Числовой коэффициент выражения: определение, примеры. Расчет коэффициента вариации в Microsoft Excel

В математических описаниях часто фигурирует термин «числовой коэффициент», например, в работе с буквенными выражениями и выражениями с переменными. Материал статьи ниже раскрывает понятие этого термина, в том числе, на примере решения задач на нахождение числового коэффициента.

Yandex.RTB R-A-339285-1

Определение числового коэффициента. Примеры

Учебник Н.Я. Виленкина (учебный материал для учащихся 6 классов) задает такое определение числового коэффициента выражения:

Определение 1

Если буквенное выражение является произведением одной или нескольких букв и одного числа, то это число называется числовым коэффициентом выражения .

Числовой коэффициент зачастую называют просто коэффициентом.

Данное определение дает возможность указать примеры числовых коэффициентов выражений.

Пример 1

Рассмотрим произведение числа 5 и буквы a , которое будет иметь следующий вид: 5 · a . Число 5 является числовым коэффициентом выражения согласно определению выше.

Еще пример:

Пример 2

В заданном произведении x · y · 1 , 3 · x · x · z десятичная дробь 1 , 3 – единственным числовой множитель, который и будет служить числовым коэффициентом выражения.

Также разберем такое выражение:

Пример 3

7 · x + y . Число 7 в данном случае не служит числовым коэффициентом выражения, поскольку заданное выражение не является произведением. Но при этом число 7 – числовой коэффициент первого слагаемого в заданном выражении.

Пример 4

Пусть дано произведение 2 · a · 6 · b · 9 · c .

Мы видим, что запись выражения содержит три числа, и, чтобы найти числовой коэффициент исходного выражения, его следует переписать в виде выражения с единственным числовым множителем. Собственно, это и является процессом нахождения числового коэффициента.

Отметим, что произведения одинаковых букв могут быть представлены как степени с натуральным показателем, поэтому определение числового коэффициента верно и для выражений со степенями.

К примеру:

Пример 5

Выражение 3 · x 3 · y · z 2 – по сути оптимизированная версия выражения 3 · x · x · x · y · z · z , где коэффициент выражения – число 3 .

Отдельно поговорим о числовых коэффициентах 1 и - 1 . Они очень редко записаны в явном виде, и в этом их особенность. Когда произведение состоит из нескольких букв (без явного числового множителя), и перед ним обозначен знак плюс или вовсе нет никакого знака, мы можем говорить, что числовым коэффициентом такого выражения является число 1 . Когда перед произведением букв обозначен знак минус, можно утверждать, что в этом случае числовой коэффициент – число - 1 .

Пример 6

К примеру, в произведении - 5 · x + 1 число - 5 будет служить числовым коэффициентом.

По аналогии, в выражении 8 · 1 + 1 x · x число 8 – коэффициент выражения; а в выражении π + 1 4 · sin x + π 6 · cos - π 3 + 2 · x числовой коэффициент - π + 1 4 .

Нахождение числового коэффициента выражения

Выше мы говорили о том, что если выражение представляет собой произведение с единственным числовым множителем, то этот множитель и будет являться числовым коэффициентом выражения. В случае, когда выражение записано в ином виде, предстоит совершить ряд тождественных преобразований, который приведет заданное выражение к виду произведения с единственным числовым множителем.

Пример 7

Задано выражение − 3 · x · (− 6) . Необходимо определить его числовой коэффициент.

Решение

Осуществим тождественное преобразование, а именно произведем группировку множителей, являющихся числами, и перемножим их. Тогда получим: − 3 · x · (− 6) = ((− 3) · (− 6)) · x = 18 · x .

В полученном выражении мы видим явный числовой коэффициент, равный 18 .

Ответ: 18

Пример 8

Задано выражение a - 1 2 · 2 · a - 6 - 2 · a 2 - 3 · a - 3 . Необходимо определить его числовой коэффициент.

Решение

С целью определения числового коэффициента преобразуем в многочлен заданное целое выражение. Раскроем скобки и приведем подобные слагаемые, получим:

a - 1 2 · 2 · a - 6 - 2 · a 2 - 3 · a - 3 = = 2 · a 2 - 6 · a - a + 3 - 2 · a 2 + 6 · a - 3 = - a

Числовым коэффициентом полученного выражения будет являться число - 1 .

Ответ: - 1 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

На данном уроке мы узнаем о таком понятии, как коэффициент. Также мы рассмотрим несколько задач, на примере которых сможем без труда находить коэффициенты различных выражений.

Это произведение: число 2 умножается на букву .

В таком произведении договорились число называть коэффициентом .

Коэффициент - это числовой множитель в произведении, где есть буква.

Например:

Поэтому коэффициент равен 4.

Поэтому коэффициент 1.

Поэтому коэффициент -1.

Поэтому коэффициент равен 5.

В математике договорились писать коэффициент в начале, поэтому:

Букв может быть несколько, но это не влияет на коэффициент. Например:

Коэффициент -17.

Коэффициент 46.

Если в произведении несколько числовых множителей, то такое выражение может быть упрощено:

Коэффициент в данном выражении - 100.

Числовой множитель в произведении, где есть хотя бы одна буква, называется коэффициентом.

Если чисел несколько, нужно их перемножить, упростить выражение и таким образом будет получен коэффициент.

В одном произведении есть только один коэффициент.

Если есть сумма, например, такая:

То у каждого слагаемого есть коэффициенты: и .

Если числа нет, то можно поставить единицу. Это и есть коэффициент.

, коэффициент 1.

Найти коэффициент: а) ; б) .

а) , коэффициент -50.

б) ,коэффициент .

Итак, коэффициент - это число, которое стоит в произведении с одной или несколькими переменными. Оно может быть целым или дробным, положительным или отрицательным.

При посадке картошки урожай получается в 10 раз больше, чем количество посаженной картошки. Каков будет урожай, если посадили 65 кг?

Решение

А если посажено 90 кг картошки?

А если неизвестно, сколько посажено? Как тогда решать в таком случае?

Если посадили кг, то урожай будет кг.

Итак, 10 - здесь коэффициент (назовем его урожайность), а - переменная. может принимать любые значения, а формула будет рассчитывать величину урожая.

Если урожайность другая, например 9, то формула выглядит так: .

Коэффициент в формуле изменился.

Если рассматривать разные урожайности, то формула по виду будет оставаться такой же, меняться будет только коэффициент.

Значит, можно записать общий вид всех таких формул.

Где - коэффициент; - переменная.

Это урожайность, она может быть равна, например, 10 или 9, как раньше, или другому числу.

Итак, как ответить на вопрос «какой коэффициент в записи ?»?

Если ничего не известно про эту запись, то и являются просто буквами, переменными. Коэффициент единица.

Если же известно, что это часть формулы для расчета урожая картофеля, тогда - это и есть коэффициент.

Иными словами, часто коэффициент может обозначаться буквой.

В математике, физике, других науках много формул, где одна из букв является коэффициентом.

Пример

Плотность вещества в физике обозначается буквой .

Чем больше плотность, тем больше весит один и тот же объем вещества.

Если знать объем вещества и его плотность, то найти массу легко по формуле:

Любой человек, который знаком с этой формулой, на вопрос «какой здесь коэффициент?» ответит «».

Коэффициент - это число в произведении, где есть одна или несколько переменных.

Есть договоренность писать коэффициент перед переменными.

Если числа в произведении нет, то можно поставить множитель 1, он и будет коэффициентом.

Если перед нами известная нам формула, то одна из букв вполне может быть коэффициентом.

Список литературы

  1. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. - М.: Мнемозина, 2012.
  2. Мерзляк А.Г., Полонский В.В., Якир М.С. Математика 6 класс. - Гимназия, 2006.
  3. Депман И.Я., Виленкин Н.Я. За страницами учебника математики. - Просвещение, 1989.
  4. Рурукин А.Н., Чайковский И.В. Задания по курсу математика 5-6 класс - ЗШ МИФИ, 2011.
  5. Рурукин А.Н., Сочилов С.В., Чайковский К.Г. Математика 5-6. Пособие для учащихся 6-х классов заочной школы МИФИ. - ЗШ МИФИ, 2011.
  6. Шеврин Л.Н., Гейн А.Г., Коряков И.О., Волков М.В. Математика: Учебник-собеседник для 5-6 классов средней школы. Библиотека учителя математики. - Просвещение, 1989.
  1. Интернет портал «Uchportal.ru» ()
  2. Интернет портал «Фестиваль педагогических идей» ()
  3. Интернет портал «School-assistant.ru» ()

Домашнее задание

Где x·y , x , y - средние значения выборок; σ(x), σ(y) - среднеквадратические отклонения.
Кроме того, коэффициент линейной парной корреляции может быть определен через коэффициент регрессии b: , где σ(x)=S(x), σ(y)=S(y) - среднеквадратические отклонения, b - коэффициент перед x в уравнении регрессии y=a+bx .

Другие варианты формул:
или

К xy - корреляционный момент (коэффициент ковариации)

Линейный коэффициент корреляции принимает значения от –1 до +1 (см. шкалу Чеддока). Например, при анализе тесноты линейной корреляционной связи между двумя переменными получен коэффициент парной линейной корреляции, равный –1 . Это означает, что между переменными существует точная обратная линейная зависимость.

Геометрический смысл коэффициента корреляции : r xy показывает, насколько различается наклон двух линий регрессии: y(x) и х(у) , насколько сильно различаются результаты минимизации отклонений по x и по y . Чем больше угол между линиями, то тем больше r xy .
Знак коэффициента корреляции совпадает со знаком коэффициента регрессии и определяет наклон линии регрессии, т.е. общую направленность зависимости (возрастание или убывание). Абсолютная величина коэффициента корреляции определяется степенью близости точек к линии регрессии.

Свойства коэффициента корреляции

  1. |r xy | ≤ 1;
  2. если X и Y независимы, то r xy =0, обратное не всегда верно;
  3. если |r xy |=1, то Y=aX+b, |r xy (X,aX+b)|=1, где a и b постоянные, а ≠ 0;
  4. |r xy (X,Y)|=|r xy (a 1 X+b 1 , a 2 X+b 2)|, где a 1 , a 2 , b 1 , b 2 – постоянные.

Инструкция . Укажите количество исходных данных. Полученное решение сохраняется в файле Word (см. Пример нахождения уравнения регрессии). Также автоматически создается шаблон решения в Excel . .

Количество строк (исходных данных)
Заданы итоговые значения величин (∑x, ∑x 2 , ∑xy, ∑y, ∑y 2)

В сегодняшней статье речь пойдет о том, как переменные могут быть связаны друг с другом. С помощью корреляции мы сможем определить, существует ли связь между первой и второй переменной. Надеюсь, это занятие покажется вам не менее увлекательным, чем предыдущие!

Корреляция измеряет мощность и направление связи между x и y. На рисунке представлены различные типы корреляции в виде графиков рассеяния упорядоченных пар (x, y). По традиции переменная х размещается на горизонтальной оси, а y - на вертикальной.

График А являет собой пример положительной линейной корреляции: при увеличении х также увеличивается у, причем линейно. График В показывает нам пример отрицательной линейной корреляции, на котором при увеличении х у линейно уменьшается. На графике С мы видим отсутствие корреляции между х и у. Эти переменные никоим образом не влияют друг на друга.

Наконец, график D - это пример нелинейных отношений между переменными. По мере увеличения х у сначала уменьшается, потом меняет направление и увеличивается.

Оставшаяся часть статьи посвящена линейным взаимосвязям между зависимой и независимой переменными.

Коэффициент корреляции

Коэффициент корреляции, r, предоставляет нам как силу, так и направление связи между независимой и зависимой переменными. Значения r находятся в диапазоне между — 1.0 и + 1.0. Когда r имеет положительное значение, связь между х и у является положительной (график A на рисунке), а когда значение r отрицательно, связь также отрицательна (график В). Коэффициент корреляции, близкий к нулевому значению, свидетельствует о том, что между х и у связи не существует график С).

Сила связи между х и у определяется близостью коэффициента корреляции к - 1.0 или +- 1.0. Изучите следующий рисунок.

График A показывает идеальную положительную корреляцию между х и у при r = + 1.0. График В - идеальная отрицательная корреляция между х и у при r = — 1.0. Графики С и D - примеры более слабых связей между зависимой и независимой переменными.

Коэффициент корреляции, r, определяет, как силу, так и направление связи между зависимой и независимой переменными. Значения r находятся в диапазоне от — 1.0 (сильная отрицательная связь) до + 1.0 (сильная положительная связь). При r= 0 между переменными х и у нет никакой связи.

Мы можем вычислить фактический коэффициент корреляции с помощью следующего уравнения:

Ну и ну! Я знаю, что выглядит это уравнение как страшное нагромождение непонятных символов, но прежде чем ударяться в панику, давайте применим к нему пример с экзаменационной оценкой. Допустим, я хочу определить, существует ли связь между количеством часов, посвященных студентом изучению статистики, и финальной экзаменационной оценкой. Таблица, представленная ниже, поможет нам разбить это уравнение на несколько несложных вычислений и сделать их более управляемыми.

Как видите, между числом часов, посвященных изучению предмета, и экзаменационной оценкой существует весьма сильная положительная корреляция. Преподаватели будут весьма рады узнать об этом.

Какова выгода устанавливать связь между подобными переменными? Отличный вопрос. Если обнаруживается, что связь существует, мы можем предугадать экзаменационные результаты на основе определенного количества часов, посвященных изучению предмета. Проще говоря, чем сильнее связь, тем точнее будет наше предсказание.

Использование Excel для вычисления коэффициентов корреляции

Я уверен, что, взглянув на эти ужасные вычисления коэффициентов корреляции, вы испытаете истинную радость, узнав, что программа Excel может выполнить за вас всю эту работу с помощью функции КОРРЕЛ со следующими характеристиками:

КОРРЕЛ (массив 1; массив 2),

массив 1 = диапазон данных для первой переменной,

массив 2 = диапазон данных для второй переменной.

Например, на рисунке показана функция КОРРЕЛ, используемая при вычислении коэффициента корреляции для примера с экзаменационной оценкой.

Всем привет!

Вступив в сообщество ставок на спорт, не нашел никаких статей по теории ставок, хотя сам ставил и знаю, что теоретического материала в беттинге не меньше, чем в покере. Поэтому хочу разместить здесь несколько постов о математических и аналитических основах ставок на спорт. Надеюсь, кому-нибудь пригодится.

Начать хотелось бы с того, чего начинает каждый игрок: с линии букмекера. Первый вопрос, который возник у меня, когда я впервые взял в руки распечатанную линию: Как букмекер определяет всю эту массу коэффициентов?

Букмекерские конторы работают исключительно с целью извлечения прибыли. И, вопреки широко распространенному мнению, прибыль букмекера зависит не от количества проигранных ставок, а от правильно выставленных коэффициентов. Что значит "правильно"? Это значит, что при любом, даже самом неожиданном исходе события, букмекер должен остаться с прибылью.

Рассмотрим, как формируются коэффициенты. Сначала аналитики определяют шансы команд. Делается это многими способами, которые можно поделить на две группы: аналитические и эвристические. Аналитические - это в основном статистика и математика (теория вероятностей), эвристические - это экспертные оценки. Тем или иным образом комбинируя полученные результаты, выводятся вероятности исходов события. Допустим, в результате деятельности аналитиков и экспертов получены следующие вероятности исходов:

Это "чистые шансы", но эти коэффициенты никогда не будут в линии, потому что букмекер в этом случае не получит прибыли. В линии коэффициенты на эти события будут выглядеть примерно так:

То есть из каждой поставленной всеми игроками в сумме сто тысяч рублей, 75 000 было поставлено на победу 1, 15 000 на ничью и 10 000 - на победу 2. Большинство игроков чаще всего ставит на заведомых фаворитов, составляя на основе таких исходов большую часть экпрессов. Что же получит букмекер с каждой вложенной игроками сотни тысяч долларов в случае различных исходов?

Видно, что в случае победы фаворита, которая случается чаще всего, букмекер понесет убытки. Это совершенно недопустимо для бизнеса, и букмекер обязан исключить даже теоретическую возможность возникновения подобной ситуации.

Для этого он должен искусственно занизить коэффициент на фаворита. Букмекер заранее не знает, как в точности распределятся ставки, но знает наверняка, что игроки будут "грузить" на фаворита, поэтому для страховки завышает вероятность победы фаворита.

В реальности ни реальные шансы, ни распределение средств игроками точно рассчитать невозможно, всегда существует некоторая погрешность. Поэтому букмекеры стараются изначально занизить коэффициенты на фаворита, чтобы гарантировать себе прибыль, т.е. определяют шансы команд и добавляют к рассчитанной вероятности победы фаворита 10-20%. А по мере поступления ставок, в зависимости от их реального текущего распределения, варьируют коэффициентами, чтобы прибыль была наибольшей.

Вывод: основной принцип, которым руководствуется букмекер - распределение финансов между двумя или более группами игроков таким образом, чтобы выплачивать выигрыши за счет средств проигравших, оставляя определенный процент себе. Очень часто полученные таким образом коэффициенты не имеют ничего общего с вероятностями тех или иных событий. Поэтому нужно иметь собственную систему оценки спортивных событий.

Спасибо за внимание!