Солнечная радиация: виды и влияние на организм. Каковы виды солнечной радиации

Ответ на вопрос, что такое солнечное излучение, так это весь спектр света, выделяемого солнцем. Он включает в себя видимый свет и все другие частоты излучения в электромагнитном спектре. По сравнению со знакомыми источниками энергии на Земле, Солнце излучает огромное количество энергии. Тип излучения, выделяемого солнцем, является продуктом его высокой температуры, который вызван ядерным слиянием внутри ядра Солнца. Солнечное излучение изучается учеными, потому что влияние Солнца, на организм человека и планету в целом, очень огромное.

Только небольшая часть солнечной радиации когда-либо достигает Земли: большинство из них излучается в пустое пространство. Однако фракция, которая действительно достигает Земли, намного больше, чем количество энергии, потребляемой на Земле такими источниками, как ископаемое топливо. Огромное количество энергии, излучаемой солнцем, можно объяснить большой массой и высокой температурой.

Виды солнечной радиации

Полное солнечное излучение, которое часто называют глобальным излучением, представляет собой сумму прямого, диффузного и отраженного излучения. Доступное нам солнечное излучение всегда представляет собой смесь вышеупомянутых трех компонентов.

Виды солнечного излучения

Прямое излучение

Прямое излучение получено от солнечных лучей, движущихся от солнца до земли напрямую. Направление излучения также называют излучением пучка или прямым лучом излучения. Поскольку прямое излучение — это солнечные лучи, движущиеся по прямой, формируются тени объектов, которые возникают на пути солнечных лучей. Тени указывают на наличие прямого излучения.
В солнечных районах и в течение лета прямое излучение составляет почти 70-80% от общей радиации. В солнечных установках используется солнечное отслеживание для поглощения большей части прямого излучения. Если солнечная система слежения не установлена, ценное прямое излучение будет не захвачено.

Диффузное излучение

Прямое излучение имеет фиксированное направление. Диффузное излучение не имеет фиксированного направления. Когда солнечные лучи рассеиваются частицами, присутствующими в атмосфере, эти рассеянные солнечные лучи объясняют диффузное излучение.

По мере увеличения загрязнения количество диффузного излучения также увеличивается. В холмистых районах и во время зимы процент диффузного излучения увеличивается. Максимальное количество рассеянного излучения захватывается солнечными батареями, когда они удерживаются горизонтально. Это означает, что в случае солнечных панелей, которые находятся под углом для отслеживания большей части прямого излучения, количество рассеянного излучения, захваченного панелями, будет снижаться. Чем больше угол, который солнечные панели создают с землей, тем меньше будет количество рассеянного излучения, захваченного панелями.

Отраженное и глобальное излучение

Отраженное излучение — это компонент излучения, который отражается от поверхностей, отличных от воздушных частиц. Радиация, отраженная от холмов, деревьев, домов, водоемов, отражает отраженное излучение. Отраженное излучение обычно составляет небольшой процент в глобальном излучении, но может вносить до 15% в заснеженные районы.

Глобальное излучение представляет собой сумму прямого, диффузного и отраженного излучения. Солнечное излучение представляет собой комбинацию ультрафиолетовых и инфракрасных волн. Каждая из этих составных частей по-своему влияет на организм.

Влияние солнечной радиации на организм человека

Говоря о влиянии солнца на организм человека, невозможно определить точно. Какое воздействие на здоровье человека оказывается, вред или польза. Лучи Солнца выделяют ультрафиолетовое и инфракрасное излучение. Лучи солнца — это как килокалории, полученные из пищи. Их дефицит приводит к истощению, и в избыточных количествах они вызывают ожирение. Так и в этой ситуации. Умеренное количество солнечной радиации оказывает положительное влияние на организм, тогда как избыток ультрафиолетового излучения провоцирует появление ожогов и развитие многочисленных заболеваний. Влияние

Положительное влияние инфракрасного излучения

Основная особенность инфракрасных лучей — они создают тепловой эффект, которые оказывают положительное влияние на организм человека. Нагревательный элемент способствует расширению кровеносных сосудов и нормализации кровообращения. Тепло оказывает расслабляющее действие на мышцы, обеспечивая легкий противовоспалительный и обезболивающий эффект. Под воздействием тепла увеличивается обмен веществ, нормализуются процессы усвоения биологически активных компонентов. Инфракрасное излучение солнца стимулирует мозг и зрительный аппарат.

Интересно! Благодаря солнечному излучению синхронизирует биологические ритмы тела, начиная с режимов сна и бодрствования. Лечение инфракрасными лучами солнца улучшает состояние кожи и устраняет угри. Теплый свет поднимает настроение и улучшает эмоциональный фон человека. А также улучшают качество спермы у мужчин и потенцию.

Положительное влияние ультрафиолетового излучения

Несмотря на все споры о негативном влиянии ультрафиолетового излучения на организм, его отсутствие может привести к серьезным проблемам со здоровьем. Это один из важнейших факторов существования. И нехватка ультрафиолетового света в организме, привносит такие изменения:
Во-первых, ослабляет иммунную систему (прежде всего влияние оказывается на клетку в организме). Это связано с нарушением поглощения витаминов и минералов, нарушением метаболизма на клеточном уровне.


Солнце восполняет нехватку витамина Д

Существует тенденция к развитию новых или обострению хронических заболеваний, чаще всего возникающих осложнений. Отмеченналетаргия, синдром хронической усталости, снижение уровня эффективности. Отсутствие ультрафиолетового света для детей предотвращает образование витамина D и вызывает замедление. Однако нужно понять, что чрезмерная солнечная активность не принесет пользу организму.

Отрицательное воздействие солнца

Время экспозиции инфракрасных и ультрафиолетовых волн должно быть строго ограничено. Чрезмерная солнечная радиация:

  • может спровоцировать ухудшение общего состояния тела (так называемый термический шок из-за перегрева);
  • отрицательно влияют на кожу, они могут вызывать постоянные изменения;
  • ухудшает зрение;
  • вызывает гормональные нарушения в организме;
  • может спровоцировать развитие аллергических реакций;
  • может спровоцировать негативное влияние на геном человека и на структуру ДНК человека;
  • негативно влияет на плод;
  • негативно влияет на психику человека.

Влияние солнца на кожу

Чрезмерное количество солнечной радиации приводит к серьезным проблемам с кожей. В краткосрочной перспективе вы рискуете ожогами или дерматитом. Это самая маленькая проблема, с которой вы можете столкнуться, очарованная солнцем в жаркий день. Если эта ситуация повторяется с завидной регулярностью, солнечное излучение станет стимулом к образованию злокачественных опухолей в меланоме кожи.

Кроме того, ультрафиолетовое облучение обезвоживает кожу, делая ее тонкой и чувствительной. Но постоянное место жительства под прямыми лучами ускоряет процесс старения, вызывая появление ранних морщин.

Отрицательное воздействие на видение

Эффект солнечного света на визуальном аппарате огромен. Действительно, благодаря лучам света мы получаем информацию о мире вокруг нас. Искусственное освещение в некотором роде может быть альтернативой естественному свету, но с точки зрения чтения и письма с помощью лампы света увеличивается напряжение на глазах.
Говоря о негативном воздействии на человека и о видимом солнечном свете, это означает повреждение глаз при длительном воздействии солнца без солнцезащитных очков.
Из-за дискомфорта, с которым вы можете столкнуться, вы можете выделить боли в глазах, покраснение, светобоязнь. Самое серьезное поражение сетчатки горит. Также возможно высушить кожу, образовать морщины.

Воздействие радиации на организм человека в космосе

Космической радиации является одной из главных опасностей для здоровья от космического полета. Это опасно, потому что он имеет достаточную энергию, чтобы изменить или разрушить ДНК молекул, которые могут повредить или убить клетки. Это может привести к проблемам со здоровьем, начиная от острых эффектов длительное воздействие.

Острые последствия, такие как изменения, в крови, диарея, тошнота и рвота, мягкие и восстановить. Другие эффекты острого облучения гораздо более серьезные, например повреждения центральной нервной системы или даже смерть. Такое облучение не должно возникнуть в результате воздействия космического излучения, за исключением, если космонавт подвергается воздействию солнечных частиц, таких как солнечная вспышка, которая производит высокие дозы радиации.

ЛЕКЦИЯ 2.

СОЛНЕЧНАЯ РАДИАЦИЯ.

План:

1.Значение солнечной радиации для жизни на Земле.

2. Виды солнечной радиации.

3. Спектральный состав солнечной радиации.

4. Поглощение и рассеивание радиации.

5.ФАР (фотосинтетически активная радиация).

6. Радиационный баланс.

1. Основным источником энергии на Земле для всего живого (растений, животных и человека) является энергия солнца.

Солнце представляет собой газовый шар радиусом 695300км. Радиус Солнца в 109 раз больше радиуса Земли (экваториальный 6378,2км, полярный 6356,8км). Солнце состоит в основном из водорода (64%) и гелия (32%). На долю остальных приходится всего 4% его массы.

Солнечная энергия является основным условием существова­ния биосферы и одним из главных климатообразующих факто­ров. За счет энергии Солнца воздушные массы в атмосфере не­прерывно перемещаются, что обеспечивает постоянство газово­го состава атмосферы. Под действием солнечной радиации ис­паряется огромное количество воды с поверхности водоемов , почвы, растений. Водяной пар, переносимый ветром с океанов и морей на материки, является основным источником осадков для суши.

Солнечная энергия - непременное условие существования зеленых растений, превращающих в процессе фотосинтеза сол­нечную энергию в высокоэнергетические органические веще­ства.

Рост и развитие растений представляют собой процесс усвоения и переработки солнечной энергии, поэтому сельскохозяйственное производство возможно только при условии поступления солнечной энергии на поверхность Земли. Русский ученый писал: « Дайте самому лучшему повару сколько угодно свежего воздуха, солнечного света, целую речку чистой воды, попросите, чтобы из всего этого он приготовил вам сахар, крахмал, жиры и зерно, и он решит, что вы над ним смеетесь. Но то, что кажется совершенно фантастическим человеку, беспрепятственно совершается в зеленых листьях растений под действием энергии Солнца». Подсчитано, что 1 кв. метр листьев за час продуцирует грамм сахара. В связи с тем, что Земля окружена сплошной оболочкой атмосферы, солнечные лучи, прежде чем достичь поверхности земли, проходят всю толщу атмосферы, которая частично отражает их, частично рассеивает, т. е. изменяет количество и качество солнечного света, поступающего на поверхность земли. Живые организмы чутко реагируют на изменение интенсивности освещенности, создаваемой сол­нечным излучением. Вследствие различной реакции на интен­сивность освещенности все формы растительности делят на све­толюбивые и теневыносливые. Недостаточная освещенность в посевах обусловливает, например, слабую дифференциацию тканей соломины зерновых культур. В результате уменьшаются крепость и эластичность тканей, что часто приводит к полега­нию посевов. В загущенных посевах кукурузы из-за слабой осве­щенности солнечной радиацией ослабляется образование почат­ков на растениях.

Солнечная радиация влияет на химический состав сельскохо­зяйственной продукции. Например, сахаристость свеклы и пло­дов, содержание белка в зерне пшеницы непосредственно зави­сят от числа солнечных дней. Количество масла в семенах под­солнечника, льна также возрастает с увеличением прихода сол­нечной радиации.

Освещенность надземной части растений существенно влия­ет на поглощение корнями питательных веществ. При слабой освещенности замедляется перевод ассимилятов в корни, и в результате тормозятся биосинтетические процессы, происходящие в клетках растений.

Освещенность влияет и на появление, распространение и развитие болезней растений. Период заражения состоит из двух фаз, различающихся между собой по реакции на световой фак­тор. Первая из них - собственно прорастание спор и проникно­вение заразного начала в ткани поражаемой культуры - в боль­шинстве случаев не зависит от наличия и интенсивности света. Вторая - после прорастания спор - наиболее активно проходит при повышенной освещенности.

Положительное действие света сказывается также на скорос­ти развития патогена в растении-хозяине. Особенно четко это проявляется у ржавчинных грибов. Чем больше света, тем коро­че инкубационный период у линейной ржавчины пшеницы, желтой ржавчины ячменя, ржавчины льна и фасоли и т. д. А это увеличивает число генераций гриба и повышает интенсивность поражения. В условиях интенсивного освещения у этого патоге­на возрастает плодовитость

Некоторые заболевания наиболее активно развиваются при недостаточном освещении, вызывающем ослабление растений и снижение их устойчивости к болезням (возбудителям разного рода гнилей, особенно овощных культур).

Продолжительность осве­щения и растения. Ритм сол­нечной радиации (чередова­ние светлой и темной части суток) является наиболее устойчивым и повторяющимся из года в год фактором внешней среды. В результате многолетних исследований физиологами ус­тановлена зависимость перехода растений к генеративному раз­витию от определенного соотношения длины дня и ночи. В свя­зи с этим культуры по фотопериодической реакции можно клас­сифицировать по группам: короткого дня, развитие которых задерживается при продол­жительности дня больше 10ч. Короткий день способствует закладке цветков, а длинный день препятствует этому. К таким культурам относятся соя, рис, просо, сорго, кукуруза и др.;

длинного дня до 12-13час., требующие для своего развития продолжитель­ного освещения. Их развитие ускоряется, когда продолжитель­ность дня составляет около 20 ч. К этим культурам относятся рожь, овес, пшеница, лен, горох, шпинат, клевер и др.;

нейтральные по отношению к длине дня , развитие которых не зависит от продолжительности дня, например томат, гречиха, бобовые, ревень.

Установлено, что для начала цветения растений необходимо преобладание в лучистом потоке определенного спектрального состава. Растения короткого дня быстрее развиваются, когда максимум излучения приходится на сине-фиолетовые лучи, а растения длинного дня - на красные. Продолжительность светлой части суток (астрономическая длина дня) зависит от времени года и географической широты. На экваторе продолжительность дня в течение всего года равна 12 ч ± 30 мин. При продвижении от экватора к полюсам после весеннего равноденствия (21.03) длина дня увеличивается к се­веру и уменьшается к югу. После осеннего равноденствия (23.09) распределение продолжительности дня обратное. В Северном полушарии на 22.06 приходится самый длинный день, продолжительность которого севернее Полярного круга 24 ч. Самый короткий день в Северном полушарии 22.12, а за Полярным кру­гом в зимние месяцы Солнце вообще не поднимается над гори­зонтом. В средних же широтах, например в Москве, продолжи­тельность дня в течение года меняется от 7 до 17,5 ч.

2. Виды солнечной радиации.

Солнечная радиация состоит из трех составляющих: прямой солнечной радиации, рассеянной и суммарной.

ПРЯМАЯ СОЛНЕЧНАЯ РАДИАЦИЯ S – радиация, поступающая от Солнца в атмосферу и затем на земную поверхность в виде пучка параллельных лучей. Ее интенсивность измеряется в калориях на см2 в минуту. Она зависит от высоты солнца и состояния атмосферы (облачность, пыль, водяной пар). Годовая сумма прямой солнечной радиации на горизонтальную поверхность территории Ставропольского края составляет 65-76 ккал/ см2/мин. На уровне моря при высоком положении Солнца (лето, полдень) и хорошей прозрачности прямая солнечная радиация составляет 1,5 ккал/ см2/мин. Это коротковолновая часть спектра. При прохождении потока прямой солнечной радиации через атмосферу происходит его ослабление, вызванное поглощением (около 15 %) и рассеянием (около 25 %) энергии газами, аэрозо­лями, облаками.

Поток прямой солнечной радиации, падающий на горизонтальную поверхность называют инсоляцией S = S sin ho – вертикальная составляющая прямой солнечной радиации.

S количество тепла, получаемого перпендикулярной к лучу поверхностью,

ho высота Солнца, т. е. угол, образованный солнечным лучом с горизонтальной поверхностью.

На границе атмосферы интенсивность солнечной радиации составляет So = 1,98 ккал/ см2/мин. – по международному соглашению 1958г. И называется солнечной постоянной. Такой бы она была у поверхности, если бы атмосфера была абсолютно прозрачной.

Рис. 2.1. Путь солнечного луча в атмосфере при разной высоте Солнца

РАССЕЯНАЯ РАДИАЦИЯ D часть солнечной радиации в результате рассеяния атмосферой уходит обратно в космос, но значительная ее часть поступает на Землю в виде рассеянной радиации. Максимум рассеянной радиации + 1 ккал/ см2/мин. Отмечается при чистом небе, если на нем высокие облака. При пасмурном небе спектр рассеянной радиации сходен с солнечным. Это коротковолновая часть спектра. Длина волны 0,17-4мк.

СУММАРНАЯ РАДИАЦИЯ Q - состоит из рассеянной и прямой радиации на горизонтальную поверхность. Q = S + D .

Соотношение между прямой и рассеянной радиацией в со­ставе суммарной радиации зависит от высоты Солнца, облачно­сти и загрязненности атмосферы, высоты поверхности над уров­нем моря. С увеличением высоты Солнца доля рассеянной ра­диации при безоблачном небе уменьшается. Чем прозрачнее ат­мосфера и чем выше Солнце, тем меньше доля рассеянной радиации. При сплошной плотной облачности суммарная ради­ация полностью состоит из рассеянной радиации. Зимой вслед­ствие отражения радиации от снежного покрова и ее вторичного рассеяния в атмосфере доля рассеянной радиации в составе сум­марной заметно увеличивается.

Свет и тепло, получаемые растениями от Солнца, - результат действия суммарной солнечной радиации. Поэтому большое значение для сельского хозяйства имеют данные о суммах ради­ации, получаемых поверхностью за сутки, месяц, вегетационный период, год.

Отраженная солнечная радиация. Альбедо . Суммарная радиа­ция, дошедшая до земной поверхности, частично отражаясь от нее, создает отраженную солнечную радиацию (RK), направленную от земной поверхности в атмосферу. Значение отраженной ра­диации в значительной степени зависит от свойств и состояния отражающей поверхности: цвета, шероховатости, влажности и др. Отражательную способность любой поверхности можно ха­рактеризовать величиной ее альбедо (Ак), под которым понимают отношение отраженной солнечной радиации к суммарной. Аль­бедо обычно выражают в процентах:

Наблюдения показывают, что альбедо различных поверхнос­тей изменяется в сравнительно узких пределах (10...30 %), ис­ключение составляют снег и вода.

Альбедо зависит от влажности почвы, с возрастанием которой оно уменьшается, что имеет важное значение в процессе измене­ния теплового режима орошаемых полей. Вследствие уменьше­ния альбедо при увлажнении почвы увеличивается поглощаемая радиация. Альбедо различных поверхностей имеет хорошо выра­женный дневной и годовой ход, обусловленный зависимостью альбедо от высоты Солнца. Наименьшее значение альбедо на­блюдают в околополуденные часы, а в течение года - летом.

Собственное излучение Земли и встречное излучение атмосфе­ры. Эффективное излучение. Земная поверхность как физическое тело, имеющее температуру выше абсолютного нуля (-273 °С), является источником излучения, которое называют собственным излучением Земли (Е3). Оно направлено в атмосферу и почти пол­ностью поглощается водяным паром, капельками воды и угле­кислым газом, содержащимися в воздухе. Излучение Земли за­висит от температуры ее поверхности.

Атмосфера, поглощая небольшое количество солнечной ра­диации и практически всю энергию, излучаемую земной поверх­ностью, нагревается и, в свою очередь, также излучает энергию. Около 30 % атмосферной радиации уходит в космическое про­странство, а около 70 % приходит к поверхности Земли и назы­вается встречным излучением атмосферы (Еа).

Количество энергии, излучаемое атмосферой, прямо пропор­ционально ее температуре, содержанию углекислого газа, озона и облачности.

Поверхность Земли поглощает это встречное излучение по­чти целиком (на 90...99 %). Таким образом, оно является для земной поверхности важным источником тепла в дополнение к поглощаемой солнечной радиации. Это влияние атмосферы на тепловой режим Земли называют парниковым или оранжерейным эффектом вследствие внешней аналогии с действием стекол в парниках и оранжереях. Стекло хорошо пропускает солнечные лучи, нагревающие почву и растения, но задерживает тепловое излучение нагревшейся почвы и растений.

Разность между собственным излучением поверхности Земли и встречным излучением атмосферы называют эффективным из­лучением: Еэф.

Еэф= Е3-Еа

В ясные и малооблачные ночи эффективное излучение гораз­до больше, чем в пасмурные, поэтому больше и ночное охлажде­ние земной поверхности. Днем оно перекрывается поглощенной суммарной радиацией, вследствие чего температура поверхности повышается. При этом растет и эффективное излучение. Земная поверхность в средних широтах теряет за счет эффективного из­лучения 70...140 Вт/м2, что составляет примерно половину того количества тепла, которое она получает от поглощения солнеч­ной радиации.

3. Спектральный состав радиации.

Солнце, как источник излучения, обладает многообразием испускаемых волн. Потоки лучистой энергии по длине волн условно делят на ко­ротковолновую (X < 4 мкм) и длинноволновую (А. > 4 мкм) радиа­цию. Спектр солнечной радиации на границе земной атмосферы практически заключается между длинами волн 0,17 и 4 мкм, а земного и атмосферного излучения - от 4 до 120 мкм. Следова­тельно, потоки солнечного излучения (S, D, RK) относятся к ко­ротковолновой радиации, а излучение Земли (£3) и атмосферы (Еа) - к длинноволновой.

Спектр солнечной радиации можно разделить на три каче­ственно различные части: ультрафиолетовую (Y < 0,40 мкм), ви­димую (0,40 мкм < Y < 0,75 мкм) и инфракрасную (0,76 мкм < Y < 4 мкм). До ультрафиолетовой части спектра сол­нечной радиации лежит рентгеновское излучение, а за инфра­красной - радиоизлучение Солнца. На верхней границе атмос­феры на ультрафиолетовую часть спектра приходится около 7 % энергии солнечного излучения, 46 - на видимую и 47 % - на инфракрасную.

Радиацию, излучаемую Землей и атмосферой, называют даль­ней инфракрасной радиацией.

Биологическое действие разных видов радиации на растения различно. Ультрафиолетовая радиация замедляет ростовые про­цессы, но ускоряет прохождение этапов формирования репро­дуктивных органов у растений.

Значение инфракрасной радиации , которая активно поглощается водой листьев и стеблей растений, состоит в ее теп­ловом эффекте, что существенно влияет на рост и развитие рас­тений.

Дальняя инфракрасная радиация производит лишь тепловое действие на растения. Ее влияние на рост и развитие растений несущественно.

Видимая часть солнечного спектра , во-первых, создает осве­щенность. Во-вторых, с областью видимой радиации почти со­впадает (захватывая частично область ультрафиолетовой радиа­ции) так называемая физиологическая радиация (А, = = 0,35...0,75 мкм), которая поглощается пигментами листа. Ее энергия имеет важное регуляторно-энергетическое значение в жизни растений. В пределах этого участка спектра выделяется область фотосинтетически активной радиации.

4. Поглощение и рассеивание радиации в атмосфере.

Проходя через земную атмосферу, солнечная радиация ослабляется вследствие поглощения и рассеяния атмосферными газами и аэрозолями . При этом изменяется и ее спектральный состав. При различной высоте солнца и различной высоте пункта наблюдений над земной поверхностью длина пути, проходимого солнечным лучом в атмосфере, неодинакова. При уменьшении высоты особенно сильно уменьшается ультрафиолетовая часть радиации, несколько меньше – видимая и лишь незначительно – инфракрасная.

Рассеяние радиации в атмосфере происходит главным образом в результате непрерывных колебаний (флуктаций) плотности воздуха в каждой точке атмосферы, вызванных образованием и разрушением некоторых «скоплений» (сгустков) молекул атмосферного газа. Солнечную радиацию рассеивают также частицы аэрозоля. Интенсивность рассеяния характеризуется коэффициентом рассеяния.

К= добавить формулу.

Интенсивность рассеяния зависит от количеств рассеивающих частиц в единице объема, от их размера и природы, а также от длин волн самой рассеиваемой радиации.

Лучи рассеиваются тем сильнее, чем меньше длина волны. Например фиолетовые лучи рассеиваются в 14 раз сильнее красных, этим объясняется голубой цвет неба. Как отмечалось выше (см. разд. 2.2), прямая солнечная ради­ация, проходя через атмосферу, частично рассеивается. В чис­том и сухом воздухе интенсивность коэффициента молекуляр­ного рассеяния подчиняется закону Релея:

к= с/ Y 4 ,

где С - коэффициент, зависящий от числа молекул газа в единице объема; X - длина рассеиваемой волны.

Поскольку длина дальних волн красного света почти вдвое больше длины волн фиолетового света, первые рассеиваются молекулами воздуха в 14 раз меньше, чем вторые. Так как перво­начальная энергия (до рассеяния) фиолетовых лучей меньше, чем синих и голубых, то максимум энергии в рассеянном свете (рассеянной солнечной радиации) смещается на сине-голубые лучи, что и обусловливает голубой цвет неба. Таким образом, рассеянная радиация более богата фотосинтетически активными лучами, чем прямая.

В воздухе, содержащем примеси (мелкие капельки воды, кри­сталлики льда, пылинки и т. д.), рассеяние одинаково для всех участков видимой радиации. Поэтому небо приобретает белесо­ватый оттенок (появляется дымка). Облачные же элементы (крупные капельки и кристаллики) вообще не рассеивают сол­нечные лучи, а диффузно их отражают. В результате облака, ос­вещенные Солнцем, имеют белый цвет.

5. ФАР (фотосинтетическиактивная радиация)

Фотосинтетически активная радиация. В процессе фотосинте­за используется не весь спектр солнечной радиации, а только его

часть, находящаяся в интервале длин волн 0,38...0,71 мкм, - фо­тосинтетически активная радиация (ФАР).

Известно, что видимая радиация, воспринимаемая глазом че­ловека как белый цвет, состоит из цветных лучей: красных, оранжевых, желтых, зеленых, голубых, синих и фиолетовых.

Усвоение энергии солнечной радиации листьями растений селективно (избирательно). Наиболее интенсивно листья погло­щают сине-фиолетовые (X = 0,48...0,40 мкм) и оранжево-крас­ные (X = 0,68 мкм) лучи, менее - желто-зеленые (А. = 0,58...0,50 мкм) и дальние красные (А. > 0,69 мкм) лучи.

У земной поверхности максимум энергии в спектре прямой солнечной радиации, когда Солнце находится высоко, прихо­дится на область желто-зеленых лучей (диск Солнца желтый). Когда же Солнце располагается у горизонта, максимальную энергию имеют дальние красные лучи (солнечный диск крас­ный). Поэтому энергия прямого солнечного света мало участву­ет в процессе фотосинтеза.

Так как ФАР является одним из важнейших факторов про­дуктивности сельскохозяйственных растений, информация о ко­личестве поступающей ФАР, учет ее распределения по террито­рии и во времени имеют большое практическое значение.

Интенсивность ФАР можно измерить, но для этого необходимы специальные светофильтры, пропускающие только волны в диапазоне 0,38...0,71 мкм. Такие приборы есть, но на сети актинометрических станций их не применяют, а измеряют интен­сивность интегрального спектра солнечной радиации. Значение ФАР можно рассчитать по данным о приходе прямой, рассеян­ной или суммарной радиации с помощью коэффициентов, пред­ложенных, X. Г. Тоомингом и:

Qфар = 0,43 S " +0,57 D);

составлены карты распределения месячных и годовых сумм Фар на территории России.

Для характеристики степени использования посевами ФАР применяют коэффициент полезного использования ФАР:

КПИфар= (сумма Q / фар/сумма Q / фар) 100%,

где сумма Q / фар - сумма ФАР, затрачиваемая на фотосинтез за период вегетации расте­ний; сумма Q / фар - сумма ФАР, поступающая на посевы за этот период;

Посевы по их средним значениям КПИФАр разделяют на группы (по): обычно наблюдаемые - 0,5...1,5 %; хорошие-1,5...3,0; рекордные - 3,5...5,0; теорети­чески возможные - 6,0...8,0 %.

6. РАДИАЦИОННЫЙ БАЛАНС ЗЕМНОЙ ПОВЕРХНОСТИ

Разность между приходящими и уходящими потоками лучис­той энергии называют радиационным балансом земной поверхнос­ти (В).

Приходная часть радиационного баланса земной поверхности днем состоит из прямой солнечной и рассеянной радиации, а также излучения атмосферы. Расходной частью баланса являют­ся излучение земной поверхности и отраженная солнечная ра­диация:

B = S / + D + Ea - Е3- Rk

Уравнение можно записать и в другом виде: B = Q - RK - Еэф.

Для ночного времени уравнение радиационного баланса име­ет следующий вид:

В = Еа - Е3, или В = -Еэф.

Если приход радиации больше, чем расход, то радиационный баланс положительный и деятельная поверхность* нагревается. При отрицательном балансе она охлаждается. Летом радиацион­ный баланс днем положительный, а ночью - отрицательный. Переход через ноль происходит утром примерно через 1 ч после восхода Солнца, а вечером за 1...2 ч до захода Солнца.

Годовой радиационный баланс в районах, где устанавливает­ся устойчивый снежный покров, в холодное время года имеет отрицательные значения, в теплое - положительные.

Радиационный баланс земной поверхности существенно вли­яет на распределение температуры в почве и приземном слое ат­мосферы, а также на процессы испарения и снеготаяния, обра­зование туманов и заморозков, изменение свойств воздушных масс (их трансформацию).

Знание радиационного режима сельскохозяйственных угодий позволяет рассчитывать количество радиации, поглощенной по­севами и почвой в зависимости от высоты Солнца, структуры посева, фазы развития растений. Данные о режиме необходимы и для оценки разных приемов регулирования температуры и влажности почвы, испарения, от которых зависят рост и разви­тие растений, формирование урожая, его количество и качество.

Эффективными агрономическими приемами воздействия на радиационный, а следовательно, и на тепловой режим деятель­ной поверхности является мульчирование (покрытие почвы тон­ким слоем торфяной крошки, перепревшим навозом, древесны­ми опилками и др.), укрытие почвы полиэтиленовой пленкой, орошение. Все это изменяет отражательную и поглощательную способность деятельной поверхности.

* Деятельная поверхность - поверхность почвы, воды или растительности, которая непосредственно поглощает солнечную и атмосферную радиацию и отда­ет излучение в атмосферу, чем регулирует термический режим прилегающих слоев воздуха и нижележащих слоев почвы, воды, растительности.

Солнечную радиацию, в состав которой входят длины электромагнитных волн менее 4 мкм1 , в метеорологии принято называть коротковолновой. В солнечном спектре различают ультрафиолетовую (< 400 нм), видимую (= 400…760 нм) и инфракрасную (> 760 нм) части.

Солнечная радиация, поступающая непосредственно от солнечного диска, называется прямой солнечной радиацией S. Обычно она характеризуется интенсивностью, т. е. количеством лучистой энергии в калориях, проходящей в 1 минуту через 1 см2 площади, расположенной перпендикулярно к солнечным лучам.

Интенсивность прямой солнечной радиации, поступающей на верхнюю границу земной атмосферы, называют солнечной постоянной S 0 . Она составляет примерно 2 кал/см2 мин. У земной поверхности прямая солнечная радиация всегда значительно меньше этой величины, так как, проходя через атмосферу, ее солнечная энергия ослабляется вследствие поглощения и рассеяния молекулами воздуха и взвешенными частичками (пылинками, капельками, кристалликами). Ослабление прямой солнечной радиации атмосферой характеризуется или коэффициентом ослабленияа, или коэффициентом прозрачностир.

Для расчета прямой солнечной радиации, приходящейся на перпендикулярную поверхность, обычно применяют формулу Буге:

Sm S0 pm m ,

где S m – прямая солнечная радиация, кал см-2 мин-1 , при данной массе атмосферы;S 0 солнечная постоянная;р т коэффициент прозрачности при данной массе атмосферы;т масса атмосферы на пути солнечных

лучей; m

При малых значениях высоты солнца (h

< 100 ) мас-

sin h

са находится не по формуле, а по таблице Бемпорада . Из формулы (3.1) следует, что

Или р = е

Прямая солнечная радиация, приходящаяся на горизонтальную по-

верхность S" , вычисляется по формуле

S = S sin h .,

1 1 мкм = 10-3 нм = 10-6 м. Микрометры еще называют микронами, а нанометры – миллимикронами. 1 нм = 10-9 м.

где h высота солнца над горизонтом.

Радиация, поступающая на земную поверхность от всех точек небесного свода, называется рассеянной D. Сумма прямой и рассеянной солнечной радиации, приходящей на горизонтальную земную поверхность, представляет собой суммарную солнечную радиациюQ :

Q = S" + D.(3.4)

Суммарная радиация, дошедшая до земной поверхности, частично отражаясь от нее, создает отраженную радиацию R, направленную от земной поверхности в атмосферу. Остальная часть cyммарной солнечной радиации поглощается земной поверхностью. Отношение отраженной от земной поверхности радиации к пocтупающей суммарной радиации называется альбедоА.

Величина A R характеризует отражательную способность зем-

ной поверхности. Она выражается в долях единицы или процентах. Разность между суммарной и отраженной радиацией называется поглощенной радиацией, или балансом коротковолновой радиации земной поверхности В к :

Поверхность земли и земная атмосфера, как и все тела, имеющие температуру выше абсолютного нуля, также излучают радиацию, которую условно называют длинноволновой. Ее длины волн - примерно от

4 до 100 мкм.

Собственное излучение земной поверхности, по закону Cтефана - Больцмана, пропорционально четвертой степени ее абсолютной темпе-

ратуры Т:

Ез = Т4 ,

где = 0,814 10-10 кал/см2 мин град4 постоянная Стефана-Больцмана;относительная излучательная способность деятельной поверхности: для большей части естественных поверхностей 0,95.

Излучение атмосферы направлено как к Земле, так и в мировое пространство. Часть длинноволнового атмосферного излучения, направленная вниз и поступающая к земной поверхности, называется встречным излучением атмосферы и обозначается Е а .

Разность между собственным излучением земной поверхности Е з и встречным излучением атмосферыЕ а называется эффективным излуче-

нием земной поверхности Е эф :

Е эф= Е зЕ а.

Величина Е эф , взятая с обратным знаком, составляет баланс длинноволновой радиации на земной поверхностиВ д .

Разность между всей приходящей и всей уходящей радиацией назы-

3.1. Приборы для измерения радиационного баланса

и его составляющих

Для измерения интенсивности лучистой энергии применяются актинометрические приборы различной конструкции. Приборы бывают абсолютные и относительные. По абсолютным приборам показания получают сразу в тепловых единицах, а по относительным - в относительных, поэтому для таких приборов необходимо знать переводные множители для перехода к тепловым единицам.

Абсолютные приборы по устройству и обращению довольно сложны и не имеют массового распространения. Применяются они преимущественно для поверки относительных приборов. В конструкции относительных приборов чаще всего используется термоэлектрический метод, который основан на зависимости силы термотока от разности температур спаев.

Приемником термоэлектрических приборов служат термобатареи из спаев двух металлов (рис. 3.1). Разность температур спаев создается в результате различной поглотительной способности спаев или

ванометром 3. Во втором случае разность температур спаев достигается путем затенения одних (спай3) и облучения других (спай2) солнечной радиацией. Так как разность температур спаев обусловливается приходящей солнечной радиацией, то интенсивность ее будет пропорциональна силе термоэлектрического тока:

где N отклонение стрелки гальванометра;а переводный множитель, кал/см2 мин.

Таким образом, для выражения интенсивности радиации в тепловых единицах необходимо показания гальванометра умножить на переводный множитель.

Переводный множитель для пары термоэлектрический прибор – гальванометр определяют путем сравнения с контрольным прибором или рассчитывают по электрическим характеристикам, содержащимся в сертификатах гальванометра и актинометрического прибора, с точностью до 0,0001 кал/см2 мин по формуле

(R бR rR доб),

где а переводный множитель; цена деления шкалы гальванометра, мА;k чувствительность термоэлектрического прибора, милливольт на 1 кал/см2 мин;R б сопротивление термобатареи, Ом;R r внутреннее сопротивление гальванометра, Ом;R доб добавочное сопротивление гальванометра, Ом.

Термоэлектрический актинометр АТ-50 служит для измерения прямой солнечной радиации.

Устройство актинометра. Приемником актинометра является диск1 из серебряной фольги (рис. 3.2). Со стороны, обращенной к солнцу, диск зачернен, а с другой стороны к нему подклеены через изоляционную бумажную прокладку внутренние спаи2 термозвездочки из манганина и константана, состоящей из 36 термоэлементов (на схеме показаны только семь термо-элементов). Внешние спаи3 термозвездочки через изоляционную бумажную про-

Рис. 3.2. Схема термозвез-

кладку 5 подклеены к медному диску4. По-

дочки актинометра следний помещается в массивном медном корпусе со скобами, к которым присоединены

выводы термобатареи и мягкие провода 6 (рис. 3.3).

Корпус со скобами закрыт кожухом 7 , закрепленным гайкой8, и соединен винтом10 с мерной трубкой9. Внутри трубки имеется пять диафрагм, расположенных в порядке уменьшения их диаметра от 20 до 10 мм по направлению к корпусу. Диафрагмы удерживаются плоской и пружинящей шайбами, установленными между корпусом и наименьшей диафрагмой. С внутренней стороны диафрагмы зачернены.

На концах трубки расположены кольца 12 и13 для нацеливания актинометра на солнце. На кольце13 есть отверстие, а на кольце12 точка. При правильной установке пучок света, проходящий через отверстие, должен точно попадать в точку кольца12 . Трубка закрывается съемной крышкой11 , которая служит для определения нулевого положения гальванометра и защищает приемник от загрязнения.

Трубка 9 соединяется со стойкой14, укрепленной на плато16 параллактическим штативом17. Для установки оси штатива соответственно широте места служит шкала18 с делениями, риска19 и винт20.

Установка. Вначале ось штатива устанавливают по широте места наблюдений. Для этого, ослабив винт20, поворачивают ось штатива до совпадения деления шкалы18, соответствующего

данной широте, с риской 19 иРис. 3.3.Термоэлектрический закрепляют ось в этом положе-

актинометр АТ-50

нии. Затем актинометр устанавливают на горизонтальной подставке так, чтобы стрелка на плато была ориентирована на север, и, сняв крышку, ориентируют его на солнце путем ослабления винта 23 и вращения рукоятки22; трубку9 поворачивают до тех пор, пока пучок света через отверстие на кольце13 попадает на точку кольца12. После этого провода актинометра при открытой крышке11 присоединяют к клеммам гальванометра (+) и (С), соблюдая полярность. Если стрелка гальванометра отклоняется за нуль, провода меняют местами.

Наблюдения. За 1 минуту до начала наблюдения проверяют установку приемника актинометра на солнце. После этого крышку закрывают и по гальванометру делают отсчет нулевого положенияN 0 . Затем снимают крышку, проверяют точность нацеливания на солнце и 3 раза отсчитывают показания гальванометра с интервалом в 10-15 с (N 1 , N 2 , N 3 ) и температуру по гальванометру. После наблюдений прибор закрывают крышкой футляра.

Обработка наблюдений. Из трех отсчетов по гальванометру находят среднее значениеN c с точностью до 0,1:

N с N 1N 2N 3. 3

Для получения исправленного отсчета N к среднему значениюN вводят шкаловую поправкуN , поправку на температуруN t из поверочного свидетельства гальванометра и вычитают положение места нуляN 0 :

N N Nt N0 .

Для выражения интенсивности солнечной радиации S в кал/см2 мин показания гальванометраN умножают на переводный множительа:

Интенсивность прямой солнечной радиации на горизонтальную поверхность вычисляют по формуле (3.3).

Высоту солнца над горизонтом h и sinh можно определить по уравнению

sin h = sin sin+ cos cos cos,

где широта места наблюдений; склонение солнца для данного дня (приложение 9); часовой угол солнца, отсчитываемый от момента истинного полдня. Определяется он по истинному времени середины наблюдений: t ист = 15(t ист 12ч ).

Термоэлектрический пиранометр П-3х3 применяется для измерения рассеянной и суммарной солнечной радиации.

Устройство пиранометра (рис. 3.4).

Приемной частью пиранометра является термоэлектрическая батарея 1 , состоящая из 87 термоэлементов из манганина и константана. Полоски манганина и константана длиной 10 мм последовательно спаяны между собой и уложены в квадрате 3x3 см так, что спаи располагаются в середине и на поворотах. С внешней стороны поверхность термобатареи покрыта сажей и магнезией. Четные спаи термобатареи окрашены в белый цвет, а нечетные

– в черный. Спаи располагаются так, что

черные и белые участки чередуются в

Рис. 3.4. Термоэлектрический пиранометр П-3х3

шахматном порядке. Через изоляционную бумажную прокладку термобатарея прикреплена к ребрам плитки 2 , привинченной к корпусу3.

Вследствие различного поглощения солнечной радиации создается разность температур черных и белых спаев, поэтому в цепи возникает термоток. Выводы из термобатареи подведены к клеммам 4, к которым присоединяются провода, соединяющие пиранометр с гальванометром.

Сверху корпус закрыт стеклянным полусферическим колпаком 5 для защиты термобатареи от ветра и осадков. Для предохранения термобатареи и стеклянного колпака от возможной конденсации водяного пара на нижней части корпуса имеется стеклянная сушилка6 с химическим поглотителем влаги (металлический натрий, силикагель и др.).

Корпус с термобатареей и стеклянным колпаком составляет головку пиранометра, которая привинчена к стойке 7, зажатой в треноге8 винтом9. Тренога укреплена на основании футляра и имеет два установочных винта10 . При измерении рассеянной или суммарной радиации пиранометр вращением винтов10 устанавливают горизонтально по уровню11 .

Для затенения головки пиранометра от прямых солнечных лучей служит теневой экран, диаметр которого равен диаметру стеклянного колпака. Теневой экран укреплен на трубке 14, которая винтом13 соединена с горизонтальным стержнем12.

При затенении приемника пиранометра теневым экраном измеряется рассеянная, а без затенения - суммарная радиация.

Для определения нулевого положения стрелки гальванометра, а также для защиты стеклянного колпака от повреждения головку пиранометра закрывают металлической крышкой 16.

Установка. Прибор устанавливают на открытой площадке. Перед наблюдением проверяют наличие осушителя в стеклянной сушилке (1/3 сушилки должна быть заполнена осушителем). Затем трубку14 с теневым экраном15 присоединяют к стержню12 с помощью винта13.

К солнцу пиранометр поворачивают всегда одной и той же стороной, отмеченной номером на головке. Для поворота головки пиранометра номером к солнцу винт 9 слегка ослабляют и в таком положении закрепляют.

Горизонтальность термобатареи проверяют на уровне 11 и в случае нарушения ее регулируют установочными винтами10.

Гальванометр для измерения силы термотока устанавливают с северной стороны от пиранометра на таком расстоянии, чтобы наблюдатель при отсчетах не затенял пиранометр не только от прямых солнеч-

ных лучей, но и от участков неба. Правильность подключения пиранометра к гальванометру проверяют при снятой крышке пиранометра и освобожденном арретире гальванометра. При отклонении стрелки за нуль шкалы провода меняют местами.

Наблюдения. Непосредственно перед наблюдением проверяют правильность установки прибора по уровню и относительно солнца. Для отсчета нулевого положения гальванометра головку пиранометра закрывают крышкой16 и записывают показания гальванометраN 0 . После этого крышку пиранометра снимают и делают серию отсчетов с интервалом 10-15 с.

Вначале отсчитывают показания гальванометра при затененном пиранометре для определения рассеянной радиации N 1 , N 2 , N 3 , потом - при незатененном положении (теневой экран опускается ослаблением винта13 ) для определения суммарной радиацииN 4 ,N 5 , N 6 . После наблюдений трубку с теневым экраном отвинчивают и пиранометр закрывают крышкой футляра.

Обработка наблюдений. Из серий отсчетов по гальванометру для каждого вида радиации определяют средние значенияN D иN Q :

N 1N 2N 3

N 4N 5N 6

Затем получают исправленные значения N D иN Q . С этой целью по средним значениям определяют шкаловые поправкиN D иN Q из поверочного свидетельства гальванометра и вычитают пулевое показание гальванометра:

ND ND N N0 , NQ NQ N N0 .

Для определения интенсивности рассеянной радиации D в кал/см2 мин необходимо показания гальванометраN D умножить на переводный множительа:

D = ND.

Для определения суммарной радиации Q в кал/см2 мин вводится еще поправочный множитель на высоту солнцаF h . Этот поправочный множитель дается в поверочном свидетельстве в форме графика: по оси абсцисс нанесена высота солнца над горизонтом, а по оси ординат - поправочный множитель.

С учетом поправочного множителя на высоту солнца суммарная радиация определяется по формуле

Q = a (NQ ND )Fh + ND .

При наблюдениях по пиранометру может быть вычислена и интенсивность прямой радиации на горизонтальную поверхность как разность суммарной и рассеянной радиации:

Походный термоэлектрический альбедометр АП-3х3 предназна-

чен для измерения в походных условиях суммарной, рассеянной и отраженной радиации. На практике он применяется главным образом для измерения альбедо деятельной поверхности.

Устройство альбедометра. Приемником альбедометра (рис. 3.5) служит головка пиранометра1 , привинченная на втулке2 к трубке3 с карданным подвесом4 и рукояткой5. Поворотом рукоятки на 180° приемник может быть обращен вверх для измерения приходящей коротковолновой радиации и вниз для измерения отраженной коротковолновой радиации. Чтобы трубка была в отвесном положении, внутри нее на стержне скользит специальный груз, который при поворотах прибора всегда передвигается вниз. Для смягчения ударов при повороте прибора на концах трубки подложены резиновые прокладки6.

В разобранном виде прибор крепится на основании металлического футляра.

Установка. Перед наблюдением с осно-

вания футляра снимают головку, трубку,

рукоятку и свинчивают между собой: голов-

ку привинчивают к трубке, а рукоятку - к

карданному подвесу. Для исключения ради-

ации, которую может отражать сам наблю-

датель, рукоятка насаживается на деревян-

ный шест длиной около 2 м.

Рис. 3.5. Походный альбедометр

Альбедометр подсоединяют мягкими

проводами к гальванометру на клеммы (+) и

(С) при открытом приемнике и освобожденном арретире гальванометра. Если стрелка гальванометра уходит за нуль, провода меняют местами.

Во время наблюдений на постоянном участке приемник альбедометра устанавливают на высоте 1-1,5 м над деятельной поверхностью, а на сельскохозяйственных полях - на расстоянии 0,5 м от верхнего уровня растительного покрова. При измерении суммарной и рассеянной радиации головку альбедометра поворачивают номером к солнцу.

Наблюдения. За 3 мин до начала наблюдений отмечают место нуля. Для этого головку альбедометра закрывают крышкой и отсчитывают показания гальванометраN 0 . Затем открывают крышку и производят три отсчета по гальванометру при положении приемника альбедометра вверх для измерения приходящей суммарной радиации:N 1 , N 2 , N 3 . После третьего отсчета приемник поворачивают вниз и через 1 мин производят три отсчета для измерения отраженной радиации:N 4 , N 5 , N 6 . Потом приемник снова поворачивают вверх и через 1 мин делают еще три отсчета для измерения приходящей суммарной радиации:N 7 , N 8 , N 9 . После окончания серии отсчетов приемник закрывают крышкой.

Обработка наблюдений. Сначала вычисляют средние значения отсчетов по гальванометру для каждого вида радиацииN Q иN Rk :

N Q N 1N 2N 3N 7N 8N 9, 6

N Rk N 4N 5N 6. 3

Затем к средним значениям вводят шкаловую поправку из поверочного свидетельства N Q иN Rk , вычитают место нуляN 0 и определяют исправленные значенияN Q иN Rk :

N QN QN N 0 , N RkN RkN N 0 .

Так как альбедо выражается отношением отраженной радиации к суммарной, то переводный множитель сокращается и альбедо вычисляется как отношение исправленных показаний гальванометра при измерении отраженной и суммарной радиации (в процентах):

Альбедометр является наиболее универсальным прибором. При наличии переводного множителя им можно определить суммарную радиацию, рассеянную, отраженную и рассчитать прямую радиацию на горизонтальную поверхность. При наблюдениях за рассеянной радиацией необходимо применять теневой экран для защиты приемника от прямых солнечных лучей.

Балансомер термоэлектрический М-10 применяется для измере-

ния радиационного баланса подстилающей поверхности, или остаточной радиации, которая представляет собой алгебраическую сумму всех видов радиации, поступающих и теряемых этой поверхностью. Приходная часть радиации состоит из прямой радиации на горизонтальную поверхность S" , рассеянной радиацииD и излучения атмосферыE а . Расходная часть радиационного баланса, или уходящая радиация, представляет собой отраженную коротковолновую радиациюR K и длинноволновое излучение землиЕ 3 .

Действие балансомера основано на преобразовании потоков радиации в термоэлектродвижущую силу при помощи термобатареи.

Возникающая в термобатарее электродвижущая сила пропорциональна разности температур между верхним и нижним приемниками балансомера. Так как температура приемников зависит от приходящей и уходящей радиации, то и электродвижущая сила будет пропорциональна разности потоков радиации, поступающих сверху и снизу на приемники.

Радиационный баланс В при измерении балансомером выражается уравнением

N показания гальванометра;k поправочный множитель, учитывающий влияние скорости ветра (табл. 3.1).

Таблица 3.1

Поправочный множитель k (пример)

Скорость ветра,

Поправочный

множитель k

Показания балансомера, умноженные на поправочный множитель, соответствующий данной скорости ветра, приводятся к показаниям балансомера при штиле.

Устройство балансомера (рис. 3.6). Приемником балансомера служат две зачерненные тонкие медные пластинки1 и2 , имеющие форму квадрата со стороной 48 мм. С внутренней стороны к ним приклеены через бумажные прокладки спаи3, 4 термобатареи. Спаи образованы витками намотанной на медный брусок5 константановой ленты. Каждый виток ленты наполовину посеребрен. Начало и конец серебряного слоя служат термоспаями. Четные спаи подклеены к верхней, а нечет-

ные к нижней пластинке. Вся термобатарея состоит из десяти брусков, на каждый из которых намотано 32-33 витка. Приемник балансомера помещен в корпус6 , имеющий форму диска диаметром 96 мм и толщиной 4 мм. Корпус соединен с рукояткой7 , через которую пропущены выводы8 от термобатареи. Балансомер с помощью шаровых шарнир-

ов 9 устанавливается на па-

нельке 10 . К панельке присое-

диняется

шарнирах

стержень 11 с экраном12 , кото-

защищает

приемник

прямых солнечных лучей. При

применении экрана на стержне,

видимого из центра приемника

под углом 10°, прямая солнеч-

радиация исключается

показаний балансомера,

повышает точность измерений,

но в этом случае интенсивность

солнечной

радиации

необхо-димо измерять отдельно

Рис. 3.6. Термоэлектрический

актинометром. Чехол 13 защи-

балансомер М-10

щает балансомер от осадков и

Установка. Прибор прикрепляют панелькой к концу деревянной рейки на высоте 1,5 м от земли. Приемник его устанавливают горизонтально всегда одной и той же приемной стороной вверх, отмеченной на приборе цифрой 1. Выводы из термобатарей подключают к гальванометру.

В большинстве случаев балансомер затеняют экраном от прямой солнечной радиации. Поэтому на одной рейке с балансомером устанавливают актинометр для измерения прямой солнечной радиации. Для учета влияния скорости ветра на уровне балансомера и на небольшом расстоянии от него устанавливают анемометр.

Наблюдения. За 3 мин до начала наблюдения определяют место нуля балансомераN 0 . Производится это при разомкнутой цепи. После этого балансомер подключают к гальванометру так, чтобы стрелка гальванометра отклонялась вправо, и производят три отсчета по балансомеруN 1 , N 2 , N 3 и одновременно три отсчета по анемометру1 , 2 , 3 . Если балансомер установлен с теневым экраном, то после первого и второго отсчетов по балансомеру производят два отсчета по актинометру

Солнце – источник тепла и света, дарящий силы и здоровье. Однако не всегда его воздействие является положительным. Нехватка энергии или ее переизбыток могут расстроить естественные процессы жизнедеятельности и спровоцировать различные проблемы. Многие уверены, что загорелая кожа выглядит намного красивее, чем бледная, однако если долгое время провести под прямыми лучами, можно получить сильный ожог. Солнечная радиация – это поток поступающей энергии, распространяющийся в виде электромагнитных волн, проходящих через атмосферу . Измеряется мощностью переносимой ею энергии на единицу площади поверхности (ватт/м 2). Зная, как влияет солнце на человека, можно предотвратить его отрицательное воздействие.

Что представляет собой солнечная радиация

О Солнце и его энергии написано множество книг. Солнце является главным источником энергии всех физико-географических явлений на Земле . Одна двухмиллиардная доля света проникает в верхние слои атмосферы планеты, большая же часть оседает в мировом пространстве.

Лучи света – первоисточники других видов энергии. Попадая на поверхность земли и в воду, они формируются в тепло, воздействуют на климатические особенности и погоду.

Степень воздействия световых лучей на человека зависит от уровня радиации, а также периода, проведенного под солнцем. Многие типы волн люди применяют себе на пользу, пользуясь рентгеновским облучением, инфракрасными лучами, а также ультрафиолетом. Однако солнечные волны в чистом виде в большом количестве могут негативно отразиться на здоровье человека.

Количество радиации зависит от:

  • положения Солнца. Наибольшее количество облучения приходится на равнины и пустыни, где солнцестояние довольно высокое, а погода безоблачная . Полярные области получают минимальное количество света, так как облачность поглощает значительную часть светового потока;
  • длительности дня. Чем ближе к экватору, тем продолжительнее день. Именно там люди получают больше тепла;
  • свойств атмосферы: облачности и влажности. На экваторе повышенная облачность и влажность, что является препятствием для прохождения света. Именно поэтому количество светового потока там меньше, чем в тропических зонах.

Распределение

Распределение солнечного света по земной поверхности неравномерное и имеет зависимость от:

  • плотности и влажности атмосферы. Чем они больше, тем уменьшается облучение;
  • географической широты местности. Количество получаемого света повышается от полюсов к экватору ;
  • движения Земли. Объем излучения меняется в зависимости от времени года;
  • характеристик земной поверхности. Большое количество светового потока отражается в светлых поверхностях, например, снеге. Наиболее слабо отражает световую энергию чернозем.

Из-за протяженности своей территории уровень излучения в России значительно варьируется. Солнечное облучение в северных регионах примерно такое — 810 кВт-час/м 2 за 365 дней, в южных – более 4100 кВт-час/м 2 .

Немаловажное значение имеет длительность часов, на протяжении которых светит солнце . Эти показатели разнообразны в различных регионах, на что влияет не только географическая широта, но и наличие гор. На карте солнечной радиации России хорошо заметно, что в некоторых регионах не целесообразно устанавливать линии электроснабжения, так как естественный свет вполне способен обеспечить потребности жителей в электричестве и тепле.

Виды

Световые потоки достигают Земли различными путями. Именно от этого зависят виды солнечной радиации:

  • Исходящие от солнца лучи называются прямой радиацией . Их сила имеет зависимость от высоты расположения солнца над уровнем горизонта. Максимальный уровень наблюдается в 12 часов дня, минимальный – в утреннее и вечернее время. Кроме того, интенсивность воздействия имеет связь с временем года: наибольшая возникает летом, наименьшая – зимой. Характерно, что в горах уровень радиации больше, чем на равнинных поверхностях. Также грязный воздух снижает прямые световые потоки. Чем ниже солнце над уровнем горизонта, тем меньше ультрафиолета.
  • Отраженная радиация – это излучение, которое отражается водой или поверхностью земли.
  • Рассеянная солнечная радиация формируется при рассеивании светового потока. Именно от нее зависит голубая окраска неба при безоблачной погоде.

Поглощенная солнечная радиация имеет зависимость от отражательной способности земной поверхности – альбедо.

Спектральный состав излучения многообразен:

  • цветные или видимые лучи дают освещенность и имеют большое значение в жизни растений;
  • ультрафиолет должен проникать в тело человека умеренно, так как его переизбыток или нехватка могут нанести вред;
  • инфракрасное облучение дает ощущение тепла и воздействует на рост растительности.

Суммарная солнечная радиация – это проникающие на землю прямые и рассеянные лучи . При отсутствии облачности, примерно около 12 часов дня, а также в летнее время года она достигает своего максимума.

Истории наших читателей

Владимир
61 год

Как происходит воздействие

Электромагнитные волны состоят из различных частей. Есть невидимые, инфракрасные и видимые, ультрафиолетовые лучи. Характерно, что радиационные потоки имеют разную структуру энергии и по-разному влияют на людей.


Световой поток может оказывать благотворное, целебное воздействие на состояние человеческого тела
. Проходя через зрительные органы, свет регулирует метаболизм, режим сна, влияет на общее самочувствие человека. Кроме того, световая энергия способна вызывать ощущение тепла. При облучении кожи в организме происходят фотохимические реакции, способствующие правильному обмену веществ.

Высокой биологической способностью обладает ультрафиолет, имеющий длину волны от 290 до 315 нм. Эти волны синтезируют витамин D в организме, а также способны уничтожать вирус туберкулеза за несколько минут, стафилококк – в течение четверти часа, палочки брюшного тифа – за 1 час.

Характерно, что безоблачная погода снижает длительность возникающих эпидемий гриппа и других заболеваний, например, дифтерии, имеющих способность передаваться воздушно-капельным путем.

Естественные силы организма защищают человека от внезапных атмосферных колебаний: температуры воздуха, влажности, давления. Однако иногда подобная защита ослабевает, что под воздействием сильной влажности совместно с повышенной температурой приводит к тепловому удару.

Воздействие облучения имеет связь от степени его проникновения в организм. Чем длиннее волны, тем сильнее сила излучения . Инфракрасные волны способны проникать до 23 см под кожу, видимые потоки – до 1 см, ультрафиолет – до 0,5-1 мм.

Все виды лучей люди получают во время активности солнца, когда пребывают на открытых пространствах. Световые волны позволяют человеку адаптироваться в мире, именно поэтому для обеспечения комфортного самочувствия в помещениях необходимо создать условия оптимального уровня освещения.

Воздействие на человека

Влияние солнечного излучения на здоровье человека определяется различными факторами. Имеет значение место жительства человека, климат, а также количество времени, проведенного под прямыми лучами.

При нехватке солнца у жителей Крайнего Севера, а также у людей, чья деятельность связана с работой под землей, например у шахтеров, наблюдаются различные расстройства жизнедеятельности, снижается прочность костей, возникают нервные нарушения.

Дети, недополучающие света, страдают рахитом чаще, чем остальные . Кроме того, они более подвержены заболеваниям зубов, а также имеют более длительное протекание туберкулеза.

Однако слишком продолжительное воздействие световых волн без периодической смены дня и ночи может пагубно отразиться на состоянии здоровья. Например, жители Заполярья часто страдают раздражительностью, утомлением, бессонницей, депрессиями, снижением трудоспособности.

Радиация в Российской Федерации имеет меньшую активность, чем, к примеру, в Австралии.

Таким образом, люди, которые находятся под длительным излучением:

  • подвержены высокой вероятности возникновения рака кожных покровов;
  • имеют повышенную склонность к сухости кожи, что, в свою очередь, ускоряет процесс старения и появление пигментации и ранних морщин;
  • могут страдать ухудшением зрительных способностей, катарактой, конъюнктивитом;
  • обладают ослабленным иммунитетом.

Нехватка витамина D у человека является одной из причин злокачественных новообразований, нарушений обмена веществ , что приводит к излишней массе тела, эндокринным нарушениям, расстройству сна, физическому истощению, плохому настроению.

Человек, который систематически получает свет солнца и не злоупотребляет солнечными ванными, как правило, не испытывает проблем со здоровьем:

  • имеет стабильную работу сердца и сосудов;
  • не страдает нервными заболеваниями;
  • обладает хорошим настроением;
  • имеет нормальный обмен веществ;
  • редко болеет.

Таким образом, только дозированное поступление излучения способно положительно отразиться на здоровье человека.

Как защититься


Переизбыток облучения может спровоцировать перегрев организма, ожоги, а также обострение некоторых хронических болезней
. Любителям принимать солнечные ванны необходимо позаботиться о выполнении нехитрых правил:

  • с осторожностью загорать на открытых пространствах;
  • во время жаркой погоды скрываться в тени под рассеянными лучами. В особенности это касается маленьких детей и пожилых людей, страдающих туберкулезом и заболеваниями сердца.

Следует помнить, что загорать необходимо в безопасное время суток, а также не находиться длительное время под палящим солнцем. Кроме того, стоит оберегать от теплового удара голову, нося головной убор, солнцезащитные очки, закрытую одежду, а также использовать различные средства от загара.

Солнечная радиация в медицине

Световые потоки активно применяют в медицине:

  • при рентгене используется способность волн проходить через мягкие ткани и костную систему;
  • введение изотопов позволяет зафиксировать их концентрацию во внутренних органах, обнаружить многие патологии и очаги воспаления;
  • лучевая терапия способна разрушать рост и развитие злокачественных новообразований .

Свойства волн успешно используют во многих физиотерапевтических аппаратах:

  • Приборы с инфракрасным излучением применяют для теплолечения внутренних воспалительных процессов, заболеваний костей, остеохондроза, ревматизма, благодаря способности волн восстанавливать клеточные структуры.
  • Ультрафиолетовые лучи могут отрицательно сказываться на живых существах, угнетать рост растений, подавлять микроорганизмы и вирусы.

Гигиеническое значение солнечной радиации велико. Аппараты с ультрафиолетовым излучением используют в терапии:

  • различных травм кожных покровов: ран, ожогов;
  • инфекций;
  • болезней ротовой полости;
  • онкологических новообразований.

Кроме того, радиация имеет положительное влияние на организм человека в целом: способна придать сил, укрепить иммунную систему, восполнить нехватку витаминов .

Солнечный свет является важным источником полноценной жизни человека. Достаточное его поступление приводит к благоприятному существованию всех живых существ на планете. Человек не может снизить степень радиации, однако в силах оградить себя от его отрицательного воздействия.

Все виды солнечных лучей достигают земной поверхности тремя путями - в виде прямой, отраженной и рассеянной солнечной радиации.
Прямая солнечная радиация - это лучи, идущие непосредственно от солнца. Её интенсивность (эффективность) зависит от высоты стояния солнца над горизонтом: максимум наблюдается в полдень, а минимум - утром и вечером; от времени года: максимум - летом, минимум - зимой; от высоты местности над уровнем моря (в горах выше, чем на равнине); от состояния атмосферы (загрязнённость воздуха уменьшает её). От высоты стояния солнца над горизонтом зависит и спектр солнечной радиации (чем ниже стоит солнце над горизонтом, тем меньше ультрафиолетовых лучей).
Отраженная солнечная радиация - это лучи солнца, отраженные земной или водной поверхностью. Она выражается процентным отношением отраженных лучей к их суммарному потоку и называется альбедо. Величина альбедо зависит от характера отражающих поверхностей. При организации и проведении солнечных ванн необходимо знать и учитывать альбедо поверхностей, на которых проводятся солнечные ванны. Некоторые из них характеризуются избирательной отражающей способностью. Снег полностью отражает инфракрасные лучи, а ультрафиолетовые - в меньшей степени.

Рассеянная солнечная радиация образуется в результате рассеивания солнечных лучей в атмосфере. Молекулы воздуха и взвешенные в нем частицы (мельчайшие капельки воды, кристаллики льда и т. п.), называемые аэрозолями, отражают часть лучей. В результате многократных отражений часть их все же достигает земной поверхности; это рассеянные солнечные лучи. Рассеиваются в основном ультрафиолетовые, фиолетовые и голубые лучи, что и определяет голубой цвет неба в ясную погоду. Удельный вес рассеянных лучей велик в высоких широтах (в северных районах). Там солнце стоит низко над горизонтом, и потому путь лучей к земной поверхности длиннее. На длинном пути лучи встречают больше препятствий и в большей степени рассеиваются.

(http://new-med-blog.livejournal.com/204

Суммарная солнечная радиация - вся прямая и рассеянная солнечная радиация, поступающая на земную поверхность. Суммарная солнечная радиация характеризуется интенсивностью. При безоблачном небе суммарная солнечная радиация имеет максимальное значение около полудня, а в течение года - летом.

Радиационный баланс
Радиационный баланс земной поверхности - разность между суммарной солнечной радиацией, поглощенной земной поверхностью, и ее эффективным излучением. Для земной поверхности
- приходная часть есть поглощенная прямая и рассеянная солнечная радиация, а также поглощенное встречное излучение атмосферы;
- расходная часть состоит из потери тепла за счет собственного излучения земной поверхности.

Радиационный баланс может быть положительным (днем, летом) и отрицательным (ночью, зимой); измеряется в кВт/кв.м/мин.
Радиационный баланс земной поверхности - важнейший компонент теплового баланса земной поверхности; один из основных климатообразующих факторов.

Тепловой баланс земной поверхности - алгебраическая сумма всех видов прихода и расхода тепла на поверхность суши и океана. Характер теплового баланса и его энергетический уровень определяют особенности и интенсивность большинства экзогенных процессов. Основными составляющими теплового баланса океана являются:
- радиационный баланс;
- затрата тепла на испарение;
- турбулентный теплообмен между поверхностью океана и атмосферой;
- вертикальный турбулентный теплообмен поверхности океана с нижележащими слоями; и
- горизонтальная океаническая адвекция.

(http://www.glossary.ru/cgi-bin/gl_sch2.c gi?RQgkog.outt:p!hgrgtx!nlstup!vuilw)tux yo)

Измерение солнечной радиации.

Для измерения солнечной радиации служат актинометры и пиргелиометры. Интенсивность солнечной радиации обычно измеряется по её тепловому действию и выражается в калориях на единицу поверхности за единицу времени.

(http://www.ecosystema.ru/07referats/slo vgeo/967.htm)

Измерение интенсивности солнечной радиации производится пиранометром Янишевского в комплекте с гальванометром или потенциометром.

При замерах суммарной солнечной радиации пиранометр устанавливают без теневого экрана, при замерах же рассеянной радиации с теневым экраном. Прямая солнечная радиация вычисляется как разность между суммарной и рассеянной радиацией.

При определении интенсивности падающей солнечной радиации на ограждение пиранометр устанавливают на него так, чтобы воспринимаемая поверхность прибора была строго параллельна поверхности ограждения. При отсутствии автоматической записи радиации замеры следует производить через 30 мин в промежутке между восходом и заходом солнца.

Радиация, падающая на поверхность ограждения, полностью не поглощается. В зависимости от фактуры и окраски ограждения некоторая часть лучей отражается. Отношение отраженной радиации к падающей, выраженное в процентах, называется альбедо поверхности и измеряется альбедометром П.К. Калитина в комплекте с гальванометром или потенциометром.

Для большей точности наблюдения следует проводить при ясном небе и при интенсивном солнечном облучении ограждения.

(http://www.constructioncheck.ru/default.a spx?textpage=5)