечного этапа обмена белка и аминокислот

Конечным продуктом обмена белка и амино­кислот является мочевина, выделяющаяся из организма с мочой. Синтез мочевины осуществ­ляется гепатоцитами в орнитиновом цикле. Об­разование мочевины имеет большое физиологи­ческое значение, так как благодаря этому про­цессу происходит обезвреживание высоко ток­сичного продукта - аммиака, отщепляющегося от аминокислот при их дезаминировании, а так­же поступающего в кровь из кишечника. Обезв­реживание аммиака, образующегося в клетках различных органов, в том числе в мозге, дости­гается путем реакции амидирования, т.е. при­соединение его к аспарагиновой и в особенности глутаминовой кислотам с образованием аминов аспарагина и глутамина. Процесс амидирования, так же как и образование мочевины, идет с по­треблением энергии, источником которой явля­ется АТФ.

Синтез мочевины понижается при длитель­ном белковом голодании (недостаток ферментов), при заболеваниях печени (циррозы, острые ге­патиты с повреждением большого числа гепато-цитов, отравление печеночными ядами), а так­же при наследственных дефектах синтеза фер­ментов, участвующих в орнитиновом цикле об­разования мочевины (карбамилфосфатсинтетазы, аргининсукцинатсинтетазы и аргининсукцинат-лиазы). При нарушении синтеза мочевины ко­личество ее в крови и моче снижается и нарас­тает содержание аммиака и аминокислот, т.е. резидуального азота (продукционная гиперазо­темия). Гипераммониемия играет важную роль в патогенезе печеночной энцефалопатии и комы.

Глава 11 / ПАТОФИЗИОЛОГИЯ ТИПОВЫХ НАРУШЕНИЙ ОБМЕНА ВЕЩЕСТВ

Избыток аммиака может в некоторой степени устраняться за счет повышенного образования глутамина и присоединения к а-кетоглутаровой кислоте, которая при этом превращается в глу-таминовую, и ее окисление в цикле трикарбоно-вых кислот резко снижается. Вследствие этого снижается образование АТФ.

Другой причиной накопления небелковых азотистых продуктов в крови (креатинин, моче­вина) является нарушение выделительной фун­кции почек при острой и хронической почечной недостаточности или при нарушении проходи­мости мочевыводящих путей. Возникающая в данном случае гиперазотемия называется ретен-ционной. При этом концентрация остаточного азота в крови возрастает до 140-215 ммоль/л, а содержание небелковых азотистых продуктов в моче снижается. Ретенционная гиперазотемия является одним из факторов, играющих роль в развитии уремической комы.

Возможно развитие смешанной (комбиниро­ванной) формы гиперазотемии, при которой повышенный распад белка в тканях сочетается с недостаточным выведением азотистых продук­тов с мочой. Такое сочетание возможно при ост­рой почечной недостаточности, развившейся на почве септического аборта, или обширном сдав-лении тканей (синдром раздавливания). К ком­бинированной форме гиперазотемии относится гипохлоремическая гиперазотемия, возникаю­щая при неукротимой рвоте, стенозе приврат­ника и профузных поносах.

11.7. ПАТОФИЗИОЛОГИЯ ОБМЕНА НУКЛЕИНОВЫХ КИСЛОТ

Дезоксирибонуклеиновая кислота (ДНК) яв­ляется главной составной частью хромосом. Спе­цифика ее структуры определяет возможность передачи наследственной информации от роди­телей потомству и от исходной клетки к дочер­ним в процессе деления. На молекуле ДНК осу­ществляется синтез всех видов РНК (транскрип­ция), в том числе информационной РНК, кото­рая является матрицей для синтеза специфичес­ких для данного организма белков.

В обмене нуклеиновых кислот можно выде­лить следующие этапы: 1) расщепление посту­пающих с пищей нуклеопротеидов в кишечнике с последующим всасыванием в кровь продуктов


их гидролиза; 2) эндогенный синтез ДНК и РНК; 3) распад нуклеиновых кислот под действием внутриклеточных нуклеаз с образованием конеч­ных продуктов их обмена и выведением из орга­низма.

Нарушение усвоения поступающих с пищей нуклеиновых кислот и продуктов их гидроли­за не имеет существенного значения, так как все высокоорганизованные существа способны синтезировать необходимые для них нуклеино­вые кислоты из имеющихся в клетках метабо­литов. Поступившие из кишечника в кровь нук-леотиды, пуриновые и пиримидиновые основа­ния не включаются ни в синтезируемые нукле­иновые кислоты, ни в пуриновые и пиримиди­новые коферменты, такие как АТФ и НАД, а расщепляются с образованием конечных продук­тов - мочевой кислоты и мочевины. Но при па­рентеральном введении нуклеозидов и нуклео-тидов они включаются в молекулы ДНК и РНК.

11.7.1. Нарушение эндогенного синтеза ДНК и РНК

Образование новых молекул ДНК и РНК про­исходит не только в растущем организме, но и у взрослого человека. Об этом свидетельствует включение введенного в организм радиоактив­ного изотопа фосфора (:12 Р) в их молекулы. Син­тез ДНК наиболее интенсивно протекает в тех тканях, где постоянно происходит регенерация клеток (костный мозг, слизистая желудочно-кишечного тракта и др.). Перед вступлением соматической клетки в митоз (в фазе S митоти-ческого цикла) количество ДНК в ядре удваива­ется, что является необходимым условием удво­ения числа хромосом. Синтез новых молекул РНК происходит во всех клетках, но наиболее интенсивно он протекает в органах, синтезиру­ющих большое количество белков (костный мозг и лимфоидные органы, печень, слизистая же­лудка и кишечника, поджелудочная железа).

Для осуществления синтеза нуклеиновых кислот необходимо присутствие в клетках дос­таточного количества пуриновых и пиримиди-новых оснований, рибозы и дезоксирибозы, а также макроэргических фосфорных соединений. Материалом для синтеза пуриновых и пирими-диновых оснований являются одноуглеродные фрагменты некоторых аминокислот и их произ­водных (аспарагиновая кислота, глицин, серии,

Часть II. ТИПОВЫЕ ПАТОЛОГИЧЕСКИЕ ПРОЦЕССЫ


глутамин), а также аммиак и С0 2 (рис. 99). Ри-боза образуется из глюкозы в пентозном цикле, в дальнейшем она может превращаться в дезок-сирибозу.

Наиболее выраженные нарушения синтеза ДНК имеют место при дефиците фолиевой кис­лоты и витамина В ]9 .

При дефиците фолиевой кислоты наруша­ется использование одноуглеродных фрагментов аминокислот для синтеза пуриновых и пирими-диновых оснований.

Витамин В 12 необходим для образования не­которых коферментных форм фолиевой кисло­ты, при дефиците которых нарушается превра­щение диоксиуридинмонофосфата в дезоксити-мидилат посредством метилирования при помо­щи N 5 , N 10 - метилентетрагидрофолата в реакции, катализируемой тимидилатсинтетазой. В резуль­тате нарушается синтез тимидина, что лимити­рует образование новых молекул ДНК. Синтез РНК при дефиците витамина В 12 и фолиевой кислоты не нарушается. Пониженное образова­ние ДНК тормозит вступление клеток в митоз вследствие удлинения синтетической фазы ми-тотического цикла. Задержка митозов ведет к замедлению клеточных делений, в результате тормозится процесс физиологической регенера­ции в костном мозге и в других быстро обновля­ющихся тканях. Задержка митозов сопровожда­ется увеличением размеров клеток, что, по-ви­димому, связано с удлинением интерфазы. Наи­более демонстративно эти изменения выражены в кроветворной ткани костного мозга: появля­ются гигантские эритробласты - мегалобласты, при созревании их образуются эритроциты боль­ших размеров - мегалоциты. Обнаруживаются также увеличенные в размерах миелоциты, ме-тамиелоциты и более зрелые гранулоциты. Ги­гантские клетки появляются и в других тканях: слизистой языка, желудка и кишечника, влага­лища. Вследствие замедления процессов регене­рации развиваются тяжелая форма малокровия (пернициозная анемия), лейкопения и тромбо-цитопения, атрофические изменения в слизис­той пищеварительного тракта.

Дефицит витамина В 12 у человека возникает при длительной вегетарианской диете, при на­рушении его всасывания в кишечнике в связи с прекращением продукции внутреннего фактора Касла в желудке, при атрофии его слизистой в результате повреждения аутоантителами; други-


I Глицин
Аспартат у i