Днк и гены. Молекула ДНК

Биохимические основы наследственности.

Генетическая роль нуклеиновых кислот.

Нуклеиновые кислоты – биологические полимеры, находятся во всех клетках, от примитивных до сложноустроенных. Впервые обнаружены Иоганном Фридрихом Мишером в1868 г. в клетках, богатых ядерным материалом (лейкоцитах, сперматозоидах лосося). Термин «нуклеиновые кислоты» предложен в 1889 г.

Существует два типа нуклеиновых кислот: ДНК, РНК (АТФ – мононуклеотид). ДНК и РНК являются молекулами – матрицами. ДНК содержится около 6*10 -12 г в соматических клетках: в ядре, митохондриях. РНК входит в состав рибосом, содержится в ядре и цитоплазме.

Изучение и доказательство ведущей роли нуклеиновых кислот в передаче наследственной информации проведено на вирусных частицах. Вирус табачной мозаики известен как вирулентный для табака и для подорожника. Состоит вирусная частица на 95% из белка и на 5% из нуклеиновой кислоты. В вирусных частицах поменяли местами белковый капсид, но через некоторое время белок в обоих штаммах трансформировался в прежнюю форму.

В бактериофагах, поражающих кишечную палочку, белки оболочки фага метили радиоактивной S, а ДНК фага метили радиоактивным Р. В бактериальной клетке, зараженной фагом, образовались частицы фага, в которых был лишь радиоактивный Р.

Строение и функции молекул ДНК и РНК.

Нуклеиновые кислоты – биополимеры нерегулярного строения, мономерами которых являются нуклеотиды. Нуклеотид состоит из остатков трёх веществ: фосфорной кислоты, углевода - пентозы, азотистого основания. В состав нуклеотидов ДНК входит углевод дезоксирибоза, в РНК – рибоза. Остатки пуриновых и пиримидиновых азотистых оснований, входящих в состав ДНК – это аденин, гуанин, цитозин, тимин. В составе молекул РНК – аденин, гуанин, цитозин, урацил.

Нуклеотиды соединяются между собой через остаток фосфорной кислоты одного нуклеотида и углевод другого прочной ковалентной эфирной связью, называемой «кислородный мостик». Связь идёт через 5-ый атом углерода углевода одного нуклеотида к 3-ему атому углерода углевода другого нуклеотида. Последовательность нуклеотидов представляет первичную структуру нуклеиновых кислот. РНК – одиночная полинуклеотидная цепь. ДНК по структуре двойная полинуклеотидная цепь, свёрнутая в спираль.

Вторичная структура ДНК формируется при возникновении второй цепи ДНК, выстраиваемой по принципу комплементарности относительно первой. Вторая цепь противонаправлена первой (антипараллельна). Азотистые основания лежат в плоскости, перпендикулярной плоскости молекулы – это напоминает винтовую лестницу. Перилами этой лестницы являются остатки фосфорной кислоты и углевод, а ступенями азотистые основания.

Азотистые основания, входящие в состав каждого нуклеотида в противонаправленных цепях, способны образовывать между собой комплементарные водородные связи (за счет имеющихся функциональных групп в строении каждого азотистого основания). Адениловый нуклеотид комплементарен тиминовому, гуаниловый – цитозиновому, и наоборот. Сами по себе эти связи непрочные, но «прошитая» многократно по всей длине такими связями молекула ДНК представляет очень прочное соединение.

Комплементарность – это пространственно-структурное и химическое соответствие азотистых оснований друг другу, они подходят друг к другу «как ключ к замку».

В одну молекулу ДНК могут входить 10 8 и более нуклеотидов.

Структура молекулы ДНК как двойной антипараллельной спирали была предложена в 1953 г. американским биологом Джемсом Уотсоном и английским физиком Френсисом Криком.

Молекула ДНК любого живого организма на планете состоит всего из четырёх типов нуклеотидов, отличающихся друг от друга входящими в них азотистыми основаниями: аденилового, гуанилового, тиминового и цитозинового. В этом универсальность ДНК. Их последовательность различна, а число бесконечно.

Для каждого вида живых организмов и для каждого организма отдельно эта последовательность индивидуальна и строго специфична .

Особенность структуры ДНК в том, что химически активные участки молекулы – азотистые основания, погружены в центр спирали и образуют между собой комплементарные связи, а остатки дезоксирибозы и фосфорной кислоты находятся на периферии и прикрывают доступ к азотистым основаниям – они химически неактивны. Такая структура долго может сохранять химическую стабильность. А что ещё нужно для хранения наследственной информации? Именно эти особенности структуры ДНК определяют её способность кодировать и воспроизводить генетическую информацию.

Прочную структуру ДНК разрушить достаточно трудно. Тем не менее это происходит в клетке регулярно – при синтезе РНК и удвоением молекулы самой ДНК перед делением клетки.

Удвоение, репликация ДНК начинается с того, что особый фермент – ДНК-полимераза – расплетает двойную спираль и разъединяет её на отдельные нити – формируется редупликационная вилка. Фермент при этом действует подобно замку в застёжке-молнии. На каждой однонитчатой цепи – липких концах редупликационной вилки - из находящихся в кариоплазме свободных нуклеотидов синтезируется новая цепь по принципу комплементарности. В новых двух молекулах ДНК одна цепь остаётся исходной материнской, а вторая – новой дочерней. В результате вместо одной молекулы ДНК возникают две молекулы такого же точно нуклеотидного состава, как и первоначальная.

В живых системах мы встречаемся с новым типом реакций, неизвестными в неживой природе. Они называются реакциями матричного синтеза . Матричный синтез напоминает отливку на матрице: новые молекулы синтезируются в точном соответствии с планом, заложенным в структуре уже существующих молекул. В этих реакциях обеспечивается точная последовательность мономерных звеньев в синтезируемых полимерах. Мономеры поступают в определённое место на молекулы, служащие матрицей, где реакция протекает. Если бы такие реакции происходили в результате случайного столкновения молекул, они протекали бы бесконечно медленно. Синтез сложных молекул на основе матричного принципа осуществляется быстро и точно с помощью ферментов. Матричный синтез лежит в основе важнейших реакций синтеза нуклеиновых кислот и белков. Роль матрицы в клетке играют молекулы нуклеиновых кислот ДНК или РНК. Мономерные молекулы, из которых синтезируется полимер, - нуклеотиды или аминокислоты – в соответствии с принципом комплементарности располагаются и фиксируются на матрице в строго определённом порядке. Затем происходит соединение мономерных звеньев в полимерную цепь, и готовый полимер сходит с матрицы. После этого матрица готова к сборке новой точно такой же полимерной молекулы.

Реакции матричного типа – специфическая особенность живой клетки. Они являются основой фундаментального свойства всего живого – способности к воспроизведению себе подобного.

Функции нуклеиновых кислот – хранение и передача наследственной информации. В молекулах ДНК закодирована информация о первичной структуре белка. На матрице ДНК идёт синтез молекул и-РНК. Этот процесс называется «транскрипция». И-РНК в процессе «трансляции» реализует информацию в виде последовательности аминокислот в молекуле белка.

ДНК каждой клетки несёт информацию не только о структурных белках, определяющих форму клетки, но и обо всех белках-ферментах, белках-гормонах и других белках, а также строении всех видов РНК.

Возможно, нуклеиновые кислоты обеспечивают различные виды биологической памяти – иммунологическую, нейрологическую и т. д., а также играют существенную роль в регуляции биосинтетических процессов.


Похожая информация.


Молекула ДНК состоит из двух нитей, образующих двойную спираль. Впервые ее структура была расшифрована Френсисом Криком и Джеймсом Уотсоном в 1953 году.

Поначалу молекула ДНК, состоящая из пары нуклеотидных, закрученных друг вокруг друга цепочек, порождала вопросы о том, почему именно такую форму она имеет. Ученые назвали этот феномен комплементарностью, что означает, что в ее нитях друг напротив друга могут находиться исключительно определенные нуклеотиды. К примеру, напротив тимина всегда стоит аденин, а напротив цитозина - гуанин. Эти нуклеотиды молекулы ДНК и называются комплементарными.

Схематически это изображается так:

Т — А

Ц — Г

Данные пары образуют химическую нуклеотидную связь, которая определяет порядок расстановки аминокислот. В первом случае она немного слабее. Связь между Ц и Г более прочная. Некомплементарные нуклеотиды между собой пары не образуют.


О строении

Итак, строение молекулы ДНК особое. Такую форму она имеет неспроста: дело в том, что количество нуклеотидов очень большое, и для размещения длинных цепочек необходимо много места. Именно по этой причине цепочкам присуще спиральное закручивание. Это явление названо спирализацией, оно позволяет нитям укорачиваться где-то в пять-шесть раз.

Некоторые молекулы такого плана организм использует очень активно, другие - редко. Последние, помимо спирализации, подвергаются еще и такой «компактной упаковке», как суперспирализация. И тогда длина молекулы ДНК уменьшается в 25-30 раз.

Что такое «упаковка» молекулы?

В процессе суперспирализации задействуются гистоновые белки. Они имеют структуру и вид катушки для ниток или стержня. На них и наматываются спирализованные нити, которые становятся сразу «компактно упакованными» и занимают мало места. Когда возникает необходимость использования той или иной нити, она сматывается с катушки, к примеру, гистонового белка, и спираль раскручивается в две параллельные цепочки. Когда молекула ДНК пребывает именно в таком состоянии, с нее можно считывать необходимые генетические данные. Однако есть одно условие. Получение информации возможно, только если структура молекулы ДНК имеет раскрученный вид. Хромосомы, доступные для считывания, называются эухроматинами, а если они суперсипирализованы, то это уже гетерохроматины.

Нуклеиновые кислоты

Нуклеиновые кислоты, как и белки, являются биополимерами. Главная функция - это хранение, реализация и передача наследственной (генетической информации). Они бывают двух типов: ДНК и РНК (дезоксирибонуклеиновые и рибонуклеиновые). Мономерами в них выступают нуклеотиды, каждый из которых имеет в своем составе остаток фосфорной кислоты, пятиуглеродный сахар (дезоксирибоза/рибоза) и азотистое основание. В ДНК код входит 4 вида нуклеотидов - аденин (А)/ гуанин (Г)/ цитозин (Ц)/ тимин (Т). Они отличаются по содержащемуся в их составе азотистому основанию.

В молекуле ДНК количество нуклеотидов может быть огромным - от нескольких тысяч до десятков и сотен миллионов. Рассмотреть такие гигантские молекулы можно через электронный микроскоп. В этом случае удастся увидеть двойную цепь из полинуклеотидных нитей, которые соединены между собой водородными связями азотистых оснований нуклеотидов.

Исследования

В ходе исследований ученые обнаружили, что виды молекул ДНК у разных живых организмов отличаются. Также было установлено, что гуанин одной цепи может связываться только лишь с цитозином, а тимин - с аденином. Расположение нуклеотидов одной цепи строго соответствует параллельной. Благодаря такой комплементарности полинуклеотидов молекула ДНК способна к удвоению и самовоспроизведению. Но сначала комплементарные цепи под воздействием специальных ферментов, разрушающих парные нуклеотиды, расходятся, а затем в каждой из них начинается синтез недостающей цепи. Это происходит за счет имеющихся в большом количестве в каждой клетке свободных нуклеотидов. В результате этого вместо «материнской молекулы» формируются две «дочерние», идентичные по составу и структуре, и ДНК-код становится исходным. Данный процесс является предшественником клеточного деления. Он обеспечивает передачу всех наследственных данных от материнских клеток дочерним, а также всем последующим поколениям.

Как читается генный код?

Сегодня вычисляется не только масса молекулы ДНК - можно узнать и более сложные, ранее не доступные ученым данные. Например, можно прочитать информацию о том, как организм использует собственную клетку. Конечно, сначала сведения эти находятся в закодированном виде и имеют вид некой матрицы, а потому ее необходимо транспортировать на специальный носитель, коим выступает РНК. Рибонуклеиновой кислоте под силу просачиваться в клетку через мембрану ядра и уже внутри считывать закодированную информацию. Таким образом, РНК - это переносчик скрытых данных из ядра в клетку, и отличается она от ДНК тем, что в её состав вместо дезоксирибозы входит рибоза, а вместо тимина - урацил. Кроме того, РНК одноцепочная.

Синтез РНК

Глубокий анализ ДНК показал, что после того как РНК покидает ядро, она попадает в цитоплазму, где и может быть встроена как матрица в рибосомы (специальные ферментные системы). Руководствуясь полученной информацией, они могут синтезировать соответствующую последовательность белковых аминокислот. О том, какую именно разновидность органического соединения необходимо присоединить к формирующейся белковой цепи, рибосома узнает из триплетного кода. Каждой аминокислоте соответствует свой определенный триплет, который ее и кодирует.

После того как формирование цепочки завершено, она приобретает конкретную пространственную форму и превращается в белок, способный осуществлять свои гормональные, строительные, ферментные и иные функции. Для любого организма он является генным продуктом. Именно из него определяются всевозможные качества, свойства и проявления генов.

Гены

В первую очередь процессы секвенирования разрабатывались с целью получения информации о том, сколько генов имеет структура молекулы ДНК. И, хотя исследования позволили ученым далеко продвинуться в этом вопросе, узнать точное их количество пока что не представляется возможным.

Еще несколько лет назад предполагалось, что молекулы ДНК содержат приблизительно 100 тыс. генов. Немного погодя цифра уменьшилась до 80 тысяч, а в 1998 г. генетиками было заявлено, что в одной ДНК присутствует только 50 тысяч генов, которые являются всего лишь 3 % всей длины ДНК. Но поразили последние заключения генетиков. Теперь они утверждают, что в геном входит 25-40 тысяч упомянутых единиц. Получается, что за кодирование белков отвечает только 1,5 % хромосомной ДНК.

На этом исследования не прекратились. Параллельная команда специалистов генной инженерии установила, что численность генов в одной молекуле составляет именно 32 тысячи. Как видите, получить окончательный ответ пока что невозможно. Слишком много противоречий. Все исследователи опираются только на свои полученные результаты.

Было ли эволюционирование?

Несмотря на то что нет никаких доказательств эволюции молекулы (так как строение молекулы ДНК хрупкое и имеет малый размер), все же учеными было высказано одно предположение. Исходя из лабораторных данных, они озвучили версию следующего содержания: молекула на начальном этапе своего появления имела вид простого самовоспроизводящегося пептида, в состав которого входило до 32 аминокислот, содержащихся в древних океанах.

После саморепликации, благодаря силам естественного отбора, у молекул появилась способность защищать себя от воздействия внешних элементов. Они стали дольше жить и воспроизводиться в больших количествах. Молекулы, нашедшие себя в липидном пузыре, получили все шансы для самовоспроизведения. В результате череды последовательных циклов липидные пузыри приобрели форму клеточных мембран, а уже далее - всем известных частиц. Следует отметить, что сегодня любой участок молекулы ДНК представляет собой сложную и четко функционирующую структуру, все особенности которой учеными до конца еще не изучены.

Современный мир

Недавно ученые из Израиля разработали компьютер, которому под силу выполнять триллионы операций в секунду. Сегодня это самая быстрая машина на Земле. Весь секрет заключается в том, что инновационное устройство функционирует от ДНК. Профессора говорят, что в ближайшей перспективе такие компьютеры смогут даже вырабатывать энергию.

Специалисты из института Вейцмана в Реховоте (Израиль) год назад заявили о создании программируемой молекулярной вычислительной машины, состоящей из молекул и ферментов. Ими они заменили микрочипы из кремния. К настоящему времени команда еще продвинулась вперед. Теперь обеспечить компьютер необходимыми данными и предоставить нужное топливо может всего одна молекула ДНК.

Биохимические «нанокомпьютеры» - это не выдумка, они уже существуют в природе и проявлены в каждом живом существе. Но зачастую они не управляются людьми. Человек пока что не может оперировать геном какого-либо растения, чтобы рассчитать, скажем, число «Пи».

Идея об использовании ДНК для хранения/обработки данных впервые посетила светлые головы ученных в 1994 году. Именно тогда для решения простой математической задачи была задействована молекула. С того момента ряд исследовательских групп предложил различные проекты, касающиеся ДНК-компьютеров. Но здесь все попытки основывались только на энергетической молекуле. Невооруженным глазом такой компьютер не увидишь, он имеет вид прозрачного раствора воды, находящегося в пробирке. В нем нет никаких механических деталей, а только триллионы биомолекулярных устройств - и это только в одной капле жидкости!

ДНК человека

Какой вид у ДНК человека, людям стало известно в 1953 году, когда ученые впервые смогли продемонстрировать миру двухцепочную модель ДНК. За это Кирк и Уотсон получили Нобелевскую премию, так как данное открытие стало фундаментальным в 20 веке.

Со временем, конечно, доказали, что не только так, как в предложенном варианте, может выглядеть структурированная молекула человека. Проведя более детальный анализ ДНК, открыли А-, В- и левозакрученную форму Z-. Форма А- зачастую является исключением, так как образуется только в том случае, если наблюдается недостаточность влаги. Но это возможно разве что при лабораторных исследованиях, для естественной среды это аномально, в живой клетке такой процесс происходить не может.

Форма В- является классической и известна как двойная правозакрученная цепь, а вот форма Z- не только закручена в обратном направлении, влево, но также имеет более зигзагообразный вид. Учеными выделена еще и форма G-квадруплекс. В ее структуре не 2, а 4 нити. По мнению генетиков, возникает такая форма на тех участках, где имеется избыточное количество гуанина.

Искусственная ДНК

Сегодня уже существует искусственная ДНК, являющаяся идентичной копией настоящей; она идеально повторяет структуру природной двойной спирали. Но, в отличие от первозданного полинуклеотида, в искусственном - всего два дополнительных нуклеотида.

Так как дубляж создавался на основе информации, полученной в ходе различных исследований настоящей ДНК, то он также может копироваться, самовоспроизводиться и эволюционировать. Над созданием такой искусственной молекулы специалисты работали около 20 лет. В результате получилось удивительное изобретение, которое может пользоваться генетическим кодом так же, как и природная ДНК.

К четырем имеющимся азотистым основаниям генетики добавили дополнительные два, которые создали методом химической модификации естественных оснований. В отличие от природной, искусственная ДНК получилась достаточно короткой. Она содержит только 81 пару оснований. Тем не менее она также размножается и эволюционирует.

Репликация молекулы, полученной искусственным путем, имеет место благодаря полимеразной цепной реакции, но пока что это происходит не самостоятельно, а через вмешательство ученых. В упомянутую ДНК они самостоятельно добавляют необходимые ферменты, помещая ее в специально подготовленную жидкую среду.

Конечный результат

На процесс и конечный итог развития ДНК могут влиять различные факторы, например мутации. Это обуславливает обязательное изучение образцов материи, чтобы результат анализов был достоверным и надежным. В качестве примера можно привести тест на отцовство. Но не может не радовать, что такие казусы, как мутация, встречаются редко. Тем не менее образцы материи всегда перепроверяют, чтобы на основе анализа получить более точную информацию.

ДНК растений

Благодаря высоким технологиям секвенирования (HTS) совершена революция и в области геномики - выделение ДНК из растений также возможно. Конечно, получение из растительного материала молекулярной массы ДНК высокого качества вызывает некоторые трудности, обусловленные большим числом копий митохондрий и хлоропластов ДНК, а также высоким уровнем полисахаридов и фенольных соединений. Для выделения рассматриваемой нами структуры в этом случае задействуются самые разные методы.

Водородная связь в ДНК

За водородную связь в молекуле ДНК отвечает электромагнитное притяжение, создаваемое между положительно заряженным атомом водорода, который присоединен к электроотрицательному атому. Данное дипольное взаимодействие не подпадает под критерий химической связи. Но она может осуществиться межмолекулярно либо в различных частях молекулы, т. е. внутримолекулярно.

Атом водорода присоединяется к электроотрицательному атому, являющемуся донором данной связи. Электроотрицательным атомом может быть азот, фтор, кислород. Он - путем децентрализации - привлекает к себе электронное облако из водородного ядра и делает атом водорода заряженным (частично) положительно. Так как размер Н маленький, по сравнению с другими молекулами и атомами, заряд получается также малым.

Расшифровка ДНК

Прежде чем расшифровать молекулу ДНК, ученные сначала берут огромное количество клеток. Для наиболее точной и успешной работы их необходимо около миллиона. Полученные в процессе изучения результаты постоянно сравнивают и фиксируют. Сегодня расшифровка генома - это уже не редкость, а доступная процедура.

Конечно, расшифровывать геном одной клетки - это нецелесообразное занятие. Полученные в ходе таких исследований данные для ученых не представляют никакого интереса. Но важно понимать, что все существующие на данный момент методы декодировки, несмотря на их сложность, недостаточно эффективны. Они позволят считывать только 40-70 % ДНК.

Однако гарвардские профессора недавно заявили о способе, благодаря которому можно расшифровать 90 % генома. Методика основана на добавлении к выделенным клеткам молекул-праймеров, с помощью них и начинается репликация ДНК. Но даже и этот метод нельзя считать успешным, его еще нужно доработать, прежде чем открыто использовать в науке.

По своему химическому строению ДНК (дезоксирибонуклеиновая кислота ) является биополимером , мономерами которого являются нуклеотиды . То есть ДНК - это полинуклеотид . Причем молекула ДНК обычно состоит из двух цепей, закрученных друг относительно друга по винтовой линии (часто говорят «спирально закрученных») и соединенных между собой водородными связями.

Цепочки могут быть закручены как в левую, так и в правую (чаще всего) сторону.

У некоторых вирусов ДНК состоит из одной цепи.

Каждый нуклеотид ДНК состоит из 1) азотистого основания, 2) дезоксирибозы, 3) остатка фосфорной кислоты.

Двойная правозакрученная спираль ДНК

В состав ДНК входят следующие: аденин , гуанин , тимин и цитозин . Аденин и гуанин относятся к пуринам , а тимин и цитозин - к пиримидинам . Иногда в состав ДНК входит урацил, который обычно характерен для РНК , где замещает тимин.

Азотистые основания одной цепи молекулы ДНК соединяются с азотистыми основаниями другой строго по принципу комплементарности: аденин только с тимином (образуют между собой две водородные связи), а гуанин только с цитозином (три связи).

Азотистое основание в самом нуклеотиде соединено с первым атомом углерода циклической формы дезоксирибозы , которая является пентозой (углеводом с пятью атомами углерода). Связь является ковалентной, гликозидной (C-N). В отличие от рибозы у дезоксирибозы отсутствует одна из гидроксильных групп. Кольцо дезоксирибозы формируют четыре атома углерода и один атом кислорода. Пятый атом углерода находится вне кольца и соединен через атом кислорода с остатком фосфорной кислоты. Также через атом кислорода у третьего атома углерода присоединяется остаток фосфорной кислоты соседнего нуклеотида.

Таким образом, в одной цепи ДНК соседние нуклеотиды связаны между собой ковалентными связями между дезоксирибозой и фосфорной кислотой (фосфодиэфирная связь). Образуется фосфат-дезоксирибозный остов. Перпендикулярно ему, навстречу другой цепочке ДНК, направлены азотистые основания, которые соединяются с основаниями второй цепочки водородными связями.

Строение ДНК таково, что остовы соединенных водородными связями цепочек направлены в разные стороны (говорят «разнонаправлены», «антипараллельны»). С той стороны, где одна заканчивается фосфорной кислотой, соединенной с пятым атомом углерода дезоксирибозы, другая заканчивается «свободным» третьим атомом углерода. То есть остов одной цепочки перевернут как бы с ног на голову относительно другой. Таким образом, в строении цепочек ДНК различают 5"-концы и 3"-концы.

При репликации (удвоении) ДНК синтез новых цепочек всегда идет от их 5-го конца к третьему, так как новые нуклеотиды могут присоединяться только к свободному третьему концу.

В конечном итоге (опосредованно через РНК) каждые идущие подряд три нуклеотида в цепи ДНК кодируют одну аминокислоту белка.

Открытие строения молекулы ДНК произошло в 1953 году благодаря работам Ф. Крика и Д. Уотсона (чему также способствовали ранние работы других ученых). Хотя как химическое вещество ДНК было известно еще в XIX веке. В 40-х годах XX века стало ясно, что именно ДНК является носителем генетической информации.

Двойная спираль считается вторичной структурой молекулы ДНК. У клетках эукариот подавляющее количество ДНК находится в хромосомах , где связана с белками и другими веществами, а также подвергается более плотной упаковке.

Нуклеиновые кислоты - это сложные, высокомолекулярные биопо­лимеры. Впервые эти вещества были обнаружены в ядре клетки, отсюда происходит их название (от лат. нуклеус - ядро). Позже было установле­но, что нуклеиновые кислоты присутствуют также и в цитоплазме клеток.

В расшифровке структуры нуклеиновых кислот принимали участие мно­гие ученые, такие как Ф. Мишер, Э. Чаргафф, Р. Франклин и другие, но окон­чательно разгадать структуру нуклеиновых кислот удалось в 1953 году аме­риканскому биохимику Дж. Уотсону и английскому генетику Ф. Крику, за что они были удостоены Нобелевской премии, а их открытие было призна­но одним из величайших открытий XX века.

Известны два типа нуклеиновых кислот:ДНК - дезоксирибонуклеиновые кислоты и РНК - рибонуклеиновые кислоты. Их молекулы представляют собой полимеры, мономерами которых являются нуклеотиды. Длина нитевидных молекул ДНК огромна, в клетках организма человека она составляет несколько сантиметров. Общая длина ДНК в 26 парах хромосом человека составляет примерно 1,5 метра. Молекулы РНК короче – длина каждой из них не превышает 0,01 мм.

Нуклеотиды – мономеры нуклеиновых кислот, в свою очередь, имеют сложное строение. Каждый нуклеотид состоит из трех частей: азотистого основания, простого углевода пентозы и остатка фосфорной кислоты:

Нуклеотиды ДНК отличаются по строению от нуклеотидов РНК. В со­став молекул ДНК входят нуклеотиды четырех типов, которые отличают­ся друг от друга азотистыми основаниями, среди которых известны: аденин, гуанин, цитозин и тимин. В зависимости от того, какое из четырех видов азо­тистых оснований входит в состав нуклеотида ДНК, он, соответственно, носит название аденинового, гуанинового, цитозинового или тиминового. Сокращенно нуклеотиды обозначаются буквами А, Г, Ц, Т. Углевод, входя­щий в состав нуклеотидов ЛНК. всегда один й тот же - это дезоксирибо-за, постоянными и неизменным компонентом всех нуклеотидов ДНК явля­ется и остаток фосфорной кислоты. Таким образом, один из нуклеотидов ДНК, например, адениновый А можно изобразить схематически так:

В одну цепь нуклеотиды соединяются путем образования ковалентных связей между дезоксирибозой одного и остатком фосфорной кислоты пос­ледующего нуклеотида (рис. 1).

Молекула ДНК представляет собой не одну, а две цепи нуклеотидов, которые сориентированы друг к другу азотистыми основаниями и между которыми возникают водородные связи. Количество таких связей между разными азотистыми основаниями неодинаково, и, вследствие этого, они могут соединяться только попарно: азотистое основание аденин одной цепи полинуклеотида всегда связано двумя водородными связями с тимином другой цепи, а гуанин - тремя водородными связями с азотистым основа­нием цитозином противоположной полинуклеотидной цепи. Такая способ­ность к избирательному соединению нуклеотидов называетсякомплементарностью (от лат. complementum - дополнение).


Рис. 1. Строение ДНК

В пространстве молекула ДНК представляет собой закрученную двойную спираль (вторичная структура ДНК), которая, в свою очередь, подвергается дальнейшей пространственной упаковке, формируя третичную структуру – суперспираль. Такое строение характерно для ДНК хромосом эукариот и обусловлено взаимодействием между ДНК и ядерными белками. Так, длина ДНК самой большой хромосомы человека равна 8 см, но при этом она скручена так, что, в конечном счете, не превышает 5 нм.

Основное свойство молекулы ДНК – способность к самоудвоению (репликации ) (рис. 2).

Перед репликацией двойная спираль молекулы ДНК раскручивается и распадается на две цепочки, каждая из которых служит матрицей (формой) для сборки на ней по

принципу комплементарности новой (дочерней) цепочки. Материалом для построения новой цепочки ДНК служат нуклеотиды, всегда имеющиеся в ядре в свободном состоянии. Этот процесс имеет место перед делением клетки и лежит в основе удвоения числа хромосом.

Рис. 2. Репликация двойной спирали ДНК

Нуклеотиды молекулы ДНК кодируют последовательность аминокислот в молекуле белка – в этом заключается основная функция ДНК – хранение наследственной информации. Одну аминокислоту в молекуле белка кодирует 3 нуклеотида молекулы ДНК. Ген – это участок молекулы ДНК в котором записана последовательность аминокислот одной молекулы белка.

Содержание

Аббревиатура клеточный ДНК многим знакома из школьного курса биологии, но мало кто сможет с легкостью ответить, что это. Лишь смутное представление о наследственности и генетике остается в памяти сразу после окончания учебы. Знание, что такое ДНК, какое влияние оно оказывает на нашу жизнь, порой может оказаться очень нужным.

Молекула ДНК

Биохимики выделяют три типа макромолекул: ДНК, РНК и белки. Дезоксирибонуклеиновая кислота – это биополимер, который несет ответственность за передачу данных о наследственных чертах, особенностях и развитии вида из поколения в поколение. Его мономером является нуклеотид. Что такое молекулы ДНК? Это главный компонент хромосом и содержит генетический код.

Структура ДНК

Ранее ученые представляли, что модель строения ДНК периодическая, где повторяются одинаковые группы нуклеотидов (комбинаций молекул фосфата и сахара). Определенная комбинация последовательности нуклеотидов предоставляет возможность «кодировать» информацию. Благодаря исследованиям выяснилось, что у разных организмов структура различается.

Особенно известны в изучении вопроса, что такое ДНК американские ученые Александер Рич, Дэйвид Дэйвис и Гэри Фелзенфелд. Они в 1957 году представили описание нуклеиновой кислоты из трех спиралей. Спустя 28 лет, ученый Максим Давидович Франк-Каменицкий продемонстрировал, как дезоксирибонуклеиновая кислота, которая состоит из двух спиралей, складывается Н-образной формой из 3 нитей.

Структура у дезоксирибонуклеиновой кислоты двухцепочечная. В ней нуклеотиды попарно соединены в длинные полинуклеотидные цепи. Эти цепочки при помощи водородных связей делают возможным образование двойной спирали. Исключение – вирусы, у которых одноцепочечный геном. Существуют линейные ДНК (некоторые вирусы, бактерии) и кольцевые (митохондрии, хлоропласты).

Состав ДНК

Без знания, из чего состоит ДНК, не было бы ни одного достижения медицины. Каждый нуклеотид – это три части: остаток сахара пентозы, азотистое основание, остаток фосфорной кислоты. Исходя из особенностей соединения, кислоты могут называться дезоксирибонуклеиновой или рибонуклеиновой. В состав ДНК входит огромное число мононуклеотидов из двух оснований: цитозин и тимин. Кроме этого, она содержит производные пиримидинов, аденин и гуанин.

Есть в биологии определение DNA – мусорная ДНК. Функции ее еще неизвестны. Альтернативная версия названия – «некодирующая», что не верно, т.к. она содержит кодирующие белки, транспозоны, но их назначение тоже тайна. Одна из рабочих гипотез говорит о том, что некоторое количество этой макромолекулы способствует структурной стабилизации генома в отношении мутаций.

Где находится­

Расположение внутри клетки зависит от особенностей вида. У одноклеточных ДНК находится в мембране. У остальных живых существ она располагается в ядре, пластидах и митохондриях. Если говорить о человеческой ДНК, то ее называют хромосомой. Правда, это не совсем так, ведь хромосомы – это комплекс хроматина и дезоксирибонуклеиновой кислоты.

Роль в клетке

Основная роль ДНК в клетках – передача наследственных генов и выживание будущего поколения. От нее зависят не только внешние данные будущей особи, но и ее характер и здоровье. Дезоксирибонуклеиновая кислота находится в суперскрученном состоянии, но для качественного процесса жизнедеятельности она должна быть раскрученной. С этим ей помогают ферменты - топоизомеразы и хеликазы.

Топоизомеразы относятся к нуклеазам, они способны изменять степень скрученности. Еще одна их функция – участие в транскрипции и репликации (делении клеток). Хеликазы разрывают водородные связи между основаниями. Существуют ферменты лигазы, которые нарушенные связи «сшивают», и полимеразы, которые участвуют в синтезе новых цепей полинуклеотидов.

Как расшифровывается ДНК

Эта аббревиатура для биологии является привычной. Полное название ДНК- дезоксирибонуклеиновая кислота. Произнести такое не каждому под силу с первого раза, поэтому часто в речи расшифровка ДНК опускается. Встречается еще понятие РНК – рибонуклеиновая кислота, которая состоит из последовательностей аминокислот в белках. Они напрямую связаны, а РНК является второй по важности макромолекулой.

ДНК человека

Человеческие хромосомы внутри ядра разделены, что делает ДНК человека самым стабильным, полным носителем информации. Во время генетической рекомбинации спирали разделяются, происходит обмен участками, а затем связь восстанавливается. За счет повреждения ДНК образовываются новые комбинации и рисунки. Весь механизм способствует естественному отбору. До сих пор неизвестно, как долго она отвечает за передачу генома, и какова ее эволюция метаболизма.

Кто открыл­

Первое открытие структуры ДНК приписывают английским биологам Джеймсу Уотсону и Френсису Крику, которые в 1953 году раскрыли особенности строения молекулы. Нашел же ее в 1869 году швейцарский врач Фридрих Мишер. Он изучал химический состав животных клеток с помощью лейкоцитов, которые массово скапливаются в гнойных поражениях.

Мишер занимался изучением способов отмывания лейкоцитов, выделял белки, когда обнаружил, что кроме них есть что-то еще. На дне посуды во время обработки образовался осадок из хлопьев. Изучив эти отложения под микроскопом, молодой врач обнаружил ядра, которые оставались после обработки соляной кислотой. Там содержалось соединение, которое Фридрих назвал нуклеином (от лат. nucleus - ядро).