Слуховой анализатор состоит из. Возрастная физиология и анатомия

14.3. Слуховой анализатор

Слуховой анализатор представляет собой совокупность механиче­ских, рецепторных и нервных структур, воспринимающих и анализи­рующих звуковые колебания. Периферический отдел слухового ана­лизатора представлен слуховым органом, состоящим из наружного, среднего и внутреннего уха (рис. 58).

Наружное ухо состоит из ушной раковины и наружного слухового прохода.

Основу ушной раковины составляет эластичный хрящ, дополнен­ный кожной складкой - мочкой, заполненной жировой тканью. Уш­ная ракбвина у новорожденного уплощена, хрящ ее мягкий, кожа тонкая, мочка имеет небольшие размеры. Наиболее быстро ушная ра­ковина растет в течение первых двух лет и после 10 лет. В длину она растет быстрее, чем в ширину. Свободный край раковины завернут внутрь в форме завитка, а с ее дна поднимается противозавиток. Ме- диальнее последнего располагается полость раковины, в глубине ко­торой находится отверстие наружного слухового прохода. Спереди от него располагается козелок, сзади - противокозелок.

Наружный слуховой проход имеет длину 24 мм и оканчивается бара­банной перепонкой. Первая треть слухового прохода является хряще­вым продолжением раковины, остальные две трети костные и распо­лагаются в пирамиде височной кости. Наружный слуховой проход

у новорожденного узкий и длинный (15 мм), круто изогнут, имеет су­жение, медиальный и латеральный отделы его расширены. Стенки наружного слухового прохода хрящевые, за исключением барабанно­го кольца. Длина слухового прохода у ребенка 1 года составляет 20 мм, а 5 лет - 22 мм. Слуховой проход выстлан кожей с тонкими волокна­ми и видоизмененными потовыми железками, выделяющими ушную серу. Все это защищает барабанную перепонку от неблагоприятных воздействий внешней среды. Барабанная перепонка отделяет наруж­ное ухо от среднего. Она состоит из коллагеновых волокон, снаружи покрыта эпидермисом, а внутри - слизистой оболочкой. Барабанная перепонка у новорожденного хорошо развита. Ее высота равна 9 мм, ширина - 8 мм, как у взрослого человека, и образует угол в 35-40°.

Среднее ухо состоит из барабанной полости, слуховых косточек и слуховой трубы.

На передней стенке барабанной полости располагается отверстие слуховой трубы, через которое она заполняется воздухом. На задней стенке полости открываются ячейки сосцевидного отростка, а на ме­диальной размещаются окно преддверия и окно улитки, которые ведут во внутреннее ухо. Барабанная полость у новорожденного по разме­рам такая же, как у взрослого. Слизистая оболочка утолщена, и поэто­му барабанная полость заполнена жидкостью. С началом дыхания она поступает через слуховую трубу в глотку и проглатывается. Стенки ба­рабанной полости тонкие, особенно верхняя. Задняя стенка имеет широкое отверстие, ведущее в сосцевидную полость. Сосцевидные ячейки у грудных детей отсутствуют из-за слабого развития сосцевид­ного отростка. Окно улитки затянуто вторичной барабанной пере­понкой.

В среднем ухе располагаются три слуховые косточки: молоточек, наковальня и стремя. Молоточек соединяется с одной стороны с бара­банной перепонкой, а с другой - с телом наковальни. Длинный от­росток последней сочленяется с головкой стремени. Основание стре­мени прилегает к окну преддверия. Слуховые косточки у новорож­денного имеют размеры, близкие к таковым у взрослого. Все три косточки соединяют барабанную перепонку с внутренним ухом.

Слуховая труба - это длинный (3,5 см) и узкий (2 мм) хрящевой канал, который переходит в костный со стороны пирамиды. Труба служит для выравнивания давления воздуха на барабанную перепон­ку. Отверстие трубы в глотке находится в спавшемся состоянии и воз­дух в барабанную полость поступает лишь при глотании или зевании.

Слуховая труба у новорожденного прямая, широкая и короткая, дли­ной 17-18 мм. В течение первого года жизни она растет медленно (20 мм), на втором году быстрее (30 мм). В 5 лет длина ее составляет 35 мм, у взрослого человека - 35-38 мм. Просвет слуховой трубы су­живается от 2,5 мм в 6 месяцев до 2 мм в 2 года и 1 -2 мм в 6 лет.

Внутреннее ухо, или лабиринт, имеет двойные стенки: перепонча­тый лабиринт вставлен в костный. Между ними находится прозрач­ная жидкость - перилимфа, а внутри перепончатого - эндолимфа.

Костный лабиринт состоит из преддверия, улитки и трех полу­кружных каналов. Преддверие представляет собой овальную полость, соединяющуюся с барабанной полостью с помощью перегородки с двумя окнами: овальным (окно преддверия) и круглым (окно улит­ки). В преддверие открываются отверстия трех полукружных каналов и спиральный канал улитки. Строение полукружных каналов будет рассмотрено при описании вестибулярного анализатора. Костная улитка представляет собой спиральный канал, имеющий два с поло­виной оборота вокруг стержня улитки. От стержня отходит костная спиральная пластинка, не доходящая до наружной стенки канала. От свободного конца спиральной пластинки до противоположной стен­ки улитки натянуты две мембраны - спиральная и вестибулярная, которые ограничивают улитковый проток. Улитковый проток делит улитку на две части, или лестницы. Верхняя часть, или лестница пред­дверия, начинается от овального окна преддверия и идет до вершины улитки, где через маленькое отверстие сообщается с нижним каналом, или барабанной лестницей. Она располагается от верхушки улитки до круглого окна улитки. Вестибулярная и барабанная лестницы запол­нены перилимфой, а просвет улиткового протока - эндолимфой. Внутреннее ухо у новорожденного развито хорошо, его размеры близ­ки к таковым у взрослого человека. Костные стенки полукружных ка­налов тонкие, постепенно утолщаются за счет окостенения в пирами­де височной кости.

На спиральной мембране лежит спиральный орган, состоящий из опорных и рецепторных клеток. На опорных клетках цилиндриче­ской формы лежат рецепторные волосковые клетки, которые имеют на своей верхней части выросты, представленные крупными микро­ворсинками (стереоцилиями). Волосковые клетки бывают наружны­ми, располагающимися в три ряда, и внутренними, образующими только один ряд. Между наружными и внутренними волосковыми клетками лежит кортиев туннель, выстланный столбчатыми клетками.

Реснички наружных и внутренних волосковых клеток соприкасаются с покровной (текториальной) мембраной. Эта мембрана представляет собой однородную желеобразную массу, прикрепленную к клеткам эпителия. Спиральная мембрана неодинакова по ширине: у человека вблизи овального окна ее ширина составляет 0,04 мм, а затем по на­правлению к вершине улитки, постепенно расширяясь, она достигает в конце 0,5 мм. В базальной части спирального органа располагаются рецепторные клетки, воспринимающие более высокие частоты, а в апи­кальной части (на вершине улитки) - клетки, воспринимающие только низкие частоты.

Базальные части рецепторных клеток контактируют с нервными волокнами, которые проходят в базальной мембране, а затем выходят в канал спиральной пластинки. Далее они идут к нейронам спираль­ного ганглия, лежащего в костной улитке, где и начинается провод­никовый отдел слухового анализатора. Аксоны нейронов спирально­го узла образуют волокна слухового нерва, который входит в мозг между нижними ножками мозжечка и мостом и направляется в по­крышку моста, где имеет место первый перекрест волокон и образуется латеральная петля. Часть ее волокон оканчивается на клетках нижнего двухолмия, где находится первичный слуховой центр. Другие волокна латеральной петли в составе ручки нижнего двухолмия подходят к ме­диальному коленчатому телу. Отростки клеток последнего образуют слуховую лучистость, оканчивающуюся в коре верхней височной из­вилины (корковый отдел слухового анализатора).

Механизм образования звука

Кортиев орган, расположенный на основной мембране, содержит рецепторы, которые превращают механические колебания в электри­ческие потенциалы, возбуждающие волокна слухового нерва. При действии звука основная мембрана начинает колебаться, волоски ре- цепторных клеток деформируются, что вызывает генерацию электри­ческих потенциалов, которые через синапсы достигают волокон слу­хового нерва. Частота этих потенциалов соответствует частоте звуков, а амплитуда зависит от интенсивности звука.

В результате возникновения электрических потенциалов происхо­дит возбуждение волокон слухового нерва, для которых характерна спонтанная активность даже в тишине (100 имп./с). При звуке частота импульсации в волокнах нарастает в течение всего времени действия раздражителя. Для каждого волокна нерва существует оптимальная частота звука, которая дает наибольшую частоту разрядов и мини­мальный порог реакции. Эта оптимальная частота определяется ме­стом на основной мембране, где расположены рецепторы, связанные с данным волокном. Таким образом, для волокон слухового нерва ха­рактерна частотная избирательность, обусловленная возбуждением разных клеток спирального органа. При повреждении спирального органа у основания выпадают высокие тона, у вершины - низкие тона. Разрушение среднего завитка приводит к выпадению тонов средней частоты диапазона.

Существует два механизма различения высоты тона: пространст­венное и временное кодирование. Пространственное кодирование основано на неодинаковом расположении возбужденных рецептор- ных клеток на основной мембране. При низких и средних тонах осу­ществляется и временное кодирование. Информация в этом случае передается в определенные группы волокон слухового нерва, частота соответствует частоте воспринимаемых улиткой звуковых колебаний.

Для всех слуховых нейронов характерно наличие частотно-поро­говых показателей. Эти показатели отражают зависимость порогово­го звука, необходимого для возбуждения клетки, от его частоты. В обе стороны от оптимальной частоты порог реакции нейрона возрастает, т.е. нейрон оказывается настроенным на звуки лишь определенной частоты.

Все это подтвердило гипотезу Г. Гельмгольца (1863) о механизме различения в кортиевом органе звуков по их высоте. Согласно этой гипотезе, поперечные волокна основной мембраны короткие в ее уз­кой части - у основания улитки и в 3-4 раза длиннее в ее широкой части - у вершины. Они настроены как струны музыкальных инстру­ментов. Колебание отдельных групп волокон вызывает на соответст­вующих участках основной мембраны раздражение соответствующих рецепторных клеток. Эти предположения Г. Гельмгольца подтверди­лись и были частично модифицированы и развиты в работах амери­канского физиолога Д. Бекеши (1968).

Сила звука кодируется числом возбужденных нейронов. При сла­бых раздражителях в реакцию вовлекается лишь небольшое число наиболее чувствительных нейронов, а при усилении звука возбужда­ется все больше дополнительных нейронов. Это связано с тем, что нейроны слухового анализатора резко отличаются друг от друга по по­рогу возбуждения. Порог различен у внутренних и наружных клеток (для внутренних клеток он значительно выше), поэтому в зависимо­сти от силы звука изменяется соотношение числа возбужденных на­ружных и внутренних клеток.

Человек воспринимает звуки с частотой от 16 до 20 ООО Гц. Этот диапазон соответствует 10-11 октавам. Границы слуха зависят от воз­раста: чем человек старше, тем чаще он не слышит высоких тонов. Различение частоты звуков характеризуется той минимальной разни­цей по частоте двух звуков, которую человек улавливает. Человек спо­собен заметить разницу в 1-2 Гц.

Абсолютная слуховая чувствительность - это минимальная сила звука, слышимого человеком в половине случаев его звучания. В об­ласти от 1000 до 4000 Гц слух человека обладает максимальной чувст­вительностью. В этой зоне лежат и речевые поля. Верхний предел слышимости возникает, когда увеличение силы звука неизменной частоты вызывает неприятное чувство давления и боли в ухе. Едини­цей громкости звука является бел. В быту обычно используют в каче­стве единицы громкости децибел, т.е. 0,1 бела. Максимальный уро­вень громкости, когда звук вызывает боль, равен 130-140 дБ над порогом слышимости.

Если на ухо долго действует тот или иной звук, то чувствитель­ность слуха падает, т.е. наступает адаптация. Механизм адаптации связан с сокращением мышц, идущих к барабанной перепонке и стре­мени (при их сокращении изменяется интенсивность звуковой энергии, передающейся на улитку), и с нисходящим влиянием ретикулярной формации среднего мозга.

Слуховой анализатор обладает двумя симметричными половинами (бинауральный слух), т.е. для человека характерен пространственный слух - способность определять положение источника звука в про­странстве. Острота такого слуха велика. Человек может определить расположение источника звука с точностью до 1°. Это связано с тем, что, если источник звука находится в стороне от средней линии голо­вы, звуковая волна приходит на одно ухо раньше и с большей силой, чем на другое. Кроме того, на уровне задних холмов четверохолмия найдены нейроны, реагирующие лишь на определенное направление движения источника звука в пространстве.

Слух в онтогенезе

Несмотря на раннее развитие слухового анализатора, орган слуха у новорожденного еще не вполне сформирован. У него имеет место от­носительная глухота, которая связана с особенностями строения уха. Полость среднего уха у новорожденных заполнена амниотической жидкостью, что затрудняет колебание слуховых косточек. Амниоти- ческая жидкость постепенно рассасывается, и в полость уха из носо­глотки через евстахиеву трубу проникает воздух.

Новорожденный реагирует на громкие звуки вздрагиванием, прекра­щением плача, изменением дыхания. Вполне отчетливым слух у детей становится к концу 2-го - началу 3-го месяца. На 2-м месяце жизни ребенок дифференцирует качественно различные звуки, в 3-4 месяца различает высоту в пределах от 1 до 4 октав, в 4-5 месяцев звуки ста­новятся условными раздражителями, хотя условные пищевые и обо­ронительные рефлексы на звуковые раздражители вырабатываются уже с 3-5-недельного возраста. К 1-2 годам дети дифференцируют звуки, разница между которыми составляет 1 тон, а к 4 годам - даже 3/4 и 1/2 тона.

Острота слуха определяется наименьшей силой звука, которая мо­жет вызвать звуковое ощущение (порог слышимости). У взрослого че­ловека порог слышимости лежит в пределах 10-12 дБ, удетей 6-9 лет - 17-24 дБ, 10-12-лет- 14-19 дБ. Наибольшая острота звука достига­ется к среднему и старшему школьному возрасту. Низкие тоны дети воспринимают лучше, чем высокие. В развитии слуха у детей большое значение имеет общение со взрослыми. Развивает слух у детей слуша­ние музыки, обучение игре на музыкальных инструментах.

Слуховой анализатор

Тема 3. Физиология и гигиена сенсорных систем

Цель лекции – рассмотрение сущности и значения физиологии и гигиены сенсорных систем.

Ключевые слова – физиология, сенсорная система, гигиена.

Основные вопросы:

1 Физиология зрительной системы

Восприятие как слож­ный системный процесс приема и обработки информации осу­ществляется на базе функционирования специальных сенсорных систем или анализаторов. Эти системы осуществляют превраще­ние раздражителœей внешнего мира в нервные сигналы и передачу их в центры головного мозга.

Анализаторы как единая система анализа информации, состоящей из трех взаимо­связанных отделов: периферического, проводникового и централь­ного.

Зрительный и слуховой анализаторы играют особую роль в по­знавательной деятельности.

Возрастная динамика сенсорных процессов определяется постепенным созреванием различных звеньев анализатора. Рецепторные аппараты созревают еще в пренатальном периоде и к моменту рождения являются более зрелыми. Значительные изменения претерпевают проводящая система и воспринимающий аппарат проекционной зоны, что приводит к изменению параметров реакции на внешний стимул. В первые месяцы жизни ребенка наблюдается совершенствование механизмов обработки информации, осуществляемой в проекционной зоне коры, вследствие этого усложняются возможности анализа и обработки стимула. Дальнейшие изменения процесса переработки внешних сигналов связаны с формированием сложны нервных сетей и определяющих формирование процесса восприятия как психической функции.

1. Физиология зрительной системы

Зрительная сенсорная система, как и любая другая, состоит из трех отделов:

1 Периферический отдел –глазное яблоко, в частности - сетчатка глаза (воспринимает световое раздражение)

2 Проводниковый отдел - аксоны ганглиозных клеток - зрительный нерв - зрительный перекрест - зрительный тракт - промежуточный мозг (коленчатые тела)- средний мозг (четверохолмие) -таламус

3 Центральный отдел - затылочная доля: область шпорной борозды и прилегающих извилин

Периферический отдел зрительной сенсорной системы.

Оптическая система глаза, строение и физиология сетчатки

К оптической системе глаза относятся: роговица, водянистая влага, радужка, зрачок, хрусталик и стекловидное тело

Глазное яблоко, имеет шаровидную форму и помещается в костной воронке - глазнице. Спереди он защищен веками. По свободному краю века растут ресницы, которые защищают глаз от попадания в него частиц пыли. У верхненаружного края глазницы расположена слезная желœеза, выделяющая слезную жидкость, омывающую глаз. Глазное яблоко имеет несколько оболочек, одна из которых - наружная - склера, или белочная оболочка (белого цвета). В передней части глазного яблока она переходит в прозрачную роговицу (преломляет лучи света)

Под белочной оболочкой расположена сосудистая оболочка, состоящая из большого количества сосудов. В переднем отделœе глазного яблока сосудистая оболочка переходит в ресничное тело и радужную оболочку (радужку). Она содержит пигмент, придающий цвет глазу. В ней имеется круглое отверстие - зрачок. Здесь расположены мышцы, которые изменяют величину зрачка и, исходя из этого, в глаз попадает большее или меньшее количество света͵ ᴛ.ᴇ. происходит регуляция поступления потока света. Позади радужки в глазу располагается хрусталик, представляющий собой эластичную, прозрачную двояковыпуклую линзу, окруженную ресничной мышцей. Его оптической функцией является преломление и фокусировка лучей, кроме того он отвечает за аккомодацию глаза. Хрусталик может менять свою форму - становиться более или менее выпуклые и соответственно сильнее или слабее преломлять лучи света. Благодаря этому человек способен отчетливо видеть предметы, расположенные на разном расстоянии. Роговица и хрусталик обладают светопреломляющей способностью

За хрусталиком полость глаза заполняется прозрачной желœеобразной массой - стекловидным телом, ĸᴏᴛᴏᴩᴏᴇ пропускает лучи света и является светопреломляющей средой.

Светопроводящие и светопреломляющие среды (роговица, водянистая влага, хрусталик, стекловидное тело) выполняют также функцию фильтрации света͵ пропуская только световые лучи с диапазоном длин волн от400 до 760 мкм. При этом ультрафиолетовые лучи задерживаются роговицей, а инфракрасные - водянистой влагой.

Внутренняя поверхность глаза выстлана тонкой, сложной по строению и наиболее функционально важной оболочкой - сетчаткой. В ней выделяют два отдела: задний отдел или зрительную часть и передний отдел – слепую часть. Граница, их отделяющая принято называть зубчатой линией. Слепая часть прилежит изнутри к цилиарному телу и к радужной оболочке и представляет собой два слоя клеток:

Внутренний – слой кубических пигментных клеток

Внешний – слой призматических клеток, лишенных пигмента меланина.

В сетчатке (в зрительной ее части) содержатся не только периферический отдел анализатора - рецепторные клетки, но и значительная часть его промежуточного отдела. Фоторецепторные клетки (палочки и колбочки) по данным большинства исследователœей, являются своеобразно измененными нервными клетками и потому относятся к первично чувствующим или нейросœенсорным рецепторам. Нервные волокна, отходящие от этих клеток, собираются вместе и образуют зрительный нерв.

Фоторецепторами являются палочки и колбочки, расположенные в наружном слое сетчатки. Палочки более чувствительны к цвету и обеспечивают сумеречное зрение. Колбочки воспринимают цвет и цветовое зрение.

1.1 Возрастные особенности зрительного анализатора

В процессе постнатального развития органы зрения человека претерпевают значительные морфофункциональные перестройки. К примеру, длина глазного яблока у новорожденного составляет 16 мм, а его масса – 3,0г, к 20 годам эти цифры соответственно увеличиваются до 23 мм и 8,0 ᴦ. В процессе развития меняется и цвет глаз. У новорожденных в первые годы жизни радужка содержит мало пигментов и имеет серовато-голубоватый оттенок. Окончательная окраска радужки формируется только к 10-12 годам.

Процесс развития и совершенствования зрительного анализатора, как и у других органов чувств, идет от периферии к центру. Миелинизация зрительных нервов заканчивается уже к 3-4 месяцам постнатального онтогенеза. Причем развитие сенсорных и моторных функций зрения идет синхронно. В первые дни после рождения движения глаз независимы друг от друга. Механизмы координации и способность фиксировать взглядом предмет, образно говоря, ʼʼмеханизм точной настройкиʼʼ, формируется в возрасте от 5 дней до 3-5 месяцев. Функциональное созревание зрительных зон коры головного мозга по некоторым данным происходит уже к рождению ребенка, по другим несколько позже.

Аккомодация у детей выражена в большей степени, чем у взрослых эластичность хрусталика с возрастом уменьшается, и соответственно падает аккомодация. У дошкольников вследствие более плоской формы хрусталика очень часто встречается дальнозоркость. В 3 года дальнозоркость наблюдается у 82% детей, а близорукость – у 2,5%. С возрастом это соотношение изменяется и число близоруких значительно увеличивается, достигая к 14-16 годам 11%. Важным фактором, способствующим появлению близорукости, является нарушение гигиены зрения: чтение лежа, выполнение уроков в плохо освещенной комнате, увеличение напряжения на глаза и др.

В процессе развития существенно меняются цветоощущения ребенка. У новорожденного в сетчатке функционируют только палочки, колбочки еще незрелые и их количество невелико. Элементарные функции цветоощущения у новорожденных, видимо, есть но полноценное включение колбочек в работу происходит столько к концу 3-го года жизни. При этом на данной возрастной ступени оно еще неполноценно. Своего максимального развития ощущения цвета достигает к 30 годам и затем постепенно снижается. Важное значение для формирования этой способности имеет тренировка. С возрастом повышается также острота зрения и улучшается стереоскопическое зрение. Наиболее интенсивно стереоскопическое зрение изменяется до 9-10 лет и достигает к 17-22 годам своего оптимального уровня. С 6 лет у девочек острота стереоскопического зрения выше, чем у мальчиков. Глазомер у девочек и мальчиков 7-8 лет значительно лучше, чем у дошкольников, и не имеет половых различий, но приблизительно в 7 раз хуже, чем у взрослых.

Поле зрения особенно интенсивно развивается в дошкольном возрасте, и к 7 годам оно составляет приблизительно 80% от размеров поля зрения взрослого. В развитии поля зрения наблюдаются половые особенности. В последующие годы размеры поля зрения сравниваются, а с 13-14 лет его размеры у девочек больше. Указанные возрастные и половые особенности развития поля зрения должны учитываться при организации обучения детей и подростков, так как поле зрения определяет объём учебной информации воспринимаемой ребенком, т. е. пропускную способность зрительного анализатора.

Слуховой анализатор состоит из трех отделов:

1. Периферический отдел включающий наружнее, среднее и внутреннее ухо

2. Проводниковый отдел - аксоны бипо­лярных клеток - улитковый нерв - ядра продолговатого мозга - внутреннее коленчатое тело – слуховая область коры больших полушарий

3. Центральный отдел – височная доля

Строение уха. Наружнее ухо включает ушную раковину и наружный слуховой проход. Его функция состоит в улавливании звуковых колебаний. Среднее ухо.

Рис. 1. Полусхематическое изображе­ние среднего уха: 1- наружный слуховой проход", 2- барабан­ная полость; 3 - слуховая труба; 4 - ба­рабанная перепонка; 5 - молоточек; 6 - на­ковальня; 7 - стремя; 8 - окно преддверия (овальное); 9 - окно улитки (круглое); 10- костная ткань.

Среднее ухо отделœено от наружного барабанной перепонкой, а от внутреннего - костной перегородкой с двумя отверстиями. Одно из них принято называть овальным окном или окном преддверия. К его краям при помощи эла­стичной кольцевой связки прикреплено основание стре­мени, Другое отверстие - круглое окно, или окно ули­тки,- затянуто тонкой соединительнотканной мембра­ной. Внутри барабанной полости находятся три слуховые косточки - молоточек, наковальня и стремя, соединœенные между собой суста­вами.

Воздушные звуковые вол­ны, попадая в слуховой про­ход, вызывают колебания барабанной перепонки, кото­рые через систему слуховых косточек, а также через воз­дух, находящийся в среднем ухе, передаются перилимфе внутреннего уха. Сочленен­ные между собой слуховые косточки можно рассматри­вать как рычаг первого рода, длинное плечо которого со­единœено с барабанной пере­понкой, а короткое укрепле­но в овальном окне. При передаче движения с длинного на короткое плечо происходит уменьшение размаха (амплитуды) за счёт увеличения развиваемой силы. Большое увеличение силы звуковых колебаний проис­ходит еще и потому, что поверхность основания стремени во много раз меньше поверхности барабанной перепонки. В целом сила звуковых колебаний увеличивается по крайней мере в 30-40 раз.

При мощных звуках вследствие сокращения мышц барабанной полости увеличивается напряжение барабанной перепонки и умень­шается подвижность основания стремени, что ведет к понижению силы передаваемых колебаний.

Слуховой анализатор - понятие и виды. Классификация и особенности категории "Слуховой анализатор" 2017, 2018.

Слуховой анализатор представляет собой совокупность механических, рецепторных и нервных структур, воспринимающих и анализирующих звуковые колебания. Периферический отдел слухового анализатора представлен слуховым органом, состоящим из наружного, среднего и внутреннего уха. Наружное ухо состоит из ушной раковины и наружного слухового прохода. Ушная раковина у новорожденного уплощена, хрящ ее мягкий, кожа тонкая, мочка имеет небольшие размеры. Наиболее быстро ушная раковина растет в течение первых двух лет и после 10 лет. В длину она растет быстрее, чем в ширину. Барабанная перепонка отделяет наружное ухо от среднего. Среднее ухо состоит из барабанной полости, слуховых косточек и слуховой трубы.

Барабанная полость у новорожденного по размерам такая же, как у взрослого. В среднем ухе располагаются три слуховые косточки: молоточек, наковальня и Внутреннее ухо, или лабиринт, имеет двойные стенки: перепончатый лабиринт вставлен в костный. Костный лабиринт состоит из преддверия, улитки и трех полукружных каналов. Улитковый проток делит улитку на две части, или лестницы. Внутреннее ухо у новорожденного развито хорошо, его размеры близки к таковым у взрослого человека. Базальные части рецепторных клеток контактируют с нервными волокнами, которые проходят в базальной мембране, а затем выходят в канал спиральной пластинки. Далее они идут к нейронам спирального ганглия, лежащего в костной улитке, где и начинается проводниковый отдел слухового анализатора. Аксоны нейронов спирального узла образуют волокна слухового нерва, который входит в мозг между нижними ножками мозжечка и мостом и направляется в покрышку моста, где имеет место первый перекрест волокон и образуется латеральная петля. Часть ее волокон оканчивается на клетках нижнего двухолмия, где находится первичный слуховой центр. Другие волокна латеральной петли в составе ручки нижнего двухолмия подходят к медиальному коленчатому телу. Отростки клеток последнего образуют слуховую лучистость, оканчивающуюся в коре верхней височной извилины (корковый отдел слухового анализатора).

Кортиев орган- периферическая часть слухового анализатора. Возрастные особенности

Кортиев орган, расположенный на основной мембране, содержит рецепторы, которые превращают механические колебания в электрические потенциалы, возбуждающие волокна слухового нерва. При действии звука основная мембрана начинает колебаться, волоски рецепторных клеток деформируются, что вызывает генерацию электрических потенциалов, которые через синапсы достигают волокон слухового нерва. Частота этих потенциалов соответствует частоте звуков, а амплитуда зависит от интенсивности звука. В результате возникновения электрических потенциалов происходит возбуждение волокон слухового нерва, для которых характерна спонтанная активность даже в тишине (100 имп./с). При звуке частота импульсации в волокнах нарастает в течение всего времени действия раздражителя. Для каждого волокна нерва существует оптимальная частота звука, которая дает наибольшую частоту разрядов и минимальный порог реакции. При повреждении спирального органа у основания выпадают высокие тона, у вершины - низкие тона. Разрушение среднего завитка приводит к выпадению тонов средней частоты диапазона. Существует два механизма различения высоты тона: пространственное и временное кодирование. Пространственное кодирование основано на неодинаковом расположении возбужденных рецепторных клеток на основной мембране. При низких и средних тонах осуществляется и временное кодирование. Человек воспринимает звуки с частотой от 16 до 20 О О О Гц. Этот диапазон соответствует 10-11 октавам. Границы слуха зависят от возраста: чем человек старше, тем чаще он не слышит высоких тонов. Различение частоты звуков характеризуется той минимальной разницей по частоте двух звуков, которую человек улавливает. Человек способен заметить разницу в 1-2 Гц. Абсолютная слуховая чувствительность - это минимальная сила звука, слышимого человеком в половине случаев его звучания. В области от 1000 до 4000 Гц слух человека обладает максимальной чувствительностью. В этой зоне лежат и речевые поля. Верхний предел слышимости возникает, когда увеличение силы звука неизменной частоты вызывает неприятное чувство давления и боли в ухе. Единицей громкости звука является бел. В быту обычно используют в качестве единицы громкости децибел, т.е. 0,1 бела. Максимальный уровень громкости, когда звук вызывает боль, равен 130-140 дБ над порогом слышимости. Слуховой анализатор обладает двумя симметричными половинами(бинауральный слух), т.е. для человека характерен пространственный слух - способность определять положение источника звука в пространстве. Острота такого слуха велика. Человек может определить расположение источника звука с точностью до 1°.

Слух в онтогенезе

Несмотря на раннее развитие слухового анализатора, орган слуха у новорожденного еще не вполне сформирован. У него имеет место относительная глухота, которая связана с особенностями строения уха. Новорожденный реагирует на громкие звуки вздрагиванием, прекращением плача, изменением дыхания. Вполне отчетливым слух у детей становится к концу 2-го - началу 3-го месяца. На 2-м месяце жизни ребенок дифференцирует качественно различные звуки, в 3-4 месяца различает высоту в пределах от 1 до 4 октав, в 4-5 месяцев звуки становятся условными раздражителями, хотя условные пищевые и оборонительные рефлексы на звуковые раздражители вырабатываются уже с 3-5-недельного возраста. К 1-2 годам дети дифференцируют звуки, разница между которыми составляет 1 тон, а к 4 годам - даже 3/4 и 1/2 тона. Острота слуха определяется наименьшей силой звука, которая может вызвать звуковое ощущение (порог слышимости). У взрослого человека порог слышимости лежит в пределах 10-12 дБ, у детей 6-9 лет -17-24 дБ, 10-12-лет- 14-19 дБ. Наибольшая острота звука достигается к среднему и старшему школьному возрасту.

87 вопрос. Профилактика Миопии или близорукость, астигматизм, тугоухость. Миопия-это нарушение зрения, при котором человек плохо видит предметы, находящиеся далеко и отлично рассматривает близкие объекты. Болезнь очень распространена, ею страдает треть всего населения Земли. Миопия обычно проявляется в возрасте 7_15 лет, может усугубляться или оставаться на прежнем уровне без изменений на протяжении всей жизни.

Профилактика миопии: Правильное освещение позволит снизить нагрузки на глаза, поэтому следует позаботиться о правильной организации рабочего места, настольной лампе. Не рекомендуется работать при лампе дневного света. Соблюдение режима зрительных нагрузок, чередуя их с физическими нагрузками. Правильное, сбалансированное питание должно содержать комплекс необходимых витаминов и минералов: цинк, магний, витамин А и др. Укрепление организма с помощью закаливания, физических нагрузок, массажа, контрастного душа. Следить за правильной осанкой ребенка. Эти простые меры предосторожности позволяют свести к минимуму вероятность снижения зрения вдаль, то есть развития миопии. Важно все это учесть родителям, ребенок которых имеет наследственную склонность к заболеванию.

Детский астигматизм - такой оптический дефект, когда в глазу существуют одновременно два оптических фокуса, причем, ни один из них не находится там, где он должен быть. Это связано с тем, что роговица по одной оси лучи преломляет сильнее, чем по другой.

Профилактика.

Зачастую дети просто не замечают, что у них понижается зрение. Значит, даже если нет жалоб, лучше показывать ребенка врачу-офтальмологу один раз в год. Тогда заболевание будет выявлено во время, а также начато лечение. Упражнения для глаз при астигматизме довольно полезны. Так, Р.С.Агарвал советует делать большие повороты 100 раз, перемещать взгляд по строкам с мелким шрифтом таблицы для зрения, сочетая их с морганиями на каждой строчке.

Тугоухость - понижение слуха разной степени выраженности, при котором восприятие речи затруднено, но возможно при создании определенных условий (приближение говорящего или динамика к уху, применение звукоусиливающей аппаратуры). При сочетании патологии слуха и речи (глухонемота) дети не способны воспринимать и воспроизводить речь. Профилактика тугоухости и глухоты у детей является важнейшим путем решения проблемы тугоухости. Ведущую роль в предупреждении наследственно обусловленных форм тугоухости. Все беременные должны проходить обследование с целью выявления болезней почек и печени, сахарного диабета и других заболеваний. Необходимо ограничить назначение ототоксических антибиотиков беременным и детям, особенно младшего детского возраста. С первых же дней жизни ребенка профилактика приобретенных форм тугоухости должна сочетаться с предупреждениями заболеваний слухового аппарата, особенно инфекционно-вирусной этиологии. При обнаружении первых признаков нарушений слуха следует проконсультировать ребенка у оториноларинголога.

Слуховой анализатор включает в себя три основные части: орган слуха, слуховые нервы, подкорковый и корковые центры мозга. Как работает слуховой анализатор, знают не многие, но сегодня мы вместе попробуем разобраться во всем.

Человек узнает окружающий его мир и адаптируется в социуме благодаря органам чувств. Одними из самых важных являются органы слуха, которые улавливают звуковые колебания и предоставляют человеку информацию о происходящем вокруг него. Совокупность систем и органов, что обеспечивают чувство слуха, называют слуховым анализатором. Давайте рассмотрим устройство органа слуха и равновесия.

Строение слухового анализатора

Функции слухового анализатора, как уже выше упоминалось, воспринимать звук и давать информацию человеку, но при всей, на первый взгляд, простоте, это довольно сложная процедура. Для того чтобы лучше разобраться, как работают отделы слухового анализатора в организме человека, требуется досконально понять, что же такое собой представляет внутренняя анатомия слухового анализатора.

Органы слуха у детей и у взрослых идентичны, они включают рецепторы слухового аппарата трех видов:

  • рецепторы, которые воспринимают колебания волн воздуха;
  • рецепторы, что дают человеку понятие о местоположении тела;
  • рецепторные центры, что позволяют воспринимать скорость движения и его направления.

Орган слуха каждого человека состоит из 3 частей, рассматривая детальней каждую из них, можно понять, как человек воспринимает звуки. Итак, наружное ухо — это совокупность ушной раковины и слухового прохода. Раковина являет собой полость из упругого хряща, что покрыта тонким слоем кожи. представляет некий усилитель для преобразования звуковых колебаний. Ушные раковины расположены с обеих сторон человеческой головы и роли не играют, так как просто собирают звуковые волны. Ушные раковины неподвижны, и даже если отсутствует их внешняя часть, то особого вреда строение слухового анализатора человека не получит.

Рассматривая строение и , можно сказать, что он представляет собой небольшой канал длиною 2,5 см, который выстлан кожей с мелкими волосками. В канале присутствуют апокриновые железы, способные вырабатывать ушную серу, которая вместе с волосками позволяет защитить следующие отделы уха от запыления, загрязнения и попадания посторонних частиц. Наружная часть уха помогает только собирать звуки и проводить их в центральный отдел слухового анализатора.

Барабанная перепонка и среднее ухо

Барабанная перепонка имеет вид небольшого овала диаметром 10 мм, через нее проходит звуковая волна во , где создает некие колебания в жидкости, что наполняет этот отдел слухового анализатора человека. Для передачи воздушных колебаний в ухе человека имеется система слуховых косточек, именно их движения активизируют колебание жидкости.

Между внешней частью органа слуха и внутренним отделом располагается среднее ухо. Этот отдел уха имеет вид небольшой полости, емкостью не больше 75 мл. Эта полость связывается с глоткой, ячейками и слуховой трубой, которая являет собой некий предохранитель, выравнивающий давление внутри уха и снаружи. Хотелось бы отметить, что барабанная перепонка всегда подвергается одинаковому атмосферному давлению как снаружи, так и внутри, это и позволяет нормально функционировать органу слуха. Если наблюдается разница между давлениями внутри и снаружи, то появятся нарушения остроты слуха.

Строение внутреннего уха

Самой сложноустроенной частью слухового анализатора является внутреннее ухо, его еще принято называть «лабиринтом». Главный рецепторный аппарат, что улавливает звуки, являет собой волосковые клетки внутреннего уха или, как еще говорят, «улитки».

Проводниковый отдел слухового анализатора состоит из 17 000 нервных волокон, что напоминают строение телефонного кабеля с отдельно изолированными проводами, каждый из которых передает определенную информацию в нейроны. Именно волосистые клетки реагируют на колебания жидкости внутри уха и передают нервные импульсы в виде акустической информации в периферический отдел головного мозга. А периферическая часть мозга отвечает за органы чувств.

Обеспечивают быструю передачу нервных импульсов проводящие пути слухового анализатора. Говоря проще, проводящие пути слухового анализатора осуществляют связь органа слуха с центральной нервной системой человека. Возбуждения слухового нерва активируют двигательные пути, что отвечают, к примеру, за дергание глаза вследствие сильного звука. Корковый отдел слухового анализатора связывает между собой периферические рецепторы обеих сторон, и при улавливании звуковых волн этот отдел сопоставляет звуки сразу с двух ушей.

Механизм передачи звуков в разном возрасте

Анатомическая характеристика слухового анализатора с возрастом вовсе не изменяется, но хотелось бы отметить, что имеются некие возрастные особенности.

Органы слуха начинают формироваться у эмбриона на 12 неделе развития. Свою функциональность ухо начинает сразу после рождения, но на начальных этапах слуховая активность человека больше напоминает рефлексы. Разные по частоте и интенсивности звуки вызывают у детей разные рефлексы, это может быть закрывание глаз, вздрагивание, открывание рта или учащенное дыхание. Если новорожденный так реагирует на отчетливые звуки, то понятно, что слуховой анализатор развит нормально. При отсутствии этих рефлексов требуется дополнительно исследование. Иногда реакцию ребенка тормозит тот факт, что изначально среднее ухо новорожденного заполнено некой жидкостью, которая мешает движению слуховых косточек, со временем специализированная жидкость полностью высыхает и вместо нее среднее ухо заполняет воздух.

Разнородные звуки малыш начинает дифференцировать с 3 месяцев, а на 6 месяце жизни начинает различать тона. На 9 месяце жизни ребенок может узнавать голоса родителей, звук машины, пение птицы и другие звуки. Дети начинают определять знакомый и чужой голос, узнают его и начинают аукать, радоваться или вовсе искать глазами источник родного звука, если его нет рядом. Развитие слухового анализатора продолжается до 6 лет, после этого порог слышимости ребенка уменьшается, но при этом увеличивается острота слуха. Так продолжается до 15 лет, затем работает в обратном направлении.

В период от 6 до 15 лет можно заметить, что уровень развития слуха отличается, некоторые дети лучше улавливают звуки и способны без трудностей их повторить, им удается хорошо петь и копировать звуки. Другим детям это удается хуже, но при этом они отлично слышат, на таких детей иногда говорят «медведь на ухо насупил». Огромное значение имеет общение детей со взрослыми, именно оно формирует речевое и музыкально восприятие ребенка.

Что касается анатомических особенностей, то у новорожденных слуховая труба намного короче, чем у взрослых и шире, из-за этого инфекция из дыхательных путей так часто поражает их органы слуха.

Изменения слухового аппарата на протяжении жизни

Возрастные особенности слухового анализатора немного меняются на протяжении всей жизни человека, так, к примеру, в пожилом возрасте слуховое восприятие меняет свою частоту. В детстве порог чувствительности намного выше, он составляет 3200 Гц. От 14 до 40 лет мы находимся на частоте 3000 Гц, а в 40-49 лет на 2000 Гц. После 50 лет только на 1000 Гц, именно с этого возраста начинает понижаться верхняя граница слышимости, что объясняет глухоту в старческом возрасте.

У пожилых людей часто отмечается смазанное восприятие или прерывистая речь, то есть слышат они с некими помехами. Часть речи они могут услышать хорошо, а несколько слов пропустить. Для того чтобы человек мог нормально слышать, ему нужны оба уха, одно из которых воспринимает звук, а другое поддерживает равновесие. С возрастом у человека изменятся структура барабанной перепонки, она может под воздействием определенных факторов уплотняться, что будет нарушать равновесие. Что касается гендерной чувствительности к звукам, то мужчины теряют слух намного быстрей, нежели женщины.

Хотелось бы отметить, что при специальных тренировках даже в пожилом возрасте можно добиться повышения порога слышимости. Аналогично и воздействие громкого шума в постоянном режиме, что может отрицательно повлиять на слуховую систему даже в молодом возрасте. Для того чтобы избежать негативных последствий от постоянного воздействия громкого звука на организм человека, требуется следить за . Это комплекс мер, которые направлены на создание нормальных условий для функционирования слухового органа. У людей молодого возраста критический предел шума составляет 60 дБ, а у детей школьного возраста критический порог 60 дБ. Достаточно пробыть в помещении с таким уровнем шума в течение часа и негативные последствия не заставят себя ждать.

Еще одним возрастным изменением слухового аппарата является тот факт, что со временем ушная сера затвердевает, это препятствует нормальному колебанию воздушных волн. Если у человека есть склонность к сердечно-сосудистым заболеваниям. Вполне вероятно, что кровь в поврежденных сосудах будет циркулировать быстрей, и человек с возрастом будет различать в ушах посторонние шумы.

Современная медицина давно разобралась, как устроен слуховой анализатор и очень успешно работает над слуховыми аппаратами, которые позволяют людям после 60 лет и дают возможность детям с дефектами развития слухового органа жить полноценной жизнью.

Физиология и схема работы слухового анализатора очень сложная, и понять ее людям без соответствующих навыков очень непросто, но в любом случае теоретически ознакомленным должен быть каждый человек.

Теперь вам известно, как работают рецепторы и отделы слухового анализатора.

Слуховой анализатор (слуховая сенсорная система) – второй по значению дистантный анализатор человека. Слух играет важнейшую роль именно у человека в связи с возникновением членораздельной речи. Акустические (звуковые) сигналы представляют собой колебания воздуха с разной частотой и силой. Они возбуждают слуховые рецепторы, находящиеся в улитке внутреннего уха. Рецепторы активируют первые слуховые нейроны, после чего, сенсорная информация передаётся в слуховую область коры большого мозга (височный отдел) через ряд последовательных структур.

Орган слуха (ухо) – это периферический отдел слухового анализатора, в котором расположены слуховые рецепторы. Строение и функции уха представлены в табл. 12.2, рис. 12.10.

Таблица 12.2.

Строение и функции уха

Часть уха

Строение

Функции

Наружное ухо

Ушная раковина, наружный слуховой проход, барабанная перепонка

Защитная (выделение серы). Улавливает и проводит звуки. Звуковые волны колеблют барабанную перепонку, а она – слуховые косточки.

Среднее ухо

Полость, заполненная воздухом, в которой находятся слуховые косточки (молоточек, наковальня, стремечко) и евстахиева (слуховая) труба

Слуховые косточки проводят и усиливают звуковые колебания в 50 раз. Евстахиева труба, соединённая с носоглоткой, обеспечивает выравнивание давления на барабанную перепонку

Внутреннее ухо

Орган слуха: овальное и круглое окна, улитка с полостью, заполненной жидкостью, и кортиев орган – звуковоспринимающий аппарат

Слуховые рецепторы, находящиеся в кортиевом органе, преобразуют звуковые сигналы в нервные импульсы, которые передаются на слуховой нерв, а затем в слуховую зону коры больших полушарий

Орган равновесия (вестибулярный аппарат): три полукруглых канала, отолитовый аппарат

Воспринимает положение тела в пространстве и передаёт импульсы в продолговатый мозг, затем в вестибулярную зону коры больших полушарий; ответные импульсы помогают поддерживать равновесие тела

Рис . 12.10. Органы слуха и равновесия . Наружное, среднее и внутреннее ухо, а также отходящие от рецепторных элементов органа слуха (кортиев орган) и равновесия (гребешки и пятна) слуховая и преддверная (вестибулярная) ветви преддверно–улиткового нерва (VIII пара черепных нервов).

Механизм передачи и восприятия звука. Звуковые колебания улавливаются ушной раковиной и по наружному слуховому проходу передаются барабанной перепонке, которая начинает колебаться в соответствии с частотой звуковых волн. Колебания барабанной перепонки передаются цепи косточек среднего уха и при их участии мембране овального окна. Колебания мембраны окна преддверия передаются перилимфе и эндолимфе, что вызывает колебания основной мембраны вместе с расположенным на ней кортиевым органом. При этом волосковые клетки своими волосками касаются покровной (текториальной) мембраны, и вследствие механического раздражения в них возникает возбуждение, которое передаётся далее на волокна преддверно-улиткового нерва (рис. 12.11).

Рис . 12.11. Перепончатый канал и спиральный (кортиев) орган . Канал улитки разделён на барабанную и вестибулярную лестницы и перепончатый канал (средняя лестница), в котором расположен кортиев орган. Перепончатый канал отделён от барабанной лестницы базилярной мембраной. В её составе проходят периферические отростки нейронов спирального ганглия, образующие синаптические контакты с наружными и внутренними волосковыми клетками.

Расположение и структура рецепторных клеток кортиевого органа. На основной мембране расположены два вида рецепторных волосковых клеток: внутренние и наружные, отделённые друг от друга кортиевыми дугами.

Внутренние волосковые клетки располагаются в один ряд; общее число их по всей длине перепончатого канала достигает 3 500. Наружные волосковые клетки располагаются в 3-4 ряда; их общее число 12 000-20 000. Каждая волосковая клетка имеет удлинённую форму; один её полюс фиксирован на основной мембране, второй находится в полости перепончатого канала улитки. На конце этого полюса есть волоски, или стереоцилии . Их число на каждой внутренней клетке составляет 30-40 и они очень короткие – 4-5 мкм; на каждой наружной клетке число волосков достигает 65-120, они тоньше и длиннее. Волоски рецепторных клеток омываются эндолимфой и контактируют с покровной (текториальной) мембраной, которая по всему ходу перепончатого канала расположена над волосковыми клетками.

Механизм слуховой рецепции. При действии звука основная мембрана начинает колебаться, наиболее длинные волоски рецепторных клеток (стереоцилии) касаются покровной мембраны и несколько наклоняются. Отклонение волоска на несколько градусов приводит к натяжению тончайших вертикальных нитей (микрофиламентов), связывающих между собой верхушки соседних волосков данной клетки. Это натяжение чисто механически открывает от 1 до 5 ионных каналов в мембране стереоцилии. Через открытый канал в волосок начинает течь калиевый ионный ток. Сила натяжения нити, необходимая для открытия одного канала, ничтожна, около 2·10 -13 ньютон. Ещё более удивительным кажется то, что наиболее слабые из ощущаемых человеком звуков растягивают вертикальные нити, связывающие верхушки соседних стереоцилий, на расстояние, вдвое меньшее, чем диаметр атома водорода.

Тот факт, что электрический ответ слухового рецептора достигает максимума уже через 100-500 мкс (микросекунд), означает, что ионные каналы мембраны открываются непосредственно механическим стимулом без участия вторичных внутриклеточных посредников. Это отличает механорецепторы от значительно медленнее работающих фоторецепторов.

Деполяризация пресинаптического окончания волосковой клетки приводит к выходу в синаптическую щель нейромедиатора (глутамата или аспартата). Воздействуя на постсинаптическую мембрану афферентного волокна, медиатор вызывает генерацию возбуждения постсинаптического потенциала и далее генерацию распространяющихся в нервных центрах импульсов.

Открытие всего нескольких ионных каналов в мембране одной стереоцилии явно мало для возникновения рецепторного потенциала достаточной величины. Важным механизмом усиления сенсорного сигнала на рецепторном уровне слуховой системы является механическое взаимодействие всех стереоцилий (около 100) каждой волосковой клетки. Оказалось, что все стереоцилии одного рецептора связаны между собой в пучок тонкими поперечными нитями. Поэтому, когда сгибается один или несколько более длинных волосков, они тянут за собой все остальные волоски. В результате этого открываются ионные каналы всех волосков, обеспечивая достаточную величину рецепторного потенциала.

Бинауральный слух. Человек и животные обладают пространственным слухом, т.е. способностью определять положение источника звука в пространстве. Это свойство основано на наличии двух симметричных половин слухового анализатора (бинауральный слух).

Острота бинаурального слуха у человека очень высока: он способен определять расположение источника звука с точностью порядка 1 углового градуса. Физиологической основой этого служит способность нейронных структур слухового анализатора оценивать интерауральные (межушные) различия звуковых стимулов по времени их прихода на каждое ухо и по их интенсивности. Если источник звука находится в стороне от средней линии головы, звуковая волна приходит на одно ухо несколько раньше и большей силы, чем на другое. Оценка удалённости звука от организма связана с ослаблением звука и изменением его тембра.